// powerpc.cc -- powerpc target support for gold. // Copyright (C) 2008-2014 Free Software Foundation, Inc. // Written by David S. Miller // and David Edelsohn // This file is part of gold. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #include "gold.h" #include #include #include "elfcpp.h" #include "dwarf.h" #include "parameters.h" #include "reloc.h" #include "powerpc.h" #include "object.h" #include "symtab.h" #include "layout.h" #include "output.h" #include "copy-relocs.h" #include "target.h" #include "target-reloc.h" #include "target-select.h" #include "tls.h" #include "errors.h" #include "gc.h" namespace { using namespace gold; template class Output_data_plt_powerpc; template class Output_data_brlt_powerpc; template class Output_data_got_powerpc; template class Output_data_glink; template class Stub_table; template class Target_powerpc; struct Stub_table_owner { Output_section* output_section; const Output_section::Input_section* owner; }; inline bool is_branch_reloc(unsigned int r_type); template class Powerpc_relobj : public Sized_relobj_file { public: typedef typename elfcpp::Elf_types::Elf_Addr Address; typedef Unordered_set Section_refs; typedef Unordered_map Access_from; Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset, const typename elfcpp::Ehdr& ehdr) : Sized_relobj_file(name, input_file, offset, ehdr), special_(0), has_small_toc_reloc_(false), opd_valid_(false), opd_ent_(), access_from_map_(), has14_(), stub_table_index_(), e_flags_(ehdr.get_e_flags()), st_other_() { this->set_abiversion(0); } ~Powerpc_relobj() { } // Read the symbols then set up st_other vector. void do_read_symbols(Read_symbols_data*); // The .got2 section shndx. unsigned int got2_shndx() const { if (size == 32) return this->special_; else return 0; } // The .opd section shndx. unsigned int opd_shndx() const { if (size == 32) return 0; else return this->special_; } // Init OPD entry arrays. void init_opd(size_t opd_size) { size_t count = this->opd_ent_ndx(opd_size); this->opd_ent_.resize(count); } // Return section and offset of function entry for .opd + R_OFF. unsigned int get_opd_ent(Address r_off, Address* value = NULL) const { size_t ndx = this->opd_ent_ndx(r_off); gold_assert(ndx < this->opd_ent_.size()); gold_assert(this->opd_ent_[ndx].shndx != 0); if (value != NULL) *value = this->opd_ent_[ndx].off; return this->opd_ent_[ndx].shndx; } // Set section and offset of function entry for .opd + R_OFF. void set_opd_ent(Address r_off, unsigned int shndx, Address value) { size_t ndx = this->opd_ent_ndx(r_off); gold_assert(ndx < this->opd_ent_.size()); this->opd_ent_[ndx].shndx = shndx; this->opd_ent_[ndx].off = value; } // Return discard flag for .opd + R_OFF. bool get_opd_discard(Address r_off) const { size_t ndx = this->opd_ent_ndx(r_off); gold_assert(ndx < this->opd_ent_.size()); return this->opd_ent_[ndx].discard; } // Set discard flag for .opd + R_OFF. void set_opd_discard(Address r_off) { size_t ndx = this->opd_ent_ndx(r_off); gold_assert(ndx < this->opd_ent_.size()); this->opd_ent_[ndx].discard = true; } bool opd_valid() const { return this->opd_valid_; } void set_opd_valid() { this->opd_valid_ = true; } // Examine .rela.opd to build info about function entry points. void scan_opd_relocs(size_t reloc_count, const unsigned char* prelocs, const unsigned char* plocal_syms); // Perform the Sized_relobj_file method, then set up opd info from // .opd relocs. void do_read_relocs(Read_relocs_data*); bool do_find_special_sections(Read_symbols_data* sd); // Adjust this local symbol value. Return false if the symbol // should be discarded from the output file. bool do_adjust_local_symbol(Symbol_value* lv) const { if (size == 64 && this->opd_shndx() != 0) { bool is_ordinary; if (lv->input_shndx(&is_ordinary) != this->opd_shndx()) return true; if (this->get_opd_discard(lv->input_value())) return false; } return true; } Access_from* access_from_map() { return &this->access_from_map_; } // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd // section at DST_OFF. void add_reference(Object* src_obj, unsigned int src_indx, typename elfcpp::Elf_types::Elf_Addr dst_off) { Section_id src_id(src_obj, src_indx); this->access_from_map_[dst_off].insert(src_id); } // Add a reference to the code section specified by the .opd entry // at DST_OFF void add_gc_mark(typename elfcpp::Elf_types::Elf_Addr dst_off) { size_t ndx = this->opd_ent_ndx(dst_off); if (ndx >= this->opd_ent_.size()) this->opd_ent_.resize(ndx + 1); this->opd_ent_[ndx].gc_mark = true; } void process_gc_mark(Symbol_table* symtab) { for (size_t i = 0; i < this->opd_ent_.size(); i++) if (this->opd_ent_[i].gc_mark) { unsigned int shndx = this->opd_ent_[i].shndx; symtab->gc()->worklist().push(Section_id(this, shndx)); } } // Return offset in output GOT section that this object will use // as a TOC pointer. Won't be just a constant with multi-toc support. Address toc_base_offset() const { return 0x8000; } void set_has_small_toc_reloc() { has_small_toc_reloc_ = true; } bool has_small_toc_reloc() const { return has_small_toc_reloc_; } void set_has_14bit_branch(unsigned int shndx) { if (shndx >= this->has14_.size()) this->has14_.resize(shndx + 1); this->has14_[shndx] = true; } bool has_14bit_branch(unsigned int shndx) const { return shndx < this->has14_.size() && this->has14_[shndx]; } void set_stub_table(unsigned int shndx, unsigned int stub_index) { if (shndx >= this->stub_table_index_.size()) this->stub_table_index_.resize(shndx + 1); this->stub_table_index_[shndx] = stub_index; } Stub_table* stub_table(unsigned int shndx) { if (shndx < this->stub_table_index_.size()) { Target_powerpc* target = static_cast*>( parameters->sized_target()); unsigned int indx = this->stub_table_index_[shndx]; gold_assert(indx < target->stub_tables().size()); return target->stub_tables()[indx]; } return NULL; } void clear_stub_table() { this->stub_table_index_.clear(); } int abiversion() const { return this->e_flags_ & elfcpp::EF_PPC64_ABI; } // Set ABI version for input and output void set_abiversion(int ver); unsigned int ppc64_local_entry_offset(const Symbol* sym) const { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); } unsigned int ppc64_local_entry_offset(unsigned int symndx) const { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); } private: struct Opd_ent { unsigned int shndx; bool discard : 1; bool gc_mark : 1; Address off; }; // Return index into opd_ent_ array for .opd entry at OFF. // .opd entries are 24 bytes long, but they can be spaced 16 bytes // apart when the language doesn't use the last 8-byte word, the // environment pointer. Thus dividing the entry section offset by // 16 will give an index into opd_ent_ that works for either layout // of .opd. (It leaves some elements of the vector unused when .opd // entries are spaced 24 bytes apart, but we don't know the spacing // until relocations are processed, and in any case it is possible // for an object to have some entries spaced 16 bytes apart and // others 24 bytes apart.) size_t opd_ent_ndx(size_t off) const { return off >> 4;} // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx. unsigned int special_; // For 64-bit, whether this object uses small model relocs to access // the toc. bool has_small_toc_reloc_; // Set at the start of gc_process_relocs, when we know opd_ent_ // vector is valid. The flag could be made atomic and set in // do_read_relocs with memory_order_release and then tested with // memory_order_acquire, potentially resulting in fewer entries in // access_from_map_. bool opd_valid_; // The first 8-byte word of an OPD entry gives the address of the // entry point of the function. Relocatable object files have a // relocation on this word. The following vector records the // section and offset specified by these relocations. std::vector opd_ent_; // References made to this object's .opd section when running // gc_process_relocs for another object, before the opd_ent_ vector // is valid for this object. Access_from access_from_map_; // Whether input section has a 14-bit branch reloc. std::vector has14_; // The stub