// powerpc.cc -- powerpc target support for gold. // Copyright 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc. // Written by David S. Miller // and David Edelsohn // This file is part of gold. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #include "gold.h" #include "elfcpp.h" #include "parameters.h" #include "reloc.h" #include "powerpc.h" #include "object.h" #include "symtab.h" #include "layout.h" #include "output.h" #include "copy-relocs.h" #include "target.h" #include "target-reloc.h" #include "target-select.h" #include "tls.h" #include "errors.h" #include "gc.h" namespace { using namespace gold; template class Output_data_plt_powerpc; template class Output_data_got_powerpc; template class Output_data_glink; template class Powerpc_relobj : public Sized_relobj_file { public: Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset, const typename elfcpp::Ehdr& ehdr) : Sized_relobj_file(name, input_file, offset, ehdr), got2_section_(0) { } ~Powerpc_relobj() { } unsigned int got2_shndx() const { if (size == 32) return this->got2_section_; else return 0; } bool do_find_special_sections(Read_symbols_data* sd); private: unsigned int got2_section_; }; template class Target_powerpc : public Sized_target { public: typedef Output_data_reloc Reloc_section; Target_powerpc() : Sized_target(&powerpc_info), got_(NULL), plt_(NULL), glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY), dynbss_(NULL), got_mod_index_offset_(-1U) { } // Process the relocations to determine unreferenced sections for // garbage collection. void gc_process_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols); // Scan the relocations to look for symbol adjustments. void scan_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols); // Map input .toc section to output .got section. const char* do_output_section_name(const Relobj*, const char* name, size_t* plen) const { if (size == 64 && strcmp(name, ".toc") == 0) { *plen = 4; return ".got"; } return NULL; } // Finalize the sections. void do_finalize_sections(Layout*, const Input_objects*, Symbol_table*); // Return the value to use for a dynamic which requires special // treatment. uint64_t do_dynsym_value(const Symbol*) const; // Relocate a section. void relocate_section(const Relocate_info*, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, unsigned char* view, typename elfcpp::Elf_types::Elf_Addr view_address, section_size_type view_size, const Reloc_symbol_changes*); // Scan the relocs during a relocatable link. void scan_relocatable_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols, Relocatable_relocs*); // Relocate a section during a relocatable link. void relocate_for_relocatable(const Relocate_info*, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, off_t offset_in_output_section, const Relocatable_relocs*, unsigned char*, typename elfcpp::Elf_types::Elf_Addr, section_size_type, unsigned char* reloc_view, section_size_type reloc_view_size); // Return whether SYM is defined by the ABI. bool do_is_defined_by_abi(const Symbol* sym) const { return strcmp(sym->name(), "__tls_get_addr") == 0; } // Return the size of the GOT section. section_size_type got_size() const { gold_assert(this->got_ != NULL); return this->got_->data_size(); } // Get the PLT section. const Output_data_plt_powerpc* plt_section() const { gold_assert(this->plt_ != NULL); return this->plt_; } // Get the .glink section. const Output_data_glink* glink_section() const { gold_assert(this->glink_ != NULL); return this->glink_; } // Get the GOT section. const Output_data_got_powerpc* got_section() const { gold_assert(this->got_ != NULL); return this->got_; } protected: Object* do_make_elf_object(const std::string&, Input_file*, off_t, const elfcpp::Ehdr&); // Return the number of entries in the GOT. unsigned int got_entry_count() const { if (this->got_ == NULL) return 0; return this->got_size() / (size / 8); } // Return the number of entries in the PLT. unsigned int plt_entry_count() const; // Return the offset of the first non-reserved PLT entry. unsigned int first_plt_entry_offset() const; // Return the size of each PLT entry. unsigned int plt_entry_size() const; private: // The class which scans relocations. class Scan { public: Scan() : issued_non_pic_error_(false) { } static inline int get_reference_flags(unsigned int r_type); inline void local(Symbol_table* symtab, Layout* layout, Target_powerpc* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela& reloc, unsigned int r_type, const elfcpp::Sym& lsym); inline void global(Symbol_table* symtab, Layout* layout, Target_powerpc* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela& reloc, unsigned int r_type, Symbol* gsym); inline bool local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_powerpc* , Sized_relobj_file* , unsigned int , Output_section* , const elfcpp::Rela& , unsigned int , const elfcpp::Sym&) { return false; } inline bool global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_powerpc* , Sized_relobj_file* , unsigned int , Output_section* , const elfcpp::Rela& , unsigned int , Symbol*) { return false; } private: static void unsupported_reloc_local(Sized_relobj_file*, unsigned int r_type); static void unsupported_reloc_global(Sized_relobj_file*, unsigned int r_type, Symbol*); static void generate_tls_call(Symbol_table* symtab, Layout* layout, Target_powerpc* target); void check_non_pic(Relobj*, unsigned int r_type); // Whether we have issued an error about a non-PIC compilation. bool issued_non_pic_error_; }; // The class which implements relocation. class Relocate { public: // Do a relocation. Return false if the caller should not issue // any warnings about this relocation. inline bool relocate(const Relocate_info*, Target_powerpc*, Output_section*, size_t relnum, const elfcpp::Rela&, unsigned int r_type, const Sized_symbol*, const Symbol_value*, unsigned char*, typename elfcpp::Elf_types::Elf_Addr, section_size_type); private: // Do a TLS relocation. inline void relocate_tls(const Relocate_info*, Target_powerpc* target, size_t relnum, const elfcpp::Rela&, unsigned int r_type, const Sized_symbol*, const Symbol_value*, unsigned char*, typename elfcpp::Elf_types::Elf_Addr, section_size_type); }; // A class which returns the size required for a relocation type, // used while scanning relocs during a relocatable link. class Relocatable_size_for_reloc { public: unsigned int get_size_for_reloc(unsigned int, Relobj*) { gold_unreachable(); return 0; } }; // Adjust TLS relocation type based on the options and whether this // is a local symbol. static tls::Tls_optimization optimize_tls_reloc(bool is_final, int r_type); // Get the GOT section, creating it if necessary. Output_data_got_powerpc* got_section(Symbol_table*, Layout*); // Create glink. void make_glink_section(Layout*); // Create the PLT section. void make_plt_section(Layout*); // Create a PLT entry for a global symbol. void make_plt_entry(Layout*, Symbol*, const elfcpp::Rela&, const Sized_relobj* object); // Create a GOT entry for the TLS module index. unsigned int got_mod_index_entry(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object); // Get the dynamic reloc section, creating it if necessary. Reloc_section* rela_dyn_section(Layout*); // Copy a relocation against a global symbol. void copy_reloc(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int shndx, Output_section* output_section, Symbol* sym, const elfcpp::Rela& reloc) { this->copy_relocs_.copy_reloc(symtab, layout, symtab->get_sized_symbol(sym), object, shndx, output_section, reloc, this->rela_dyn_section(layout)); } // Information about this specific target which we pass to the // general Target structure. static Target::Target_info powerpc_info; // The types of GOT entries needed for this platform. // These values are exposed to the ABI in an incremental link. // Do not renumber existing values without changing the version // number of the .gnu_incremental_inputs section. enum Got_type { GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair }; // The GOT output section. Output_data_got_powerpc* got_; // The PLT output section. Output_data_plt_powerpc* plt_; // The .glink output section. Output_data_glink* glink_; // The dynamic reloc output section. Reloc_section* rela_dyn_; // Relocs saved to avoid a COPY reloc. Copy_relocs copy_relocs_; // Space for variables copied with a COPY reloc. Output_data_space* dynbss_; // Offset of the GOT entry for the TLS module index; unsigned int got_mod_index_offset_; }; template<> Target::Target_info Target_powerpc<32, true>::powerpc_info = { 32, // size true, // is_big_endian elfcpp::EM_PPC, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/usr/lib/ld.so.1", // dynamic_linker 0x10000000, // default_text_segment_address 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 4 * 1024, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL // attributes_vendor }; template<> Target::Target_info Target_powerpc<32, false>::powerpc_info = { 32, // size false, // is_big_endian elfcpp::EM_PPC, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/usr/lib/ld.so.1", // dynamic_linker 0x10000000, // default_text_segment_address 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 4 * 1024, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL // attributes_vendor }; template<> Target::Target_info Target_powerpc<64, true>::powerpc_info = { 64, // size true, // is_big_endian elfcpp::EM_PPC64, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/usr/lib/ld.so.1", // dynamic_linker 0x10000000, // default_text_segment_address 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 8 * 1024, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL // attributes_vendor }; template<> Target::Target_info Target_powerpc<64, false>::powerpc_info = { 64, // size false, // is_big_endian elfcpp::EM_PPC64, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/usr/lib/ld.so.1", // dynamic_linker 0x10000000, // default_text_segment_address 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 8 * 1024, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL // attributes_vendor }; template class Powerpc_relocate_functions { private: // Do a simple RELA relocation template static inline void rela(unsigned char* view, unsigned int right_shift, elfcpp::Elf_Xword dst_mask, typename elfcpp::Swap::Valtype value, typename elfcpp::Swap::Valtype addend) { typedef typename elfcpp::Swap::Valtype Valtype; Valtype* wv = reinterpret_cast(view); Valtype val = elfcpp::Swap::readval(wv); Valtype reloc = (value + addend) >> right_shift; val &= ~dst_mask; reloc &= dst_mask; elfcpp::Swap::writeval(wv, val | reloc); } // Do a simple RELA relocation, unaligned. template static inline void rela_ua(unsigned char* view, unsigned int right_shift, elfcpp::Elf_Xword dst_mask, typename elfcpp::Swap::Valtype value, typename elfcpp::Swap::Valtype addend) { typedef typename elfcpp::Swap_unaligned::Valtype Valtype; Valtype* wv = reinterpret_cast(view); Valtype val = elfcpp::Swap::readval(wv); Valtype reloc = (value + addend) >> right_shift; val &= ~dst_mask; reloc &= dst_mask; elfcpp::Swap_unaligned::writeval(wv, val | reloc); } typedef Powerpc_relocate_functions This; typedef Relocate_functions This_reloc; public: // R_POWERPC_REL32: (Symbol + Addend - Address) static inline void rel32(unsigned char* view, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_Addr addend, typename elfcpp::Elf_types::Elf_Addr address) { This_reloc::pcrela32(view, value, addend, address); } // R_POWERPC_REL24: (Symbol + Addend - Address) & 0x3fffffc static inline void rel24(unsigned char* view, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_Addr addend, typename elfcpp::Elf_types::Elf_Addr address) { This::template rela<32>(view, 0, 0x03fffffc, value - address, addend); } // R_POWERPC_REL14: (Symbol + Addend - Address) & 0xfffc static inline void rel14(unsigned char* view, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_Addr addend, typename elfcpp::Elf_types::Elf_Addr address) { This::template rela<32>(view, 0, 0xfffc, value - address, addend); } // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff static inline void addr16(unsigned char* view, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_Addr addend) { This_reloc::rela16(view, value, addend); } // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc static inline void addr16_ds(unsigned char* view, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_Addr addend) { This::template rela<16>(view, 0, 0xfffc, value, addend); } // R_POWERPC_ADDR16_LO: (Symbol + Addend) & 0xffff static inline void addr16_lo(unsigned char* view, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_Addr addend) { This_reloc::rela16(view, value, addend); } // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff static inline void addr16_hi(unsigned char* view, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_Addr addend) { This::template rela<16>(view, 16, 0xffff, value, addend); } // R_POWERPC_ADDR16_HA: Same as R_POWERPC_ADDR16_HI except that if the // final value of the low 16 bits of the // relocation is negative, add one. static inline void addr16_ha(unsigned char* view, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_Addr addend) { This::addr16_hi(view, value + 0x8000, addend); } // R_POWERPC_REL16: (Symbol + Addend - Address) & 0xffff static inline void rel16(unsigned char* view, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_Addr addend, typename elfcpp::Elf_types::Elf_Addr address) { This_reloc::pcrela16(view, value, addend, address); } // R_POWERPC_REL16_LO: (Symbol + Addend - Address) & 0xffff static inline void rel16_lo(unsigned char* view, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_Addr addend, typename elfcpp::Elf_types::Elf_Addr address) { This_reloc::pcrela16(view, value, addend, address); } // R_POWERPC_REL16_HI: ((Symbol + Addend - Address) >> 16) & 0xffff static inline void rel16_hi(unsigned char* view, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_Addr addend, typename elfcpp::Elf_types::Elf_Addr address) { This::template rela<16>(view, 16, 0xffff, value - address, addend); } // R_POWERPC_REL16_HA: Same as R_POWERPC_REL16_HI except that if the // final value of the low 16 bits of the // relocation is negative, add one. static inline void rel16_ha(unsigned char* view, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_Addr addend, typename elfcpp::Elf_types::Elf_Addr address) { This::rel16_hi(view, value + 0x8000, addend, address); } }; // Stash away the index of .got2 in a relocatable object, if such // a section exists. template bool Powerpc_relobj::do_find_special_sections( Read_symbols_data* sd) { if (size == 32) { const unsigned char* const pshdrs = sd->section_headers->data(); const unsigned char* namesu = sd->section_names->data(); const char* names = reinterpret_cast(namesu); section_size_type names_size = sd->section_names_size; const unsigned char* s; s = this->find_shdr(pshdrs, ".got2", names, names_size, NULL); if (s != NULL) { unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes::shdr_size; this->got2_section_ = ndx; } } return Sized_relobj_file::do_find_special_sections(sd); } // Set up PowerPC target specific relobj. template Object* Target_powerpc::do_make_elf_object( const std::string& name, Input_file* input_file, off_t offset, const elfcpp::Ehdr& ehdr) { int et = ehdr.get_e_type(); if (et == elfcpp::ET_REL) { Powerpc_relobj* obj = new Powerpc_relobj(name, input_file, offset, ehdr); obj->setup(); return obj; } else if (et == elfcpp::ET_DYN) { Sized_dynobj* obj = new Sized_dynobj(name, input_file, offset, ehdr); obj->setup(); return obj; } else { gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et); return NULL; } } template class Output_data_got_powerpc : public Output_data_got { public: typedef typename elfcpp::Elf_types::Elf_Addr Valtype; typedef Output_data_reloc Rela_dyn; Output_data_got_powerpc(Symbol_table* symtab, Layout* layout) : Output_data_got(), symtab_(symtab), layout_(layout), header_ent_cnt_(size == 32 ? 