table to use for a given input section. std::vector stub_table_index_; // Header e_flags elfcpp::Elf_Word e_flags_; // ELF st_other field for local symbols. std::vector st_other_; }; template class Powerpc_dynobj : public Sized_dynobj { public: typedef typename elfcpp::Elf_types::Elf_Addr Address; Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset, const typename elfcpp::Ehdr& ehdr) : Sized_dynobj(name, input_file, offset, ehdr), opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags()) { this->set_abiversion(0); } ~Powerpc_dynobj() { } // Call Sized_dynobj::do_read_symbols to read the symbols then // read .opd from a dynamic object, filling in opd_ent_ vector, void do_read_symbols(Read_symbols_data*); // The .opd section shndx. unsigned int opd_shndx() const { return this->opd_shndx_; } // The .opd section address. Address opd_address() const { return this->opd_address_; } // Init OPD entry arrays. void init_opd(size_t opd_size) { size_t count = this->opd_ent_ndx(opd_size); this->opd_ent_.resize(count); } // Return section and offset of function entry for .opd + R_OFF. unsigned int get_opd_ent(Address r_off, Address* value = NULL) const { size_t ndx = this->opd_ent_ndx(r_off); gold_assert(ndx < this->opd_ent_.size()); gold_assert(this->opd_ent_[ndx].shndx != 0); if (value != NULL) *value = this->opd_ent_[ndx].off; return this->opd_ent_[ndx].shndx; } // Set section and offset of function entry for .opd + R_OFF. void set_opd_ent(Address r_off, unsigned int shndx, Address value) { size_t ndx = this->opd_ent_ndx(r_off); gold_assert(ndx < this->opd_ent_.size()); this->opd_ent_[ndx].shndx = shndx; this->opd_ent_[ndx].off = value; } int abiversion() const { return this->e_flags_ & elfcpp::EF_PPC64_ABI; } // Set ABI version for input and output. void set_abiversion(int ver); private: // Used to specify extent of executable sections. struct Sec_info { Sec_info(Address start_, Address len_, unsigned int shndx_) : start(start_), len(len_), shndx(shndx_) { } bool operator<(const Sec_info& that) const { return this->start < that.start; } Address start; Address len; unsigned int shndx; }; struct Opd_ent { unsigned int shndx; Address off; }; // Return index into opd_ent_ array for .opd entry at OFF. size_t opd_ent_ndx(size_t off) const { return off >> 4;} // For 64-bit the .opd section shndx and address. unsigned int opd_shndx_; Address opd_address_; // The first 8-byte word of an OPD entry gives the address of the // entry point of the function. Records the section and offset // corresponding to the address. Note that in dynamic objects, // offset is *not* relative to the section. std::vector opd_ent_; // Header e_flags elfcpp::Elf_Word e_flags_; }; template class Target_powerpc : public Sized_target { public: typedef Output_data_reloc Reloc_section; typedef typename elfcpp::Elf_types::Elf_Addr Address; typedef typename elfcpp::Elf_types::Elf_Swxword Signed_address; static const Address invalid_address = static_cast
(0) - 1; // Offset of tp and dtp pointers from start of TLS block. static const Address tp_offset = 0x7000; static const Address dtp_offset = 0x8000; Target_powerpc() : Sized_target(&powerpc_info), got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL), glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY), tlsld_got_offset_(-1U), stub_tables_(), branch_lookup_table_(), branch_info_(), plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0), stub_group_size_(0) { } // Process the relocations to determine unreferenced sections for // garbage collection. void gc_process_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols); // Scan the relocations to look for symbol adjustments. void scan_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols); // Map input .toc section to output .got section. const char* do_output_section_name(const Relobj*, const char* name, size_t* plen) const { if (size == 64 && strcmp(name, ".toc") == 0) { *plen = 4; return ".got"; } return NULL; } // Provide linker defined save/restore functions. void define_save_restore_funcs(Layout*, Symbol_table*); // No stubs unless a final link. bool do_may_relax() const { return !parameters->options().relocatable(); } bool do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*); void do_plt_fde_location(const Output_data*, unsigned char*, uint64_t*, off_t*) const; // Stash info about branches, for stub generation. void push_branch(Powerpc_relobj* ppc_object, unsigned int data_shndx, Address r_offset, unsigned int r_type, unsigned int r_sym, Address addend) { Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend); this->branch_info_.push_back(info); if (r_type == elfcpp::R_POWERPC_REL14 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN) ppc_object->set_has_14bit_branch(data_shndx); } void do_define_standard_symbols(Symbol_table*, Layout*); // Finalize the sections. void do_finalize_sections(Layout*, const Input_objects*, Symbol_table*); // Return the value to use for a dynamic which requires special // treatment. uint64_t do_dynsym_value(const Symbol*) const; // Return the PLT address to use for a local symbol. uint64_t do_plt_address_for_local(const Relobj*, unsigned int) const; // Return the PLT address to use for a global symbol. uint64_t do_plt_address_for_global(const Symbol*) const; // Return the offset to use for the GOT_INDX'th got entry which is // for a local tls symbol specified by OBJECT, SYMNDX. int64_t do_tls_offset_for_local(const Relobj* object, unsigned int symndx, unsigned int got_indx) const; // Return the offset to use for the GOT_INDX'th got entry which is // for global tls symbol GSYM. int64_t do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const; void do_function_location(Symbol_location*) const; bool do_can_check_for_function_pointers() const { return true; } // Relocate a section. void relocate_section(const Relocate_info*, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, unsigned char* view, Address view_address, section_size_type view_size, const Reloc_symbol_changes*); // Scan the relocs during a relocatable link. void scan_relocatable_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols, Relocatable_relocs*); // Emit relocations for a section. void relocate_relocs(const Relocate_info*, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, typename elfcpp::Elf_types::Elf_Off offset_in_output_section, const Relocatable_relocs*, unsigned char*, Address view_address, section_size_type, unsigned char* reloc_view, section_size_type reloc_view_size); // Return whether SYM is defined by the ABI. bool do_is_defined_by_abi(const Symbol* sym) const { return strcmp(sym->name(), "__tls_get_addr") == 0; } // Return the size of the GOT section. section_size_type got_size() const { gold_assert(this->got_ != NULL); return this->got_->data_size(); } // Get the PLT section. const Output_data_plt_powerpc* plt_section() const { gold_assert(this->plt_ != NULL); return this->plt_; } // Get the IPLT section. const Output_data_plt_powerpc* iplt_section() const { gold_assert(this->iplt_ != NULL); return this->iplt_; } // Get the .glink section. const Output_data_glink* glink_section() const { gold_assert(this->glink_ != NULL); return this->glink_; } Output_data_glink* glink_section() { gold_assert(this->glink_ != NULL); return this->glink_; } bool has_glink() const { return this->glink_ != NULL; } // Get the GOT section. const Output_data_got_powerpc* got_section() const { gold_assert(this->got_ != NULL); return this->got_; } // Get the GOT section, creating it if necessary. Output_data_got_powerpc* got_section(Symbol_table*, Layout*); Object* do_make_elf_object(const std::string&, Input_file*, off_t, const elfcpp::Ehdr&); // Return the number of entries in the GOT. unsigned int got_entry_count() const { if (this->got_ == NULL) return 0; return this->got_size() / (size / 8); } // Return the number of entries in the PLT. unsigned int plt_entry_count() const; // Return the offset of the first non-reserved PLT entry. unsigned int first_plt_entry_offset() const { if (size == 32) return 0; if (this->abiversion() >= 2) return 16; return 24; } // Return the size of each PLT entry. unsigned int plt_entry_size() const { if (size == 32) return 4; if (this->abiversion() >= 2) return 8; return 24; } // Add any special sections for this symbol to the gc work list. // For powerpc64, this adds the code section of a function // descriptor. void do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const; // Handle target specific gc actions when adding a gc reference from // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX // and DST_OFF. For powerpc64, this adds a referenc to the code // section of a function descriptor. void do_gc_add_reference(Symbol_table* symtab, Object* src_obj, unsigned int src_shndx, Object* dst_obj, unsigned int dst_shndx, Address dst_off) const; typedef std::vector*> Stub_tables; const Stub_tables& stub_tables() const { return this->stub_tables_; } const Output_data_brlt_powerpc* brlt_section() const { return this->brlt_section_; } void add_branch_lookup_table(Address to) { unsigned int off = this->branch_lookup_table_.size() * (size / 8); this->branch_lookup_table_.insert(std::make_pair(to, off)); } Address find_branch_lookup_table(Address to) { typename Branch_lookup_table::const_iterator p = this->branch_lookup_table_.find(to); return p == this->branch_lookup_table_.end() ? invalid_address : p->second; } void write_branch_lookup_table(unsigned char *oview) { for (typename Branch_lookup_table::const_iterator p = this->branch_lookup_table_.begin(); p != this->branch_lookup_table_.end(); ++p) { elfcpp::Swap::writeval(oview + p->second, p->first); } } bool plt_thread_safe() const { return this->plt_thread_safe_; } int abiversion () const { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; } void set_abiversion (int ver) { elfcpp::Elf_Word flags = this->processor_specific_flags(); flags &= ~elfcpp::EF_PPC64_ABI; flags |= ver & elfcpp::EF_PPC64_ABI; this->set_processor_specific_flags(flags); } // Offset to to save stack slot int stk_toc () const { return this->abiversion() < 2 ? 40 : 24; } private: class Track_tls { public: enum Tls_get_addr { NOT_EXPECTED = 0, EXPECTED = 1, SKIP = 2, NORMAL = 3 }; Track_tls() : tls_get_addr_(NOT_EXPECTED), relinfo_(NULL), relnum_(0), r_offset_(0) { } ~Track_tls() { if (this->tls_get_addr_ != NOT_EXPECTED) this->missing(); } void missing(void) { if (this->relinfo_ != NULL) gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_, _("missing expected __tls_get_addr call")); } void expect_tls_get_addr_call( const Relocate_info* relinfo, size_t relnum, Address r_offset) { this->tls_get_addr_ = EXPECTED; this->relinfo_ = relinfo; this->relnum_ = relnum; this->r_offset_ = r_offset; } void expect_tls_get_addr_call() { this->tls_get_addr_ = EXPECTED; } void skip_next_tls_get_addr_call() {this->tls_get_addr_ = SKIP; } Tls_get_addr maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym) { bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24 || r_type == elfcpp::R_PPC_PLTREL24) && gsym != NULL && strcmp(gsym->name(), "__tls_get_addr") == 0); Tls_get_addr last_tls = this->tls_get_addr_; this->tls_get_addr_ = NOT_EXPECTED; if (is_tls_call && last_tls != EXPECTED) return last_tls; else if (!is_tls_call && last_tls != NOT_EXPECTED) { this->missing(); return EXPECTED; } return NORMAL; } private: // What we're up to regarding calls to __tls_get_addr. // On powerpc, the branch and link insn making a call to // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD, // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call. // The marker relocation always comes first, and has the same // symbol as the reloc on the insn setting up the __tls_get_addr // argument. This ties the arg setup insn with the call insn, // allowing ld to safely optimize away the call. We check that // every call to __tls_get_addr has a marker relocation, and that // every marker relocation is on a call to __tls_get_addr. Tls_get_addr tls_get_addr_; // Info about the last reloc for error message. const Relocate_info* relinfo_; size_t relnum_; Address r_offset_; }; // The class which scans relocations. class Scan : protected Track_tls { public: typedef typename elfcpp::Elf_types::Elf_Addr Address; Scan() : Track_tls(), issued_non_pic_error_(false) { } static inline int get_reference_flags(unsigned int r_type, const Target_powerpc* target); inline void local(Symbol_table* symtab, Layout* layout, Target_powerpc* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela& reloc, unsigned int r_type, const elfcpp::Sym& lsym, bool is_discarded); inline void global(Symbol_table* symtab, Layout* layout, Target_powerpc* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela& reloc, unsigned int r_type, Symbol* gsym); inline bool local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_powerpc* , Sized_relobj_file* relobj, unsigned int , Output_section* , const elfcpp::Rela& , unsigned int r_type, const elfcpp::Sym&) { // PowerPC64 .opd is not folded, so any identical function text // may be folded and we'll still keep function addresses distinct. // That means no reloc is of concern here. if (size == 64) { Powerpc_relobj* ppcobj = static_cast *>(relobj); if (ppcobj->abiversion() == 1) return false; } // For 32-bit and ELFv2, conservatively assume anything but calls to // function code might be taking the address of the function. return !is_branch_reloc(r_type); } inline bool global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_powerpc* , Sized_relobj_file* relobj, unsigned int , Output_section* , const elfcpp::Rela& , unsigned int r_type, Symbol*) { // As above. if (size == 64) { Powerpc_relobj* ppcobj = static_cast *>(relobj); if (ppcobj->abiversion() == 1) return false; } return !is_branch_reloc(r_type); } static bool reloc_needs_plt_for_ifunc(Target_powerpc* target, Sized_relobj_file* object, unsigned int r_type, bool report_err); private: static void unsupported_reloc_local(Sized_relobj_file*, unsigned int r_type); static void unsupported_reloc_global(Sized_relobj_file*, unsigned int r_type, Symbol*); static void generate_tls_call(Symbol_table* symtab, Layout* layout, Target_powerpc* target); void check_non_pic(Relobj*, unsigned int r_type); // Whether we have issued an error about a non-PIC compilation. bool issued_non_pic_error_; }; Address symval_for_branch(const Symbol_table* symtab, Address value, const Sized_symbol* gsym, Powerpc_relobj* object, unsigned int *dest_shndx); // The class which implements relocation. class Relocate : protected Track_tls { public: // Use 'at' branch hints when true, 'y' when false. // FIXME maybe: set this with an option. static const bool is_isa_v2 = true; Relocate() : Track_tls() { } // Do a relocation. Return false if the caller should not issue // any warnings about this relocation. inline bool relocate(const Relocate_info*, Target_powerpc*, Output_section*, size_t relnum, const elfcpp::Rela&, unsigned int r_type, const Sized_symbol*, const Symbol_value*, unsigned char*, typename elfcpp::Elf_types::Elf_Addr, section_size_type); }; class Relocate_comdat_behavior { public: // Decide what the linker should do for relocations that refer to // discarded comdat sections. inline Comdat_behavior get(const char* name) { gold::Default_comdat_behavior default_behavior; Comdat_behavior ret = default_behavior.get(name); if (ret == CB_WARNING) { if (size == 32 && (strcmp(name, ".fixup") == 0 || strcmp(name, ".got2") == 0)) ret = CB_IGNORE; if (size == 64 && (strcmp(name, ".opd") == 0 || strcmp(name, ".toc") == 0 || strcmp(name, ".toc1") == 0)) ret = CB_IGNORE; } return ret; } }; // A class which returns the size required for a relocation type, // used while scanning relocs during a relocatable link. class Relocatable_size_for_reloc { public: unsigned int get_size_for_reloc(unsigned int, Relobj*) { gold_unreachable(); return 0; } }; // Optimize the TLS relocation type based on what we know about the // symbol. IS_FINAL is true if the final address of this symbol is // known at link time. tls::Tls_optimization optimize_tls_gd(bool is_final) { // If we are generating a shared library, then we can't do anything // in the linker. if (parameters->options().shared()) return tls::TLSOPT_NONE; if (!is_final) return tls::TLSOPT_TO_IE; return tls::TLSOPT_TO_LE; } tls::Tls_optimization optimize_tls_ld() { if (parameters->options().shared()) return tls::TLSOPT_NONE; return tls::TLSOPT_TO_LE; } tls::Tls_optimization optimize_tls_ie(bool is_final) { if (!is_final || parameters->options().shared()) return tls::TLSOPT_NONE; return tls::TLSOPT_TO_LE; } // Create glink. void make_glink_section(Layout*); // Create the PLT section. void make_plt_section(Symbol_table*, Layout*); void make_iplt_section(Symbol_table*, Layout*); void make_brlt_section(Layout*); // Create a PLT entry for a global symbol. void make_plt_entry(Symbol_table*, Layout*, Symbol*); // Create a PLT entry for a local IFUNC symbol. void make_local_ifunc_plt_entry(Symbol_table*, Layout*, Sized_relobj_file*, unsigned int); // Create a GOT entry for local dynamic __tls_get_addr. unsigned int tlsld_got_offset(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object); unsigned int tlsld_got_offset() const { return this->tlsld_got_offset_; } // Get the dynamic reloc section, creating it if necessary. Reloc_section* rela_dyn_section(Layout*); // Similarly, but for ifunc symbols get the one for ifunc. Reloc_section* rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc); // Copy a relocation against a global symbol. void copy_reloc(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int shndx, Output_section* output_section, Symbol* sym, const elfcpp::Rela& reloc) { this->copy_relocs_.copy_reloc(symtab, layout, symtab->get_sized_symbol(sym), object, shndx, output_section, reloc, this->rela_dyn_section(layout)); } // Look over all the input sections, deciding where to place stubs. void group_sections(Layout*, const Task*, bool); // Sort output sections by address. struct Sort_sections { bool operator()(const Output_section* sec1, const Output_section* sec2) { return sec1->address() < sec2->address(); } }; class Branch_info { public: Branch_info(Powerpc_relobj* ppc_object, unsigned int data_shndx, Address r_offset, unsigned int r_type, unsigned int r_sym, Address addend) : object_(ppc_object), shndx_(data_shndx), offset_(r_offset), r_type_(r_type), r_sym_(r_sym), addend_(addend) { } ~Branch_info() { } // If this branch needs a plt call stub, or a long branch stub, make one. bool make_stub(Stub_table*, Stub_table*, Symbol_table*) const; private: // The branch location.. Powerpc_relobj* object_; unsigned int shndx_; Address offset_; // ..and the branch type and destination. unsigned int r_type_; unsigned int r_sym_; Address addend_; }; // Information about this specific target which we pass to the // general Target structure. static Target::Target_info powerpc_info; // The types of GOT entries needed for this platform. // These values are exposed to the ABI in an incremental link. // Do not renumber existing values without changing the version // number of the .gnu_incremental_inputs section. enum Got_type { GOT_TYPE_STANDARD, GOT_TYPE_TLSGD, // double entry for @got@tlsgd GOT_TYPE_DTPREL, // entry for @got@dtprel GOT_TYPE_TPREL // entry for @got@tprel }; // The GOT section. Output_data_got_powerpc* got_; // The PLT section. This is a container for a table of addresses, // and their relocations. Each address in the PLT has a dynamic // relocation (R_*_JMP_SLOT) and each address will have a // corresponding entry in .glink for lazy resolution of the PLT. // ppc32 initialises the PLT to point at the .glink entry, while // ppc64 leaves this to ld.so. To make a call via the PLT, the // linker adds a stub that loads the PLT entry into ctr then // branches to ctr. There may be more than one stub for each PLT // entry. DT_JMPREL points at the first PLT dynamic relocation and // DT_PLTRELSZ gives the total size of PLT dynamic relocations. Output_data_plt_powerpc* plt_; // The IPLT section. Like plt_, this is a container for a table of // addresses and their relocations, specifically for STT_GNU_IFUNC // functions that resolve locally (STT_GNU_IFUNC functions that // don't resolve locally go in PLT). Unlike plt_, these have no // entry in .glink for lazy resolution, and the relocation section // does not have a 1-1 correspondence with IPLT addresses. In fact, // the relocation section may contain relocations against // STT_GNU_IFUNC symbols at locations outside of IPLT. The // relocation section will appear at the end of other dynamic // relocations, so that ld.so applies these relocations after other // dynamic relocations. In a static executable, the relocation // section is emitted and marked with __rela_iplt_start and // __rela_iplt_end symbols. Output_data_plt_powerpc* iplt_; // Section holding long branch destinations. Output_data_brlt_powerpc* brlt_section_; // The .glink section. Output_data_glink* glink_; // The dynamic reloc section. Reloc_section* rela_dyn_; // Relocs saved to avoid a COPY reloc. Copy_relocs copy_relocs_; // Offset of the GOT entry for local dynamic __tls_get_addr calls. unsigned int tlsld_got_offset_; Stub_tables stub_tables_; typedef Unordered_map Branch_lookup_table; Branch_lookup_table branch_lookup_table_; typedef std::vector Branches; Branches branch_info_; bool plt_thread_safe_; bool relax_failed_; int relax_fail_count_; int32_t stub_group_size_; }; template<> Target::Target_info Target_powerpc<32, true>::powerpc_info = { 32, // size true, // is_big_endian elfcpp::EM_PPC, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/usr/lib/ld.so.1", // dynamic_linker 0x10000000, // default_text_segment_address 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 4 * 1024, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL, // attributes_vendor "_start" // entry_symbol_name }; template<> Target::Target_info Target_powerpc<32, false>::powerpc_info = { 32, // size false, // is_big_endian elfcpp::EM_PPC, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/usr/lib/ld.so.1", // dynamic_linker 0x10000000, // default_text_segment_address 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 4 * 1024, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL, // attributes_vendor "_start" // entry_symbol_name }; template<> Target::Target_info Target_powerpc<64, true>::powerpc_info = { 64, // size true, // is_big_endian elfcpp::EM_PPC64, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/usr/lib/ld.so.1", // dynamic_linker 0x10000000, // default_text_segment_address 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 4 * 1024, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL, // attributes_vendor "_start" // entry_symbol_name }; template<> Target::Target_info Target_powerpc<64, false>::powerpc_info = { 64, // size false, // is_big_endian elfcpp::EM_PPC64, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/usr/lib/ld.so.1", // dynamic_linker 0x10000000, // default_text_segment_address 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 4 * 1024, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL, // attributes_vendor "_start" // entry_symbol_name }; inline bool is_branch_reloc(unsigned int r_type) { return (r_type == elfcpp::R_POWERPC_REL24 || r_type == elfcpp::R_PPC_PLTREL24 || r_type == elfcpp::R_PPC_LOCAL24PC || r_type == elfcpp::R_POWERPC_REL14 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN || r_type == elfcpp::R_POWERPC_ADDR24 || r_type == elfcpp::R_POWERPC_ADDR14 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN); } // If INSN is an opcode that may be used with an @tls operand, return // the transformed insn for TLS optimisation, otherwise return 0. If // REG is non-zero only match an insn with RB or RA equal to REG. uint32_t at_tls_transform(uint32_t insn, unsigned int reg) { if ((insn & (0x3f << 26)) != 31 << 26) return 0; unsigned int rtra; if (reg == 0 || ((insn >> 11) & 0x1f) == reg) rtra = insn & ((1 << 26) - (1 << 16)); else if (((insn >> 16) & 0x1f) == reg) rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5); else return 0; if ((insn & (0x3ff << 1)) == 266 << 1) // add -> addi insn = 14 << 26; else if ((insn & (0x1f << 1)) == 23 << 1 && ((insn & (0x1f << 6)) < 14 << 6 || ((insn & (0x1f << 6)) >= 16 << 6 && (insn & (0x1f << 6)) < 24 << 6))) // load and store indexed -> dform insn = (32 | ((insn >> 6) & 0x1f)) << 26; else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1) // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1); else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1) // lwax -> lwa insn = (58 << 26) | 2; else return 0; insn |= rtra; return insn; } template class Powerpc_relocate_functions { public: enum Overflow_check { CHECK_NONE, CHECK_SIGNED, CHECK_UNSIGNED, CHECK_BITFIELD, CHECK_LOW_INSN, CHECK_HIGH_INSN }; enum Status { STATUS_OK, STATUS_OVERFLOW }; private: typedef Powerpc_relocate_functions This; typedef typename elfcpp::Elf_types::Elf_Addr Address; template static inline bool has_overflow_signed(Address value) { // limit = 1 << (valsize - 1) without shift count exceeding size of type Address limit = static_cast