3 : 1), header_index_(size == 32 ? 0x2000 : 0) {} class Got_entry; // Create a new GOT entry and return its offset. unsigned int add_got_entry(Got_entry got_entry) { this->reserve_ent(); return Output_data_got::add_got_entry(got_entry); } // Create a pair of new GOT entries and return the offset of the first. unsigned int add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2) { this->reserve_ent(2); return Output_data_got::add_got_entry_pair(got_entry_1, got_entry_2); } // Value of _GLOBAL_OFFSET_TABLE_ unsigned int g_o_t() const { return this->got_offset(this->header_index_); } // Ensure our GOT has a header. void set_final_data_size() { if (this->header_ent_cnt_ != 0) this->make_header(); Output_data_got::set_final_data_size(); } // First word of GOT header needs some values that are not // handled by Output_data_got so poke them in here. // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase. void do_write(Output_file* of) { this->replace_constant(this->header_index_, (size == 32 ? this->layout_->dynamic_section()->address() : this->address() + 0x8000)); Output_data_got::do_write(of); } private: void reserve_ent(unsigned int cnt = 1) { if (this->header_ent_cnt_ == 0) return; if (this->num_entries() + cnt > this->header_index_) this->make_header(); } void make_header() { this->header_ent_cnt_ = 0; this->header_index_ = this->num_entries(); if (size == 32) { Output_data_got::add_constant(0); Output_data_got::add_constant(0); Output_data_got::add_constant(0); // Define _GLOBAL_OFFSET_TABLE_ at the header this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, Symbol_table::PREDEFINED, this, this->g_o_t(), 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); } else Output_data_got::add_constant(0); } // Stashed pointers. Symbol_table* symtab_; Layout* layout_; // GOT header size. unsigned int header_ent_cnt_; // GOT header index. unsigned int header_index_; }; // Get the GOT section, creating it if necessary. template Output_data_got_powerpc* Target_powerpc::got_section(Symbol_table* symtab, Layout* layout) { if (this->got_ == NULL) { gold_assert(symtab != NULL && layout != NULL); this->got_ = new Output_data_got_powerpc(symtab, layout); layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE, this->got_, ORDER_DATA, false); } return this->got_; } // Get the dynamic reloc section, creating it if necessary. template typename Target_powerpc::Reloc_section* Target_powerpc::rela_dyn_section(Layout* layout) { if (this->rela_dyn_ == NULL) { gold_assert(layout != NULL); this->rela_dyn_ = new Reloc_section(parameters->options().combreloc()); layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rela_dyn_, ORDER_DYNAMIC_RELOCS, false); } return this->rela_dyn_; } // A class to handle the PLT data. template class Output_data_plt_powerpc : public Output_section_data_build { public: typedef Output_data_reloc Reloc_section; Output_data_plt_powerpc(Layout*, Target_powerpc*); // Add an entry to the PLT. void add_entry(Symbol*); // Return the .rela.plt section data. const Reloc_section* rel_plt() const { return this->rel_; } // Return the number of PLT entries. unsigned int entry_count() const { return ((this->current_data_size() - initial_plt_entry_size) / plt_entry_size); } // Return the offset of the first non-reserved PLT entry. static unsigned int first_plt_entry_offset() { return initial_plt_entry_size; } // Return the size of a PLT entry. static unsigned int get_plt_entry_size() { return plt_entry_size; } protected: void do_adjust_output_section(Output_section* os) { os->set_entsize(0); } // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, _("** PLT")); } private: // The size of an entry in the PLT. static const int plt_entry_size = size == 32 ? 4 : 24; // The size of the first reserved entry. static const int initial_plt_entry_size = size == 32 ? 0 : 24; // Write out the PLT data. void do_write(Output_file*); // The reloc section. Reloc_section* rel_; // Allows access to .glink for do_write. Target_powerpc* targ_; }; // Create the PLT section. template Output_data_plt_powerpc::Output_data_plt_powerpc( Layout* layout, Target_powerpc* targ) : Output_section_data_build(size == 32 ? 4 : 8), targ_(targ) { this->rel_ = new Reloc_section(false); layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rel_, ORDER_DYNAMIC_PLT_RELOCS, false); } // Add an entry to the PLT. template void Output_data_plt_powerpc::add_entry(Symbol* gsym) { if (!gsym->has_plt_offset()) { off_t off = this->current_data_size(); if (off == 0) off += initial_plt_entry_size; gsym->set_plt_offset(off); gsym->set_needs_dynsym_entry(); this->rel_->add_global(gsym, elfcpp::R_POWERPC_JMP_SLOT, this, off, 0); off += plt_entry_size; this->set_current_data_size(off); } } static const uint32_t addis_11_11 = 0x3d6b0000; static const uint32_t addis_11_30 = 0x3d7e0000; static const uint32_t addis_12_12 = 0x3d8c0000; static const uint32_t addi_11_11 = 0x396b0000; static const uint32_t add_0_11_11 = 0x7c0b5a14; static const uint32_t add_11_0_11 = 0x7d605a14; static const uint32_t b = 0x48000000; static const uint32_t bcl_20_31 = 0x429f0005; static const uint32_t bctr = 0x4e800420; static const uint32_t blrl = 0x4e800021; static const uint32_t lis_11 = 0x3d600000; static const uint32_t lis_12 = 0x3d800000; static const uint32_t lwzu_0_12 = 0x840c0000; static const uint32_t lwz_0_12 = 0x800c0000; static const uint32_t lwz_11_11 = 0x816b0000; static const uint32_t lwz_11_30 = 0x817e0000; static const uint32_t lwz_12_12 = 0x818c0000; static const uint32_t mflr_0 = 0x7c0802a6; static const uint32_t mflr_12 = 0x7d8802a6; static const uint32_t mtctr_0 = 0x7c0903a6; static const uint32_t mtctr_11 = 0x7d6903a6; static const uint32_t mtlr_0 = 0x7c0803a6; static const uint32_t nop = 0x60000000; static const uint32_t sub_11_11_12 = 0x7d6c5850; static const uint32_t addis_12_2 = 0x3d820000; static const uint32_t std_2_1 = 0xf8410000; static const uint32_t ld_11_12 = 0xe96c0000; static const uint32_t ld_2_12 = 0xe84c0000; static const uint32_t addi_12_12 = 0x398c0000; static const uint32_t ld_11_2 = 0xe9620000; static const uint32_t addi_2_2 = 0x38420000; static const uint32_t ld_2_2 = 0xe8420000; static const uint32_t mflr_11 = 0x7d6802a6; static const uint32_t ld_2_11 = 0xe84b0000; static const uint32_t mtlr_12 = 0x7d8803a6; static const uint32_t add_12_2_11 = 0x7d825a14; static const uint32_t li_0_0 = 0x38000000; static const uint32_t lis_0_0 = 0x3c000000; static const uint32_t ori_0_0_0 = 0x60000000; // Write out the PLT. template void Output_data_plt_powerpc::do_write(Output_file* of) { if (size == 32) { const off_t offset = this->offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(offset, oview_size); unsigned char* pov = oview; unsigned char* endpov = oview + oview_size; // The address the .glink branch table const Output_data_glink* glink = this->targ_->glink_section(); elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address() + glink->pltresolve(); while (pov < endpov) { elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab); pov += 4; branch_tab += 4; } of->write_output_view(offset, oview_size, oview); } } // Create the PLT section. template void Target_powerpc::make_plt_section(Layout* layout) { if (this->plt_ == NULL) { if (this->glink_ == NULL) make_glink_section(layout); // Ensure that .rela.dyn always appears before .rela.plt This is // necessary due to how, on PowerPC and some other targets, .rela.dyn // needs to include .rela.plt in it's range. this->rela_dyn_section(layout); this->plt_ = new Output_data_plt_powerpc(layout, this); layout->add_output_section_data(".plt", (size == 32 ? elfcpp::SHT_PROGBITS : elfcpp::SHT_NOBITS), elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE, this->plt_, (size == 32 ? ORDER_SMALL_DATA : ORDER_SMALL_BSS), false); } } // A class to handle .glink. template class Output_data_glink : public Output_section_data { public: Output_data_glink(Target_powerpc*); // Add an entry void add_entry(const Symbol*, const elfcpp::Rela&, const Sized_relobj*); unsigned int find_entry(const Symbol*, const elfcpp::Rela&, const Sized_relobj*) const; unsigned int glink_entry_size() const { if (size == 32) return 4 * 4; else // FIXME: We should be using multiple glink sections for // stubs to support > 33M applications. return 8 * 4; } off_t pltresolve() const { return this->pltresolve_; } protected: // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, _("** glink")); } private: static const int pltresolve_size = 16*4; void set_final_data_size(); // Write out .glink void do_write(Output_file*); class Glink_sym_ent { public: Glink_sym_ent(const Symbol* sym, const elfcpp::Rela& reloc, const Sized_relobj* object) : sym_(sym), object_(0), addend_(0) { if (size != 32) this->addend_ = reloc.get_r_addend(); else if (parameters->options().output_is_position_independent() && (elfcpp::elf_r_type(reloc.get_r_info()) == elfcpp::R_PPC_PLTREL24)) { this->addend_ = reloc.get_r_addend(); if (this->addend_ != 0) this->object_ = object; } } const Symbol* sym_; const Sized_relobj* object_; unsigned int addend_; bool operator==(const Glink_sym_ent& that) const { return (this->sym_ == that.sym_ && this->object_ == that.object_ && this->addend_ == that.addend_); } }; class Glink_sym_ent_hash { public: size_t operator()(const Glink_sym_ent& ent) const { return (reinterpret_cast(ent.sym_) ^ reinterpret_cast(ent.object_) ^ ent.addend_); } }; // Map sym/object/addend to index. typedef Unordered_map Glink_entries; Glink_entries glink_entries_; // Offset of pltresolve stub (actually, branch table for 32-bit) off_t pltresolve_; // Allows access to .got and .plt for do_write. Target_powerpc* targ_; }; // Create the glink section. template Output_data_glink::Output_data_glink( Target_powerpc* targ) : Output_section_data(16), pltresolve_(0), targ_(targ) { } // Add an entry to glink, if we do not already have one for this // sym/object/addend combo. template void Output_data_glink::add_entry( const Symbol* gsym, const elfcpp::Rela& reloc, const Sized_relobj* object) { Glink_sym_ent ent(gsym, reloc, object); unsigned int indx = this->glink_entries_.size(); this->glink_entries_.insert(std::make_pair(ent, indx)); } template unsigned int Output_data_glink::find_entry( const Symbol* gsym, const elfcpp::Rela& reloc, const Sized_relobj* object) const { Glink_sym_ent ent(gsym, reloc, object); typename Glink_entries::const_iterator p = this->glink_entries_.find(ent); gold_assert(p != this->glink_entries_.end()); return p->second; } template void Output_data_glink::set_final_data_size() { unsigned int count = this->glink_entries_.size(); off_t total = count; if (count != 0) { if (size == 32) { total *= 16; this->pltresolve_ = total; // space for branch table total += 4 * (count - 1); total += -total & 15; total += this->pltresolve_size; } else { total *= 32; this->pltresolve_ = total; total += this->pltresolve_size; // space for branch table total += 8 * count; if (count > 0x8000) total += 4 * (count - 0x8000); } } this->set_data_size(total); } static inline uint32_t l(uint32_t a) { return a & 0xffff; } static inline uint32_t hi(uint32_t a) { return l(a >> 16); } static inline uint32_t ha(uint32_t a) { return hi(a + 0x8000); } template static inline void write_insn(unsigned char *p, uint32_t v) { elfcpp::Swap<32, big_endian>::writeval(p, v); } // Write out .glink. template void Output_data_glink::do_write(Output_file* of) { const off_t off = this->offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(off, oview_size); unsigned char *p; // The base address of the .plt section. uint32_t plt_base = this->targ_->plt_section()->address(); // The address of _GLOBAL_OFFSET_TABLE_. const Output_data_got_powerpc *got; typename elfcpp::Elf_types::Elf_Addr g_o_t; got = this->targ_->got_section(); g_o_t = got->address() + got->g_o_t(); if (size == 64) { // Write out call stubs. typename Glink_entries::const_iterator g; for (g = this->glink_entries_.begin(); g != this->glink_entries_.end(); ++g) { uint64_t plt_addr = plt_base + g->first.sym_->plt_offset(); uint64_t got_addr = g_o_t; uint64_t pltoff = plt_addr - got_addr; if (pltoff + 0x80008000 > 0xffffffff || (pltoff & 7) != 0) gold_error(_("%s: linkage table error against `%s'"), g->first.object_->name().c_str(), g->first.sym_->demangled_name().c_str()); p = oview + g->second * this->glink_entry_size(); if (ha(pltoff) != 0) { write_insn(p, addis_12_2 + ha(pltoff)), p += 4; write_insn(p, std_2_1 + 40), p += 4; write_insn(p, ld_11_12 + l(pltoff)), p += 4; if (ha(pltoff + 16) != ha(pltoff)) { write_insn(p, addi_12_12 + l(pltoff)), p += 4; pltoff = 0; } write_insn(p, mtctr_11), p += 4; write_insn(p, ld_2_12 + l(pltoff + 8)), p += 4; write_insn(p, ld_11_12 + l(pltoff + 16)), p += 4; write_insn(p, bctr), p += 4; } else { write_insn(p, std_2_1 + 40), p += 4; write_insn(p, ld_11_2 + l(pltoff)), p += 4; if (ha(pltoff + 16) != ha(pltoff)) { write_insn(p, addi_2_2 + l(pltoff)), p += 4; pltoff = 0; } write_insn(p, mtctr_11), p += 4; write_insn(p, ld_11_2 + l(pltoff + 16)), p += 4; write_insn(p, ld_2_2 + l(pltoff + 8)), p += 4; write_insn(p, bctr), p += 4; } } // Write pltresolve stub. p = oview + this->pltresolve_; uint64_t after_bcl = this->address() + this->pltresolve_ + 16; uint64_t pltoff = plt_base - after_bcl; elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8; write_insn(p, mflr_12), p += 4; write_insn(p, bcl_20_31), p += 4; write_insn(p, mflr_11), p += 4; write_insn(p, ld_2_11 + l(-16)), p += 4; write_insn(p, mtlr_12), p += 4; write_insn(p, add_12_2_11), p += 4; write_insn(p, ld_11_12 + 0), p += 4; write_insn(p, ld_2_12 + 8), p += 4; write_insn(p, mtctr_11), p += 4; write_insn(p, ld_11_12 + 16), p += 4; write_insn(p, bctr), p += 4; while (p < oview + this->pltresolve_ + this->pltresolve_size) write_insn(p, nop), p += 4; // Write lazy link call stubs. uint32_t indx = 0; while (p < oview + oview_size) { if (indx < 0x8000) { write_insn(p, li_0_0 + indx), p += 4; } else { write_insn(p, lis_0_0 + hi(indx)), p += 4; write_insn(p, ori_0_0_0 + l(indx)), p += 4; } uint16_t branch_off = this->pltresolve_ + 8 - (p - oview); write_insn(p, b + (branch_off & 0x3fffffc)), p += 4; indx++; } } else { // Write out call stubs. typename Glink_entries::const_iterator g; for (g = this->glink_entries_.begin(); g != this->glink_entries_.end(); ++g) { uint32_t plt_addr = plt_base + g->first.sym_->plt_offset(); uint32_t got_addr; p = oview + g->second * this->glink_entry_size(); if (parameters->options().output_is_position_independent()) { const Powerpc_relobj* object = static_cast *>(g->first.object_); if (object != NULL) { unsigned int got2 = object->got2_shndx(); got_addr = (g->first.object_->output_section(got2)->address() + g->first.object_->output_section_offset(got2) + g->first.addend_); } else got_addr = g_o_t; uint32_t pltoff = plt_addr - got_addr; if (ha(pltoff) == 0) { write_insn(p + 0, lwz_11_30 + l(pltoff)); write_insn(p + 4, mtctr_11); write_insn(p + 8, bctr); } else { write_insn(p + 0, addis_11_30 + ha(pltoff)); write_insn(p + 4, lwz_11_11 + l(pltoff)); write_insn(p + 8, mtctr_11); write_insn(p + 12, bctr); } } else { write_insn(p + 0, lis_11 + ha(plt_addr)); write_insn(p + 4, lwz_11_11 + l(plt_addr)); write_insn(p + 8, mtctr_11); write_insn(p + 12, bctr); } } // Write out pltresolve branch table. p = oview + this->pltresolve_; unsigned int the_end = oview_size - this->pltresolve_size; unsigned char *end_p = oview + the_end; while (p < end_p - 8 * 4) write_insn(p, b + end_p - p), p += 4; while (p < end_p) write_insn(p, nop), p += 4; // Write out pltresolve call stub. if (parameters->options().output_is_position_independent()) { uint32_t res0_off = this->pltresolve_; uint32_t after_bcl_off = the_end + 12; uint32_t bcl_res0 = after_bcl_off - res0_off; write_insn(p + 0, addis_11_11 + ha(bcl_res0)); write_insn(p + 4, mflr_0); write_insn(p + 8, bcl_20_31); write_insn(p + 12, addi_11_11 + l(bcl_res0)); write_insn(p + 16, mflr_12); write_insn(p + 20, mtlr_0); write_insn(p + 24, sub_11_11_12); uint32_t got_bcl = g_o_t + 4 - (after_bcl_off + this->address()); write_insn(p + 28, addis_12_12 + ha(got_bcl)); if (ha(got_bcl) == ha(got_bcl + 4)) { write_insn(p + 32, lwz_0_12 + l(got_bcl)); write_insn(p + 36, lwz_12_12 + l(got_bcl + 4)); } else { write_insn(p + 32, lwzu_0_12 + l(got_bcl)); write_insn(p + 36, lwz_12_12 + 4); } write_insn(p + 40, mtctr_0); write_insn(p + 44, add_0_11_11); write_insn(p + 48, add_11_0_11); write_insn(p + 52, bctr); write_insn(p + 56, nop); write_insn(p + 60, nop); } else { uint32_t res0 = this->pltresolve_ + this->address(); write_insn(p + 0, lis_12 + ha(g_o_t + 4)); write_insn(p + 4, addis_11_11 + ha(-res0)); if (ha(g_o_t + 4) == ha(g_o_t + 8)) write_insn(p + 8, lwz_0_12 + l(g_o_t + 4)); else write_insn(p + 8, lwzu_0_12 + l(g_o_t + 4)); write_insn(p + 12, addi_11_11 + l(-res0)); write_insn(p + 16, mtctr_0); write_insn(p + 20, add_0_11_11); if (ha(g_o_t + 4) == ha(g_o_t + 8)) write_insn(p + 24, lwz_12_12 + l(g_o_t + 8)); else write_insn(p + 24, lwz_12_12 + 4); write_insn(p + 28, add_11_0_11); write_insn(p + 32, bctr); write_insn(p + 36, nop); write_insn(p + 40, nop); write_insn(p + 44, nop); write_insn(p + 48, nop); write_insn(p + 52, nop); write_insn(p + 56, nop); write_insn(p + 60, nop); } p += 64; } of->write_output_view(off, oview_size, oview); } // Create the glink section. template void Target_powerpc::make_glink_section(Layout* layout) { if (this->glink_ == NULL) { this->glink_ = new Output_data_glink(this); layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS, elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR, this->glink_, ORDER_TEXT, false); } } // Create a PLT entry for a global symbol. template void Target_powerpc::make_plt_entry( Layout* layout, Symbol* gsym, const elfcpp::Rela& reloc, const Sized_relobj* object) { if (this->plt_ == NULL) this->make_plt_section(layout); this->plt_->add_entry(gsym); this->glink_->add_entry(gsym, reloc, object); } // Return the number of entries in the PLT. template unsigned int Target_powerpc::plt_entry_count() const { if (this->plt_ == NULL) return 0; return this->plt_->entry_count(); } // Return the offset of the first non-reserved PLT entry. template unsigned int Target_powerpc::first_plt_entry_offset() const { return Output_data_plt_powerpc::first_plt_entry_offset(); } // Return the size of each PLT entry. template unsigned int Target_powerpc::plt_entry_size() const { return Output_data_plt_powerpc::get_plt_entry_size(); } // Create a GOT entry for the TLS module index. template unsigned int Target_powerpc::got_mod_index_entry( Symbol_table* symtab, Layout* layout, Sized_relobj_file* object) { if (this->got_mod_index_offset_ == -1U) { gold_assert(symtab != NULL && layout != NULL && object != NULL); Reloc_section* rela_dyn = this->rela_dyn_section(layout); Output_data_got_powerpc* got; unsigned int got_offset; got = this->got_section(symtab, layout); got->reserve_ent(2); got_offset = got->add_constant(0); rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got, got_offset, 0); got->add_constant(0); this->got_mod_index_offset_ = got_offset; } return this->got_mod_index_offset_; } // Optimize the TLS relocation type based on what we know about the // symbol. IS_FINAL is true if the final address of this symbol is // known at link time. template tls::Tls_optimization Target_powerpc::optimize_tls_reloc(bool, int) { // If we are generating a shared library, then we can't do anything // in the linker. if (parameters->options().shared()) return tls::TLSOPT_NONE; // FIXME return tls::TLSOPT_NONE; } // Get the Reference_flags for a particular relocation. template int Target_powerpc::Scan::get_reference_flags(unsigned int r_type) { switch (r_type) { case elfcpp::R_POWERPC_NONE: case elfcpp::R_POWERPC_GNU_VTINHERIT: case elfcpp::R_POWERPC_GNU_VTENTRY: case elfcpp::R_PPC64_TOC: // No symbol reference. return 0; case elfcpp::R_POWERPC_ADDR16: case elfcpp::R_POWERPC_ADDR16_LO: case elfcpp::R_POWERPC_ADDR16_HI: case elfcpp::R_POWERPC_ADDR16_HA: case elfcpp::R_POWERPC_ADDR32: case elfcpp::R_PPC64_ADDR64: return Symbol::ABSOLUTE_REF; case elfcpp::R_POWERPC_REL24: case elfcpp::R_PPC_LOCAL24PC: case elfcpp::R_POWERPC_REL16: case elfcpp::R_POWERPC_REL16_LO: case elfcpp::R_POWERPC_REL16_HI: case elfcpp::R_POWERPC_REL16_HA: return Symbol::RELATIVE_REF; case elfcpp::R_PPC_PLTREL24: return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF; case elfcpp::R_POWERPC_GOT16: case elfcpp::R_POWERPC_GOT16_LO: case elfcpp::R_POWERPC_GOT16_HI: case elfcpp::R_POWERPC_GOT16_HA: case elfcpp::R_PPC64_TOC16: case elfcpp::R_PPC64_TOC16_LO: case elfcpp::R_PPC64_TOC16_HI: case elfcpp::R_PPC64_TOC16_HA: case elfcpp::R_PPC64_TOC16_DS: case elfcpp::R_PPC64_TOC16_LO_DS: // Absolute in GOT. return Symbol::ABSOLUTE_REF; case elfcpp::R_POWERPC_GOT_TPREL16: case elfcpp::R_POWERPC_TLS: return Symbol::TLS_REF; case elfcpp::R_POWERPC_COPY: case elfcpp::R_POWERPC_GLOB_DAT: case elfcpp::R_POWERPC_JMP_SLOT: case elfcpp::R_POWERPC_RELATIVE: case elfcpp::R_POWERPC_DTPMOD: default: // Not expected. We will give an error later. return 0; } } // Report an unsupported relocation against a local symbol. template void Target_powerpc::Scan::unsupported_reloc_local( Sized_relobj_file* object, unsigned int r_type) { gold_error(_("%s: unsupported reloc %u against local symbol"), object->name().c_str(), r_type); } // We are about to emit a dynamic relocation of type R_TYPE. If the // dynamic linker does not support it, issue an error. template void Target_powerpc::Scan::check_non_pic(Relobj* object, unsigned int r_type) { gold_assert(r_type != elfcpp::R_POWERPC_NONE); // These are the relocation types supported by glibc for both 32-bit // and 64-bit powerpc. switch (r_type) { case elfcpp::R_POWERPC_RELATIVE: case elfcpp::R_POWERPC_GLOB_DAT: case elfcpp::R_POWERPC_DTPMOD: case elfcpp::R_POWERPC_DTPREL: case elfcpp::R_POWERPC_TPREL: case elfcpp::R_POWERPC_JMP_SLOT: case elfcpp::R_POWERPC_COPY: case elfcpp::R_POWERPC_ADDR32: case elfcpp::R_POWERPC_ADDR24: case elfcpp::R_POWERPC_REL24: return; default: break; } if (size == 64) { switch (r_type) { // These are the relocation types supported only on 64-bit. case elfcpp::R_PPC64_ADDR64: case elfcpp::R_PPC64_TPREL16_LO_DS: case elfcpp::R_PPC64_TPREL16_DS: case elfcpp::R_POWERPC_TPREL16: case elfcpp::R_POWERPC_TPREL16_LO: case elfcpp::R_POWERPC_TPREL16_HI: case elfcpp::R_POWERPC_TPREL16_HA: case elfcpp::R_PPC64_TPREL16_HIGHER: case elfcpp::R_PPC64_TPREL16_HIGHEST: case elfcpp::R_PPC64_TPREL16_HIGHERA: case elfcpp::R_PPC64_TPREL16_HIGHESTA: case elfcpp::R_PPC64_ADDR16_LO_DS: case elfcpp::R_POWERPC_ADDR16_LO: case elfcpp::R_POWERPC_ADDR16_HI: case elfcpp::R_POWERPC_ADDR16_HA: case elfcpp::R_POWERPC_ADDR30: case elfcpp::R_PPC64_UADDR64: case elfcpp::R_POWERPC_UADDR32: case elfcpp::R_POWERPC_ADDR16: case