(1) << ((valsize - 1) >> 1); limit <<= ((valsize - 1) >> 1); limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1)); return value + limit > (limit << 1) - 1; } template static inline bool has_overflow_unsigned(Address value) { Address limit = static_cast
(1) << ((valsize - 1) >> 1); limit <<= ((valsize - 1) >> 1); limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1)); return value > (limit << 1) - 1; } template static inline bool has_overflow_bitfield(Address value) { return (has_overflow_unsigned(value) && has_overflow_signed(value)); } template static inline Status overflowed(Address value, Overflow_check overflow) { if (overflow == CHECK_SIGNED) { if (has_overflow_signed(value)) return STATUS_OVERFLOW; } else if (overflow == CHECK_UNSIGNED) { if (has_overflow_unsigned(value)) return STATUS_OVERFLOW; } else if (overflow == CHECK_BITFIELD) { if (has_overflow_bitfield(value)) return STATUS_OVERFLOW; } return STATUS_OK; } // Do a simple RELA relocation template static inline Status rela(unsigned char* view, Address value, Overflow_check overflow) { typedef typename elfcpp::Swap::Valtype Valtype; Valtype* wv = reinterpret_cast(view); elfcpp::Swap::writeval(wv, value); return overflowed(value, overflow); } template static inline Status rela(unsigned char* view, unsigned int right_shift, typename elfcpp::Valtype_base::Valtype dst_mask, Address value, Overflow_check overflow) { typedef typename elfcpp::Swap::Valtype Valtype; Valtype* wv = reinterpret_cast(view); Valtype val = elfcpp::Swap::readval(wv); Valtype reloc = value >> right_shift; val &= ~dst_mask; reloc &= dst_mask; elfcpp::Swap::writeval(wv, val | reloc); return overflowed(value >> right_shift, overflow); } // Do a simple RELA relocation, unaligned. template static inline Status rela_ua(unsigned char* view, Address value, Overflow_check overflow) { elfcpp::Swap_unaligned::writeval(view, value); return overflowed(value, overflow); } template static inline Status rela_ua(unsigned char* view, unsigned int right_shift, typename elfcpp::Valtype_base::Valtype dst_mask, Address value, Overflow_check overflow) { typedef typename elfcpp::Swap_unaligned::Valtype Valtype; Valtype val = elfcpp::Swap::readval(view); Valtype reloc = value >> right_shift; val &= ~dst_mask; reloc &= dst_mask; elfcpp::Swap_unaligned::writeval(view, val | reloc); return overflowed(value >> right_shift, overflow); } public: // R_PPC64_ADDR64: (Symbol + Addend) static inline void addr64(unsigned char* view, Address value) { This::template rela<64,64>(view, value, CHECK_NONE); } // R_PPC64_UADDR64: (Symbol + Addend) unaligned static inline void addr64_u(unsigned char* view, Address value) { This::template rela_ua<64,64>(view, value, CHECK_NONE); } // R_POWERPC_ADDR32: (Symbol + Addend) static inline Status addr32(unsigned char* view, Address value, Overflow_check overflow) { return This::template rela<32,32>(view, value, overflow); } // R_POWERPC_UADDR32: (Symbol + Addend) unaligned static inline Status addr32_u(unsigned char* view, Address value, Overflow_check overflow) { return This::template rela_ua<32,32>(view, value, overflow); } // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc static inline Status addr24(unsigned char* view, Address value, Overflow_check overflow) { Status stat = This::template rela<32,26>(view, 0, 0x03fffffc, value, overflow); if (overflow != CHECK_NONE && (value & 3) != 0) stat = STATUS_OVERFLOW; return stat; } // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff static inline Status addr16(unsigned char* view, Address value, Overflow_check overflow) { return This::template rela<16,16>(view, value, overflow); } // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned static inline Status addr16_u(unsigned char* view, Address value, Overflow_check overflow) { return This::template rela_ua<16,16>(view, value, overflow); } // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc static inline Status addr16_ds(unsigned char* view, Address value, Overflow_check overflow) { Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow); if (overflow != CHECK_NONE && (value & 3) != 0) stat = STATUS_OVERFLOW; return stat; } // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff static inline void addr16_hi(unsigned char* view, Address value) { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); } // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff static inline void addr16_ha(unsigned char* view, Address value) { This::addr16_hi(view, value + 0x8000); } // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff static inline void addr16_hi2(unsigned char* view, Address value) { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); } // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff static inline void addr16_ha2(unsigned char* view, Address value) { This::addr16_hi2(view, value + 0x8000); } // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff static inline void addr16_hi3(unsigned char* view, Address value) { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); } // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff static inline void addr16_ha3(unsigned char* view, Address value) { This::addr16_hi3(view, value + 0x8000); } // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc static inline Status addr14(unsigned char* view, Address value, Overflow_check overflow) { Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow); if (overflow != CHECK_NONE && (value & 3) != 0) stat = STATUS_OVERFLOW; return stat; } }; // Set ABI version for input and output. template void Powerpc_relobj::set_abiversion(int ver) { this->e_flags_ |= ver; if (this->abiversion() != 0) { Target_powerpc* target = static_cast*>( parameters->sized_target()); if (target->abiversion() == 0) target->set_abiversion(this->abiversion()); else if (target->abiversion() != this->abiversion()) gold_error(_("%s: ABI version %d is not compatible " "with ABI version %d output"), this->name().c_str(), this->abiversion(), target->abiversion()); } } // Stash away the index of .got2 or .opd in a relocatable object, if // such a section exists. template bool Powerpc_relobj::do_find_special_sections( Read_symbols_data* sd) { const unsigned char* const pshdrs = sd->section_headers->data(); const unsigned char* namesu = sd->section_names->data(); const char* names = reinterpret_cast(namesu); section_size_type names_size = sd->section_names_size; const unsigned char* s; s = this->template find_shdr(pshdrs, size == 32 ? ".got2" : ".opd", names, names_size, NULL); if (s != NULL) { unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes::shdr_size; this->special_ = ndx; if (size == 64) { if (this->abiversion() == 0) this->set_abiversion(1); else if (this->abiversion() > 1) gold_error(_("%s: .opd invalid in abiv%d"), this->name().c_str(), this->abiversion()); } } return Sized_relobj_file::do_find_special_sections(sd); } // Examine .rela.opd to build info about function entry points. template void Powerpc_relobj::scan_opd_relocs( size_t reloc_count, const unsigned char* prelocs, const unsigned char* plocal_syms) { if (size == 64) { typedef typename Reloc_types::Reloc Reltype; const int