elfcpp::R_POWERPC_UADDR16: case elfcpp::R_PPC64_ADDR16_DS: case elfcpp::R_PPC64_ADDR16_HIGHER: case elfcpp::R_PPC64_ADDR16_HIGHEST: case elfcpp::R_PPC64_ADDR16_HIGHERA: case elfcpp::R_PPC64_ADDR16_HIGHESTA: case elfcpp::R_POWERPC_ADDR14_BRTAKEN: case elfcpp::R_POWERPC_ADDR14_BRNTAKEN: case elfcpp::R_POWERPC_REL32: case elfcpp::R_PPC64_REL64: return; default: break; } } else { switch (r_type) { // These are the relocation types supported only on 32-bit. default: break; } } // This prevents us from issuing more than one error per reloc // section. But we can still wind up issuing more than one // error per object file. if (this->issued_non_pic_error_) return; gold_assert(parameters->options().output_is_position_independent()); object->error(_("requires unsupported dynamic reloc; " "recompile with -fPIC")); this->issued_non_pic_error_ = true; return; } // Scan a relocation for a local symbol. template inline void Target_powerpc::Scan::local( Symbol_table* symtab, Layout* layout, Target_powerpc* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela& reloc, unsigned int r_type, const elfcpp::Sym& lsym) { switch (r_type) { case elfcpp::R_POWERPC_NONE: case elfcpp::R_POWERPC_GNU_VTINHERIT: case elfcpp::R_POWERPC_GNU_VTENTRY: case elfcpp::R_PPC64_TOCSAVE: break; case elfcpp::R_PPC64_ADDR64: case elfcpp::R_POWERPC_ADDR32: case elfcpp::R_POWERPC_ADDR16_HA: case elfcpp::R_POWERPC_ADDR16_LO: // If building a shared library (or a position-independent // executable), we need to create a dynamic relocation for // this location. if (parameters->options().output_is_position_independent()) { Reloc_section* rela_dyn = target->rela_dyn_section(layout); check_non_pic(object, r_type); if (lsym.get_st_type() != elfcpp::STT_SECTION) { unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); rela_dyn->add_local(object, r_sym, r_type, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } else { unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); gold_assert(lsym.get_st_value() == 0); rela_dyn->add_local_relative(object, r_sym, r_type, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend(), false); } } break; case elfcpp::R_POWERPC_REL24: case elfcpp::R_PPC_LOCAL24PC: case elfcpp::R_POWERPC_REL32: case elfcpp::R_POWERPC_REL16_LO: case elfcpp::R_POWERPC_REL16_HA: break; case elfcpp::R_POWERPC_GOT16: case elfcpp::R_POWERPC_GOT16_LO: case elfcpp::R_POWERPC_GOT16_HI: case elfcpp::R_POWERPC_GOT16_HA: { // The symbol requires a GOT entry. Output_data_got_powerpc* got; unsigned int r_sym; got = target->got_section(symtab, layout); r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); // If we are generating a shared object, we need to add a // dynamic relocation for this symbol's GOT entry. if (parameters->options().output_is_position_independent()) { if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD)) { Reloc_section* rela_dyn = target->rela_dyn_section(layout); unsigned int off; off = got->add_constant(0); object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off); rela_dyn->add_local_relative(object, r_sym, elfcpp::R_POWERPC_RELATIVE, got, off, 0, false); } } else got->add_local(object, r_sym, GOT_TYPE_STANDARD); } break; case elfcpp::R_PPC64_TOC16: case elfcpp::R_PPC64_TOC16_LO: case elfcpp::R_PPC64_TOC16_HI: case elfcpp::R_PPC64_TOC16_HA: case elfcpp::R_PPC64_TOC16_DS: case elfcpp::R_PPC64_TOC16_LO_DS: case elfcpp::R_PPC64_TOC: // We need a GOT section. target->got_section(symtab, layout); break; // These are relocations which should only be seen by the // dynamic linker, and should never be seen here. case elfcpp::R_POWERPC_COPY: case elfcpp::R_POWERPC_GLOB_DAT: case elfcpp::R_POWERPC_JMP_SLOT: case elfcpp::R_POWERPC_RELATIVE: case elfcpp::R_POWERPC_DTPMOD: gold_error(_("%s: unexpected reloc %u in object file"), object->name().c_str(), r_type); break; default: unsupported_reloc_local(object, r_type); break; } } // Report an unsupported relocation against a global symbol. template void Target_powerpc::Scan::unsupported_reloc_global( Sized_relobj_file* object, unsigned int r_type, Symbol* gsym) { gold_error(_("%s: unsupported reloc %u against global symbol %s"), object->name().c_str(), r_type, gsym->demangled_name().c_str()); } // Scan a relocation for a global symbol. template inline void Target_powerpc::Scan::global( Symbol_table* symtab, Layout* layout, Target_powerpc* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela& reloc, unsigned int r_type, Symbol* gsym) { switch (r_type) { case elfcpp::R_POWERPC_NONE: case elfcpp::R_POWERPC_GNU_VTINHERIT: case elfcpp::R_POWERPC_GNU_VTENTRY: case elfcpp::R_PPC_LOCAL24PC: break; case elfcpp::R_POWERPC_ADDR16: case elfcpp::R_POWERPC_ADDR16_LO: case elfcpp::R_POWERPC_ADDR16_HI: case elfcpp::R_POWERPC_ADDR16_HA: case elfcpp::R_POWERPC_ADDR32: case elfcpp::R_PPC64_ADDR64: { // Make a PLT entry if necessary. if (gsym->needs_plt_entry()) { target->make_plt_entry(layout, gsym, reloc, 0); // Since this is not a PC-relative relocation, we may be // taking the address of a function. In that case we need to // set the entry in the dynamic symbol table to the address of // the PLT entry. if (size == 32 && gsym->is_from_dynobj() && !parameters->options().shared()) gsym->set_needs_dynsym_value(); } // Make a dynamic relocation if necessary. if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))) { if (gsym->may_need_copy_reloc()) { target->copy_reloc(symtab, layout, object, data_shndx, output_section, gsym, reloc); } else if ((r_type == elfcpp::R_POWERPC_ADDR32 || r_type == elfcpp::R_PPC64_ADDR64) && gsym->can_use_relative_reloc(false)) { Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_global_relative(gsym, elfcpp::R_POWERPC_RELATIVE, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend(), false); } else { Reloc_section* rela_dyn = target->rela_dyn_section(layout); check_non_pic(object, r_type); if (gsym->is_from_dynobj() || gsym->is_undefined() || gsym->is_preemptible()) rela_dyn->add_global(gsym, r_type, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); else rela_dyn->add_global_relative(gsym, r_type, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend(), false); } } } break; case elfcpp::R_PPC_PLTREL24: case elfcpp::R_POWERPC_REL24: { if (gsym->needs_plt_entry() || (!gsym->final_value_is_known() && !(gsym->is_defined() && !gsym->is_from_dynobj() && !gsym->is_preemptible()))) target->make_plt_entry(layout, gsym, reloc, object); // Make a dynamic relocation if necessary. if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))) { if (gsym->may_need_copy_reloc()) { target->copy_reloc(symtab, layout, object, data_shndx, output_section, gsym, reloc); } else { Reloc_section* rela_dyn = target->rela_dyn_section(layout); check_non_pic(object, r_type); rela_dyn->add_global(gsym, r_type, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } } } break; case elfcpp::R_POWERPC_REL16: case elfcpp::R_POWERPC_REL16_LO: case elfcpp::R_POWERPC_REL16_HI: case elfcpp::R_POWERPC_REL16_HA: break; case elfcpp::R_POWERPC_GOT16: case elfcpp::R_POWERPC_GOT16_LO: case elfcpp::R_POWERPC_GOT16_HI: case elfcpp::R_POWERPC_GOT16_HA: { // The symbol requires a GOT entry. Output_data_got_powerpc* got; got = target->got_section(symtab, layout); if (gsym->final_value_is_known()) got->add_global(gsym, GOT_TYPE_STANDARD); else { // If this symbol is not fully resolved, we need to add a // dynamic relocation for it. Reloc_section* rela_dyn = target->rela_dyn_section(layout); if (gsym->is_from_dynobj() || gsym->is_undefined() || gsym->is_preemptible()) got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn, elfcpp::R_POWERPC_GLOB_DAT); else if (!gsym->has_got_offset(GOT_TYPE_STANDARD)) { unsigned int off = got->add_constant(0); gsym->set_got_offset(GOT_TYPE_STANDARD, off); rela_dyn->add_global_relative(gsym, elfcpp::R_POWERPC_RELATIVE, got, off, 0, false); } } } break; case elfcpp::R_PPC64_TOC: case elfcpp::R_PPC64_TOC16: case elfcpp::R_PPC64_TOC16_LO: case elfcpp::R_PPC64_TOC16_HI: case elfcpp::R_PPC64_TOC16_HA: case elfcpp::R_PPC64_TOC16_DS: case elfcpp::R_PPC64_TOC16_LO_DS: // We need a GOT section. target->got_section(symtab, layout); break; case elfcpp::R_POWERPC_GOT_TPREL16: case elfcpp::R_POWERPC_TLS: // XXX TLS break; // These are relocations which should only be seen by the // dynamic linker, and should never be seen here. case elfcpp::R_POWERPC_COPY: case elfcpp::R_POWERPC_GLOB_DAT: case elfcpp::R_POWERPC_JMP_SLOT: case elfcpp::R_POWERPC_RELATIVE: case elfcpp::R_POWERPC_DTPMOD: gold_error(_("%s: unexpected reloc %u in object file"), object->name().c_str(), r_type); break; default: unsupported_reloc_global(object, r_type, gsym); break; } } // Process relocations for gc. template void Target_powerpc::gc_process_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols) { typedef Target_powerpc Powerpc; typedef typename Target_powerpc::Scan Scan; gold::gc_process_relocs( symtab, layout, this, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols); } // Scan relocations for a section. template void Target_powerpc::scan_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols) { typedef Target_powerpc Powerpc; typedef typename Target_powerpc::Scan Scan; if (sh_type == elfcpp::SHT_REL) { gold_error(_("%s: unsupported REL reloc section"), object->name().c_str()); return; } if (size == 32) { static Output_data_space* sdata; // Define _SDA_BASE_ at the start of the .sdata section. if (sdata == NULL) { // layout->find_output_section(".sdata") == NULL sdata = new Output_data_space(4, "** sdata"); Output_section* os = layout->add_output_section_data(".sdata", 0, elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE, sdata, ORDER_SMALL_DATA, false); symtab->define_in_output_data("_SDA_BASE_", NULL, Symbol_table::PREDEFINED, os, 32768, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); } } gold::scan_relocs( symtab, layout, this, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols); } // Finalize the sections. template void Target_powerpc::do_finalize_sections( Layout* layout, const Input_objects*, Symbol_table*) { // Fill in some more dynamic tags. const Reloc_section* rel_plt = (this->plt_ == NULL ? NULL : this->plt_->rel_plt()); layout->add_target_dynamic_tags(false, this->plt_, rel_plt, this->rela_dyn_, true, size == 32); if (size == 32) { this->got_->finalize_data_size(); Output_data_dynamic* odyn = layout->dynamic_data(); odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT, this->got_, this->got_->g_o_t()); } // Emit any relocs we saved in an attempt to avoid generating COPY // relocs. if (this->copy_relocs_.any_saved_relocs()) this->copy_relocs_.emit(this->rela_dyn_section(layout)); } // Perform a relocation. template inline bool Target_powerpc::Relocate::relocate( const Relocate_info* relinfo, Target_powerpc* target, Output_section* os, size_t relnum, const elfcpp::Rela& rela, unsigned int r_type, const Sized_symbol* gsym, const Symbol_value* psymval, unsigned char* view, typename elfcpp::Elf_types::Elf_Addr address, section_size_type /* view_size */) { const unsigned int toc_base_offset = 0x8000; typedef Powerpc_relocate_functions Reloc; const Powerpc_relobj* const object = static_cast*>(relinfo->object); elfcpp::Elf_Xword value; if (r_type == elfcpp::R_POWERPC_GOT16 || r_type == elfcpp::R_POWERPC_GOT16_LO || r_type == elfcpp::R_POWERPC_GOT16_HI || r_type == elfcpp::R_POWERPC_GOT16_HA || r_type == elfcpp::R_PPC64_GOT16_DS || r_type == elfcpp::R_PPC64_GOT16_LO_DS) { if (gsym != NULL) { gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD)); value = gsym->got_offset(GOT_TYPE_STANDARD); } else { unsigned int r_sym = elfcpp::elf_r_sym(rela.get_r_info()); gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD)); value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD); } value -= target->got_section()->g_o_t(); } else if (r_type == elfcpp::R_PPC64_TOC) { value = target->got_section()->address() + toc_base_offset; } else if (gsym != NULL && (r_type == elfcpp::R_POWERPC_REL24 || r_type == elfcpp::R_PPC_PLTREL24) && gsym->use_plt_offset(Scan::get_reference_flags(r_type))) { const Output_data_glink* glink; glink = target->glink_section(); unsigned int glink_index = glink->find_entry(gsym, rela, object); value = glink->address() + glink_index * glink->glink_entry_size(); } else { elfcpp::Elf_Xword addend = 0; if (r_type != elfcpp::R_PPC_PLTREL24) addend = rela.get_r_addend(); value = psymval->value(object, addend); } switch (r_type) { case elfcpp::R_PPC64_TOC16: case elfcpp::R_PPC64_TOC16_LO: case elfcpp::R_PPC64_TOC16_HI: case elfcpp::R_PPC64_TOC16_HA: case elfcpp::R_PPC64_TOC16_DS: case elfcpp::R_PPC64_TOC16_LO_DS: // Subtract the TOC base address. value -= target->got_section()->address() + toc_base_offset; break; case elfcpp::R_POWERPC_SECTOFF: case elfcpp::R_POWERPC_SECTOFF_LO: case elfcpp::R_POWERPC_SECTOFF_HI: case elfcpp::R_POWERPC_SECTOFF_HA: case elfcpp::R_PPC64_SECTOFF_DS: case elfcpp::R_PPC64_SECTOFF_LO_DS: if (os != NULL) value -= os->address(); break; default: break; } switch (r_type) { case elfcpp::R_POWERPC_NONE: case elfcpp::R_POWERPC_GNU_VTINHERIT: case elfcpp::R_POWERPC_GNU_VTENTRY: break; case elfcpp::R_POWERPC_REL32: Reloc::rel32(view, value, 0, address); break; case elfcpp::R_POWERPC_REL24: case elfcpp::R_PPC_PLTREL24: case elfcpp::R_PPC_LOCAL24PC: Reloc::rel24(view, value, 0, address); break; case elfcpp::R_POWERPC_REL14: Reloc::rel14(view, value, 0, address); break; case elfcpp::R_PPC64_ADDR64: case elfcpp::R_PPC64_TOC: Relocate_functions::rela64(view, value, 0); break; case elfcpp::R_POWERPC_ADDR32: Relocate_functions::rela32(view, value, 0); break; case elfcpp::R_POWERPC_ADDR16: case elfcpp::R_PPC64_TOC16: case elfcpp::R_POWERPC_GOT16: case elfcpp::R_POWERPC_SECTOFF: Reloc::addr16(view, value, 0); break; case elfcpp::R_POWERPC_ADDR16_LO: case elfcpp::R_PPC64_TOC16_LO: case elfcpp::R_POWERPC_GOT16_LO: case elfcpp::R_POWERPC_SECTOFF_LO: Reloc::addr16_lo(view, value, 0); break; case elfcpp::R_POWERPC_ADDR16_HI: case elfcpp::R_PPC64_TOC16_HI: case elfcpp::R_POWERPC_GOT16_HI: case elfcpp::R_POWERPC_SECTOFF_HI: Reloc::addr16_hi(view, value, 0); break; case elfcpp::R_POWERPC_ADDR16_HA: case elfcpp::R_PPC64_TOC16_HA: case elfcpp::R_POWERPC_GOT16_HA: case elfcpp::R_POWERPC_SECTOFF_HA: Reloc::addr16_ha(view, value, 0); break; case elfcpp::R_POWERPC_REL16_LO: Reloc::rel16_lo(view, value, 0, address); break; case elfcpp::R_POWERPC_REL16_HI: Reloc::rel16_hi(view, value, 0, address); break; case elfcpp::R_POWERPC_REL16_HA: Reloc::rel16_ha(view, value, 0, address); break; case elfcpp::R_PPC64_ADDR16_DS: case elfcpp::R_PPC64_ADDR16_LO_DS: case elfcpp::R_PPC64_TOC16_DS: case elfcpp::R_PPC64_TOC16_LO_DS: case elfcpp::R_PPC64_GOT16_DS: case elfcpp::R_PPC64_GOT16_LO_DS: case elfcpp::R_PPC64_SECTOFF_DS: case elfcpp::R_PPC64_SECTOFF_LO_DS: Reloc::addr16_ds(view, value, 0); break; case elfcpp::R_POWERPC_COPY: case elfcpp::R_POWERPC_GLOB_DAT: case elfcpp::R_POWERPC_JMP_SLOT: case elfcpp::R_POWERPC_RELATIVE: // This is an outstanding tls reloc, which is unexpected when // linking. case elfcpp::R_POWERPC_DTPMOD: gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unexpected reloc %u in object file"), r_type); break; case elfcpp::R_PPC64_TOCSAVE: // For the time being this can be ignored. break; default: gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported reloc %u"), r_type); break; } return true; } // Perform a TLS relocation. template inline void Target_powerpc::Relocate::relocate_tls( const Relocate_info* relinfo, Target_powerpc* target, size_t relnum, const elfcpp::Rela& rela, unsigned int r_type, const Sized_symbol* gsym, const Symbol_value* psymval, unsigned char* view, typename elfcpp::Elf_types::Elf_Addr address, section_size_type) { Output_segment* tls_segment = relinfo->layout->tls_segment(); const Sized_relobj_file* object = relinfo->object; const elfcpp::Elf_Xword addend = rela.get_r_addend(); typename elfcpp::Elf_types::Elf_Addr value = psymval->value(object, 0); const bool is_final = (gsym == NULL ? !parameters->options().output_is_position_independent() : gsym->final_value_is_known()); switch (r_type) { // XXX } } // Relocate section data. template void Target_powerpc::relocate_section( const Relocate_info* relinfo, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, unsigned char* view, typename elfcpp::Elf_types::Elf_Addr address, section_size_type view_size, const Reloc_symbol_changes* reloc_symbol_changes) { typedef Target_powerpc Powerpc; typedef typename Target_powerpc::Relocate Powerpc_relocate; gold_assert(sh_type == elfcpp::SHT_RELA); gold::relocate_section( relinfo, this, prelocs, reloc_count, output_section, needs_special_offset_handling, view, address, view_size, reloc_symbol_changes); } class Powerpc_scan_relocatable_reloc { public: // Return the strategy to use for a local symbol which is not a // section symbol, given the relocation type. inline Relocatable_relocs::Reloc_strategy local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym) { if (r_type == 0 && r_sym == 0) return Relocatable_relocs::RELOC_DISCARD; return Relocatable_relocs::RELOC_COPY; } // Return the strategy to use for a local symbol which is a section // symbol, given the relocation type. inline Relocatable_relocs::Reloc_strategy local_section_strategy(unsigned int, Relobj*) { return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA; } // Return the strategy to use for a global symbol, given the // relocation type, the object, and the symbol index. inline Relocatable_relocs::Reloc_strategy global_strategy(unsigned int r_type, Relobj*, unsigned int) { if (r_type == elfcpp::R_PPC_PLTREL24) return Relocatable_relocs::RELOC_SPECIAL; return Relocatable_relocs::RELOC_COPY; } }; // Scan the relocs during a relocatable link. template void Target_powerpc::scan_relocatable_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols, Relocatable_relocs* rr) { gold_assert(sh_type == elfcpp::SHT_RELA); gold::scan_relocatable_relocs( symtab, layout, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols, rr); } // Relocate a section during a relocatable link. template void Target_powerpc::relocate_for_relocatable( const Relocate_info* relinfo, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, off_t offset_in_output_section, const Relocatable_relocs* rr, unsigned char*, typename elfcpp::Elf_types::Elf_Addr, section_size_type, unsigned char* reloc_view, section_size_type reloc_view_size) { gold_assert(sh_type == elfcpp::SHT_RELA); typedef typename elfcpp::Elf_types::Elf_Addr Address; typedef typename Reloc_types::Reloc Reltype; typedef typename Reloc_types::Reloc_write Reltype_write; const int reloc_size = Reloc_types::reloc_size; const Address invalid_address = static_cast
(0) - 1; Powerpc_relobj* const object = static_cast*>(relinfo->object); const unsigned int local_count = object->local_symbol_count(); unsigned int got2_shndx = object->got2_shndx(); typename elfcpp::Elf_types::Elf_Swxword got2_addend = 0; if (got2_shndx != 0) got2_addend = object->get_output_section_offset(got2_shndx); unsigned char* pwrite = reloc_view; for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size) { Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i); if (strategy == Relocatable_relocs::RELOC_DISCARD) continue; Reltype reloc(prelocs); Reltype_write reloc_write(pwrite); typename elfcpp::Elf_types::Elf_WXword r_info = reloc.get_r_info(); const unsigned int r_sym = elfcpp::elf_r_sym(r_info); const unsigned int r_type = elfcpp::elf_r_type(r_info); // Get the new symbol index. unsigned int new_symndx; if (r_sym < local_count) { switch (strategy) { case Relocatable_relocs::RELOC_COPY: case Relocatable_relocs::RELOC_SPECIAL: new_symndx = object->symtab_index(r_sym); gold_assert(new_symndx != -1U); break; case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA: { // We are adjusting a section symbol. We need to find // the symbol table index of the section symbol for // the output section corresponding to input section // in which this symbol is defined. gold_assert(r_sym < local_count); bool is_ordinary; unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary); gold_assert(is_ordinary); Output_section* os = object->output_section(shndx); gold_assert(os != NULL); gold_assert(os->needs_symtab_index()); new_symndx = os->symtab_index(); } break; default: gold_unreachable(); } } else { const Symbol* gsym = object->global_symbol(r_sym); gold_assert(gsym != NULL); if (gsym->is_forwarder()) gsym = relinfo->symtab->resolve_forwards(gsym); gold_assert(gsym->has_symtab_index()); new_symndx = gsym->symtab_index(); } // Get the new offset--the location in the output section where // this relocation should be applied. Address offset = reloc.get_r_offset(); Address new_offset; if (static_cast
(offset_in_output_section) != invalid_address) new_offset = offset + offset_in_output_section; else { section_offset_type sot_offset = convert_types(offset); section_offset_type new_sot_offset = output_section->output_offset(object, relinfo->data_shndx, sot_offset); gold_assert(new_sot_offset != -1); new_offset = new_sot_offset; } reloc_write.put_r_offset(new_offset); reloc_write.put_r_info(elfcpp::elf_r_info(new_symndx, r_type)); // Handle the reloc addend based on the strategy. typename elfcpp::Elf_types::Elf_Swxword addend; addend = Reloc_types:: get_reloc_addend(&reloc); if (strategy == Relocatable_relocs::RELOC_COPY) ; else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA) { const Symbol_value* psymval = object->local_symbol(r_sym); addend = psymval->value(object, addend); } else if (strategy == Relocatable_relocs::RELOC_SPECIAL) { if (addend >= 32768) addend += got2_addend; } else gold_unreachable(); Reloc_types:: set_reloc_addend(&reloc_write, addend); pwrite += reloc_size; } gold_assert(static_cast(pwrite - reloc_view) == reloc_view_size); } // Return the value to use for a dynamic which requires special // treatment. This is how we support equality comparisons of function // pointers across shared library boundaries, as described in the // processor specific ABI supplement. template uint64_t Target_powerpc::do_dynsym_value(const Symbol* gsym) const { if (size == 32) { gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset()); return this->plt_section()->address() + gsym->plt_offset(); } else gold_unreachable(); } // The selector for powerpc object files. template class Target_selector_powerpc : public Target_selector { public: Target_selector_powerpc() : Target_selector(elfcpp::EM_NONE, size, big_endian, (size == 64 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle") : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")), (size == 64 ? (big_endian ? "elf64ppc" : "elf64lppc") : (big_endian ? "elf32ppc" : "elf32lppc"))) { } virtual Target* do_recognize(Input_file*, off_t, int machine, int, int) { switch (size) { case 64: if (machine != elfcpp::EM_PPC64) return NULL; break; case 32: if (machine != elfcpp::EM_PPC) return NULL; break; default: return NULL; } return this->instantiate_target(); } virtual Target* do_instantiate_target() { return new Target_powerpc(); } }; Target_selector_powerpc<32, true> target_selector_ppc32; Target_selector_powerpc<32, false> target_selector_ppc32le; Target_selector_powerpc<64, true> target_selector_ppc64; Target_selector_powerpc<64, false> target_selector_ppc64le; } // End anonymous namespace.