reloc_size = Reloc_types::reloc_size; const int sym_size = elfcpp::Elf_sizes::sym_size; Address expected_off = 0; bool regular = true; unsigned int opd_ent_size = 0; for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size) { Reltype reloc(prelocs); typename elfcpp::Elf_types::Elf_WXword r_info = reloc.get_r_info(); unsigned int r_type = elfcpp::elf_r_type(r_info); if (r_type == elfcpp::R_PPC64_ADDR64) { unsigned int r_sym = elfcpp::elf_r_sym(r_info); typename elfcpp::Elf_types::Elf_Addr value; bool is_ordinary; unsigned int shndx; if (r_sym < this->local_symbol_count()) { typename elfcpp::Sym lsym(plocal_syms + r_sym * sym_size); shndx = lsym.get_st_shndx(); shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary); value = lsym.get_st_value(); } else shndx = this->symbol_section_and_value(r_sym, &value, &is_ordinary); this->set_opd_ent(reloc.get_r_offset(), shndx, value + reloc.get_r_addend()); if (i == 2) { expected_off = reloc.get_r_offset(); opd_ent_size = expected_off; } else if (expected_off != reloc.get_r_offset()) regular = false; expected_off += opd_ent_size; } else if (r_type == elfcpp::R_PPC64_TOC) { if (expected_off - opd_ent_size + 8 != reloc.get_r_offset()) regular = false; } else { gold_warning(_("%s: unexpected reloc type %u in .opd section"), this->name().c_str(), r_type); regular = false; } } if (reloc_count <= 2) opd_ent_size = this->section_size(this->opd_shndx()); if (opd_ent_size != 24 && opd_ent_size != 16) regular = false; if (!regular) { gold_warning(_("%s: .opd is not a regular array of opd entries"), this->name().c_str()); opd_ent_size = 0; } } } template void Powerpc_relobj::do_read_relocs(Read_relocs_data* rd) { Sized_relobj_file::do_read_relocs(rd); if (size == 64) { for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin(); p != rd->relocs.end(); ++p) { if (p->data_shndx == this->opd_shndx()) { uint64_t opd_size = this->section_size(this->opd_shndx()); gold_assert(opd_size == static_cast(opd_size)); if (opd_size != 0) { this->init_opd(opd_size); this->scan_opd_relocs(p->reloc_count, p->contents->data(), rd->local_symbols->data()); } break; } } } } // Read the symbols then set up st_other vector. template void Powerpc_relobj::do_read_symbols(Read_symbols_data* sd) { this->base_read_symbols(sd); if (size == 64) { const int shdr_size = elfcpp::Elf_sizes::shdr_size; const unsigned char* const pshdrs = sd->section_headers->data(); const unsigned int loccount = this->do_local_symbol_count(); if (loccount != 0) { this->st_other_.resize(loccount); const int sym_size = elfcpp::Elf_sizes::sym_size; off_t locsize = loccount * sym_size; const unsigned int symtab_shndx = this->symtab_shndx(); const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size; typename elfcpp::Shdr shdr(psymtab); const unsigned char* psyms = this->get_view(shdr.get_sh_offset(), locsize, true, false); psyms += sym_size; for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) { elfcpp::Sym sym(psyms); unsigned char st_other = sym.get_st_other(); this->st_other_[i] = st_other; if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0) { if (this->abiversion() == 0) this->set_abiversion(2); else if (this->abiversion() < 2) gold_error(_("%s: local symbol %d has invalid st_other" " for ABI version 1"), this->name().c_str(), i); } } } } } template void Powerpc_dynobj::set_abiversion(int ver) { this->e_flags_ |= ver; if (this->abiversion() != 0) { Target_powerpc* target = static_cast*>( parameters->sized_target()); if (target->abiversion() == 0) target->set_abiversion(this->abiversion()); else if (target->abiversion() != this->abiversion()) gold_error(_("%s: ABI version %d is not compatible " "with ABI version %d output"), this->name().c_str(), this->abiversion(), target->abiversion()); } } // Call Sized_dynobj::base_read_symbols to read the symbols then // read .opd from a dynamic object, filling in opd_ent_ vector, template void Powerpc_dynobj::do_read_symbols(Read_symbols_data* sd) { this->base_read_symbols(sd); if (size == 64) { const int shdr_size = elfcpp::Elf_sizes::shdr_size; const unsigned char* const pshdrs = sd->section_headers->data(); const unsigned char* namesu = sd->section_names->data(); const char* names = reinterpret_cast(namesu); const unsigned char* s = NULL; const unsigned char* opd; section_size_type opd_size; // Find and read .opd section. while (1) { s = this->template find_shdr(pshdrs, ".opd", names, sd->section_names_size, s); if (s == NULL) return; typename elfcpp::Shdr shdr(s); if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0) { if (this->abiversion() == 0) this->set_abiversion(1); else if (this->abiversion() > 1) gold_error(_("%s: .opd invalid in abiv%d"), this->name().c_str(), this->abiversion()); this->opd_shndx_ = (s - pshdrs) / shdr_size; this->opd_address_ = shdr.get_sh_addr(); opd_size = convert_to_section_size_type(shdr.get_sh_size()); opd = this->get_view(shdr.get_sh_offset(), opd_size, true, false); break; } } // Build set of executable sections. // Using a set is probably overkill. There is likely to be only // a few executable sections, typically .init, .text and .fini, // and they are generally grouped together. typedef std::set Exec_sections; Exec_sections exec_sections; s = pshdrs; for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size) { typename elfcpp::Shdr shdr(s); if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS && ((shdr.get_sh_flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) && shdr.get_sh_size() != 0) { exec_sections.insert(Sec_info(shdr.get_sh_addr(), shdr.get_sh_size(), i)); } } if (exec_sections.empty()) return; // Look over the OPD entries. This is complicated by the fact // that some binaries will use two-word entries while others // will use the standard three-word entries. In most cases // the third word (the environment pointer for languages like // Pascal) is unused and will be zero. If the third word is // used it should not be pointing into executable sections, // I think. this->init_opd(opd_size); for (const unsigned char* p = opd; p < opd + opd_size; p += 8) { typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype; const Valtype* valp = reinterpret_cast(p); Valtype val = elfcpp::Swap<64, big_endian>::readval(valp); if (val == 0) // Chances are that this is the third word of an OPD entry. continue; typename Exec_sections::const_iterator e = exec_sections.upper_bound(Sec_info(val, 0, 0)); if (e != exec_sections.begin()) { --e; if (e->start <= val && val < e->start + e->len) { // We have an address in an executable section. // VAL ought to be the function entry, set it up. this->set_opd_ent(p - opd, e->shndx, val); // Skip second word of OPD entry, the TOC pointer. p += 8; } } // If we didn't match any executable sections, we likely // have a non-zero third word in the OPD entry. } } } // Set up some symbols. template void Target_powerpc::do_define_standard_symbols( Symbol_table* symtab, Layout* layout) { if (size == 32) { // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as // undefined when scanning relocs (and thus requires // non-relative dynamic relocs). The proper value will be // updated later. Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL); if (gotsym != NULL && gotsym->is_undefined()) { Target_powerpc* target = static_cast*>( parameters->sized_target()); Output_data_got_powerpc* got = target->got_section(symtab, layout); symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, Symbol_table::PREDEFINED, got, 0, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); } // Define _SDA_BASE_ at the start of the .sdata section + 32768. Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL); if (sdasym != NULL && sdasym->is_undefined()) { Output_data_space* sdata = new Output_data_space(4, "** sdata"); Output_section* os = layout->add_output_section_data(".sdata", 0, elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE, sdata, ORDER_SMALL_DATA, false); symtab->define_in_output_data("_SDA_BASE_", NULL, Symbol_table::PREDEFINED, os, 32768, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); } } else { // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_ Symbol *gotsym = symtab->lookup(".TOC.", NULL); if (gotsym != NULL && gotsym->is_undefined()) { Target_powerpc* target = static_cast*>( parameters->sized_target()); Output_data_got_powerpc* got = target->got_section(symtab, layout); symtab->define_in_output_data(".TOC.", NULL, Symbol_table::PREDEFINED, got, 0x8000, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); } } } // Set up PowerPC target specific relobj. template Object* Target_powerpc::do_make_elf_object( const std::string& name, Input_file* input_file, off_t offset, const elfcpp::Ehdr& ehdr) { int et = ehdr.get_e_type(); // ET_EXEC files are valid input for --just-symbols/-R, // and we treat them as relocatable objects. if (et == elfcpp::ET_REL || (et == elfcpp::ET_EXEC && input_file->just_symbols())) { Powerpc_relobj* obj = new Powerpc_relobj(name, input_file, offset, ehdr); obj->setup(); return obj; } else if (et == elfcpp::ET_DYN) { Powerpc_dynobj* obj = new Powerpc_dynobj(name, input_file, offset, ehdr); obj->setup(); return obj; } else { gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et); return NULL; } } template class Output_data_got_powerpc : public Output_data_got { public: typedef typename elfcpp::Elf_types::Elf_Addr Valtype; typedef Output_data_reloc Rela_dyn; Output_data_got_powerpc(Symbol_table* symtab, Layout* layout) : Output_data_got(), symtab_(symtab), layout_(layout), header_ent_cnt_(size == 32 ? 3 : 1), header_index_(size == 32 ? 0x2000 : 0) { } // Override all the Output_data_got methods we use so as to first call // reserve_ent(). bool add_global(Symbol* gsym, unsigned int got_type) { this->reserve_ent(); return Output_data_got::add_global(gsym, got_type); } bool add_global_plt(Symbol* gsym, unsigned int got_type) { this->reserve_ent(); return Output_data_got::add_global_plt(gsym, got_type); } bool add_global_tls(Symbol* gsym, unsigned int got_type) { return this->add_global_plt(gsym, got_type); } void add_global_with_rel(Symbol* gsym, unsigned int got_type, Output_data_reloc_generic* rel_dyn, unsigned int r_type) { this->reserve_ent(); Output_data_got:: add_global_with_rel(gsym, got_type, rel_dyn, r_type); } void add_global_pair_with_rel(Symbol* gsym, unsigned int got_type, Output_data_reloc_generic* rel_dyn, unsigned int r_type_1, unsigned int r_type_2) { this->reserve_ent(2); Output_data_got:: add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2); } bool add_local(Relobj* object, unsigned int sym_index, unsigned int got_type) { this->reserve_ent(); return Output_data_got::add_local(object, sym_index, got_type); } bool add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type) { this->reserve_ent(); return Output_data_got::add_local_plt(object, sym_index, got_type); } bool add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type) { return this->add_local_plt(object, sym_index, got_type); } void add_local_tls_pair(Relobj* object, unsigned int sym_index, unsigned int got_type, Output_data_reloc_generic* rel_dyn, unsigned int r_type) { this->reserve_ent(2); Output_data_got:: add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type); } unsigned int add_constant(Valtype constant) { this->reserve_ent(); return Output_data_got::add_constant(constant); } unsigned int add_constant_pair(Valtype c1, Valtype c2) { this->reserve_ent(2); return Output_data_got::add_constant_pair(c1, c2); } // Offset of _GLOBAL_OFFSET_TABLE_. unsigned int g_o_t() const { return this->got_offset(this->header_index_); } // Offset of base used to access the GOT/TOC. // The got/toc pointer reg will be set to this value. Valtype got_base_offset(const Powerpc_relobj* object) const { if (size == 32) return this->g_o_t(); else return (this->output_section()->address() + object->toc_base_offset() - this->address()); } // Ensure our GOT has a header. void set_final_data_size() { if (this->header_ent_cnt_ != 0) this->make_header(); Output_data_got::set_final_data_size(); } // First word of GOT header needs some values that are not // handled by Output_data_got so poke them in here. // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase. void do_write(Output_file* of) { Valtype val = 0; if (size == 32 && this->layout_->dynamic_data() != NULL) val = this->layout_->dynamic_section()->address(); if (size == 64) val = this->output_section()->address() + 0x8000; this->replace_constant(this->header_index_, val); Output_data_got::do_write(of); } private: void reserve_ent(unsigned int cnt = 1) { if (this->header_ent_cnt_ == 0) return; if (this->num_entries() + cnt > this->header_index_) this->make_header(); } void make_header() { this->header_ent_cnt_ = 0; this->header_index_ = this->num_entries(); if (size == 32) { Output_data_got::add_constant(0); Output_data_got::add_constant(0); Output_data_got::add_constant(0); // Define _GLOBAL_OFFSET_TABLE_ at the header Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL); if (gotsym != NULL) { Sized_symbol* sym = static_cast*>(gotsym); sym->set_value(this->g_o_t()); } else this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, Symbol_table::PREDEFINED, this, this->g_o_t(), 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); } else Output_data_got::add_constant(0); } // Stashed pointers. Symbol_table* symtab_; Layout* layout_; // GOT header size. unsigned int header_ent_cnt_; // GOT header index. unsigned int header_index_; }; // Get the GOT section, creating it if necessary. template Output_data_got_powerpc* Target_powerpc::got_section(Symbol_table* symtab, Layout* layout) { if (this->got_ == NULL) { gold_assert(symtab != NULL && layout != NULL); this->got_ = new Output_data_got_powerpc(symtab, layout); layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE, this->got_, ORDER_DATA, false); } return this->got_; } // Get the dynamic reloc section, creating it if necessary. template typename Target_powerpc::Reloc_section* Target_powerpc::rela_dyn_section(Layout* layout) { if (this->rela_dyn_ == NULL) { gold_assert(layout != NULL); this->rela_dyn_ = new Reloc_section(parameters->options().combreloc()); layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rela_dyn_, ORDER_DYNAMIC_RELOCS, false); } return this->rela_dyn_; } // Similarly, but for ifunc symbols get the one for ifunc. template typename Target_powerpc::Reloc_section* Target_powerpc::rela_dyn_section(Symbol_table* symtab, Layout* layout, bool for_ifunc) { if (!for_ifunc) return this->rela_dyn_section(layout); if (this->iplt_ == NULL) this->make_iplt_section(symtab, layout); return this->iplt_->rel_plt(); } class Stub_control { public: // Determine the stub group size. The group size is the absolute // value of the parameter --stub-group-size. If --stub-group-size // is passed a negative value, we restrict stubs to be always before // the stubbed branches. Stub_control(int32_t size, bool no_size_errors) : state_(NO_GROUP), stub_group_size_(abs(size)), stub14_group_size_(abs(size) >> 10), stubs_always_before_branch_(size < 0), suppress_size_errors_(no_size_errors), group_end_addr_(0), owner_(NULL), output_section_(NULL) { } // Return true iff input section can be handled by current stub // group. bool can_add_to_stub_group(Output_section* o, const Output_section::Input_section* i, bool has14); const Output_section::Input_section* owner() { return owner_; } Output_section* output_section() { return output_section_; } void set_output_and_owner(Output_section* o, const Output_section::Input_section* i) { this->output_section_ = o; this->owner_ = i; } private: typedef enum { NO_GROUP, FINDING_STUB_SECTION, HAS_STUB_SECTION } State; State state_; uint32_t stub_group_size_; uint32_t stub14_group_size_; bool stubs_always_before_branch_; bool suppress_size_errors_; uint64_t group_end_addr_; const Output_section::Input_section* owner_; Output_section* output_section_; }; // Return true iff input section can be handled by current stub // group. bool Stub_control::can_add_to_stub_group(Output_section* o, const Output_section::Input_section* i, bool has14) { uint32_t group_size = has14 ? this->stub14_group_size_ : this->stub_group_size_; bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI; uint64_t this_size; uint64_t start_addr = o->address(); if (whole_sec) // .init and .fini sections are pasted together to form a single // function. We can't be adding stubs in the middle of the function. this_size = o->data_size(); else { start_addr += i->relobj()->output_section_offset(i->shndx()); this_size = i->data_size(); } uint64_t end_addr = start_addr + this_size; bool toobig = this_size > group_size; if (toobig && !this->suppress_size_errors_) gold_warning(_("%s:%s exceeds group size"), i->relobj()->name().c_str(), i->relobj()->section_name(i->shndx()).c_str()); if (this->state_ != HAS_STUB_SECTION && (!whole_sec || this->output_section_ != o) && (this->state_ == NO_GROUP || this->group_end_addr_ - end_addr < group_size)) { this->owner_ = i; this->output_section_ = o; } if (this->state_ == NO_GROUP) { this->state_ = FINDING_STUB_SECTION; this->group_end_addr_ = end_addr; } else if (this->group_end_addr_ - start_addr < group_size) ; // Adding this section would make the group larger than GROUP_SIZE. else if (this->state_ == FINDING_STUB_SECTION && !this->stubs_always_before_branch_ && !toobig) { // But wait, there's more! Input sections up to GROUP_SIZE // bytes before the stub table can be handled by it too. this->state_ = HAS_STUB_SECTION; this->group_end_addr_ = end_addr; } else { this->state_ = NO_GROUP; return false; } return true; } // Look over all the input sections, deciding where to place stubs. template void Target_powerpc::group_sections(Layout* layout, const Task*, bool no_size_errors) { Stub_control stub_control(this->stub_group_size_, no_size_errors); // Group input sections and insert stub table Stub_table_owner* table_owner = NULL; std::vector tables; Layout::Section_list section_list; layout->get_executable_sections(§ion_list); std::stable_sort(section_list.begin(), section_list.end(), Sort_sections()); for (Layout::Section_list::reverse_iterator o = section_list.rbegin(); o != section_list.rend(); ++o) { typedef Output_section::Input_section_list Input_section_list; for (Input_section_list::const_reverse_iterator i = (*o)->input_sections().rbegin(); i != (*o)->input_sections().rend(); ++i) { if (i->is_input_section() || i->is_relaxed_input_section()) { Powerpc_relobj* ppcobj = static_cast *>(i->relobj()); bool has14 = ppcobj->has_14bit_branch(i->shndx()); if (!stub_control.can_add_to_stub_group(*o, &*i, has14)) { table_owner->output_section = stub_control.output_section(); table_owner->owner = stub_control.owner(); stub_control.set_output_and_owner(*o, &*i); table_owner = NULL; } if (table_owner == NULL) { table_owner = new Stub_table_owner; tables.push_back(table_owner); } ppcobj->set_stub_table(i->shndx(), tables.size() - 1); } } } if (table_owner != NULL) { const Output_section::Input_section* i = stub_control.owner(); if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i) { // Corner case. A new stub group was made for the first // section (last one looked at here) for some reason, but // the first section is already being used as the owner for // a stub table for following sections. Force it into that // stub group. tables.pop_back(); delete table_owner; Powerpc_relobj* ppcobj = static_cast *>(i->relobj()); ppcobj->set_stub_table(i->shndx(), tables.size() - 1); } else { table_owner->output_section = stub_control.output_section(); table_owner->owner = i; } } for (typename std::vector::iterator t = tables.begin(); t != tables.end(); ++t) { Stub_table* stub_table; if ((*t)->owner->is_input_section()) stub_table = new Stub_table(this, (*t)->output_section, (*t)->owner); else if ((*t)->owner->is_relaxed_input_section()) stub_table = static_cast*>( (*t)->owner->relaxed_input_section()); else gold_unreachable(); this->stub_tables_.push_back(stub_table); delete *t; } } static unsigned long max_branch_delta (unsigned int r_type) { if (r_type == elfcpp::R_POWERPC_REL14 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN) return 1L << 15; if (r_type == elfcpp::R_POWERPC_REL24 || r_type == elfcpp::R_PPC_PLTREL24 || r_type == elfcpp::R_PPC_LOCAL24PC) return 1L << 25; return 0; } // If this branch needs a plt call stub, or a long branch stub, make one. template bool Target_powerpc::Branch_info::make_stub( Stub_table* stub_table, Stub_table* ifunc_stub_table, Symbol_table* symtab) const { Symbol* sym = this->object_->global_symbol(this->r_sym_); if (sym != NULL && sym->is_forwarder()) sym = symtab->resolve_forwards(sym); const Sized_symbol* gsym = static_cast*>(sym); Target_powerpc* target = static_cast*>( parameters->sized_target()); if (gsym != NULL ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target)) : this->object_->local_has_plt_offset(this->r_sym_)) { if (size == 64 && gsym != NULL && target->abiversion() >= 2 && !parameters->options().output_is_position_independent() && !is_branch_reloc(this->r_type_)) target->glink_section()->add_global_entry(gsym); else { if (stub_table == NULL) stub_table = this->object_->stub_table(this->shndx_); if (stub_table == NULL) { // This is a ref from a data section to an ifunc symbol. stub_table = ifunc_stub_table; } gold_assert(stub_table != NULL); Address from = this->object_->get_output_section_offset(this->shndx_); if (from != invalid_address) from += (this->object_->output_section(this->shndx_)->address() + this->offset_); if (gsym != NULL) return stub_table->add_plt_call_entry(from, this->object_, gsym, this->r_type_, this->addend_); else return stub_table->add_plt_call_entry(from, this->object_, this->r_sym_, this->r_type_, this->addend_); } } else { unsigned long max_branch_offset = max_branch_delta(this->r_type_); if (max_branch_offset == 0) return true; Address from = this->object_->get_output_section_offset(this->shndx_); gold_assert(from != invalid_address); from += (this->object_->output_section(this->shndx_)->address() + this->offset_); Address to; if (gsym != NULL) { switch (gsym->source()) { case Symbol::FROM_OBJECT: { Object* symobj = gsym->object(); if (symobj->is_dynamic() || symobj->pluginobj() != NULL) return true; bool is_ordinary; unsigned int shndx = gsym->shndx(&is_ordinary); if (shndx == elfcpp::SHN_UNDEF) return true; } break; case Symbol::IS_UNDEFINED: return true; default: break; } Symbol_table::Compute_final_value_status status; to = symtab->compute_final_value(gsym, &status); if (status != Symbol_table::CFVS_OK) return true; if (size == 64) to += this->object_->ppc64_local_entry_offset(gsym); } else { const Symbol_value* psymval = this->object_->local_symbol(this->r_sym_); Symbol_value symval; typedef Sized_relobj_file ObjType; typename ObjType::Compute_final_local_value_status status = this->object_->compute_final_local_value(this->r_sym_, psymval, &symval, symtab); if (status != ObjType::CFLV_OK || !symval.has_output_value()) return true; to = symval.value(this->object_, 0); if (size == 64) to += this->object_->ppc64_local_entry_offset(this->r_sym_); } to += this->addend_; if (stub_table == NULL) stub_table = this->object_->stub_table(this->shndx_); if (size == 64 && target->abiversion() < 2) { unsigned int dest_shndx; to = target->symval_for_branch(symtab, to, gsym, this->object_, &dest_shndx); } Address delta = to - from; if (delta + max_branch_offset >= 2 * max_branch_offset) { if (stub_table == NULL) { gold_warning(_("%s:%s: branch in non-executable section," " no long branch stub for you"), this->object_->name().c_str(), this->object_->section_name(this->shndx_).c_str()); return true; } return stub_table->add_long_branch_entry(this->object_, this->r_type_, from, to); } } return true; } // Relaxation hook. This is where we do stub generation. template bool Target_powerpc::do_relax(int pass, const Input_objects*, Symbol_table* symtab, Layout* layout, const Task* task) { unsigned int prev_brlt_size = 0; if (pass == 1) { bool thread_safe = this->abiversion() < 2 && parameters->options().plt_thread_safe(); if (size == 64 && this->abiversion() < 2 && !thread_safe && !parameters->options().user_set_plt_thread_safe()) { static const char* const thread_starter[] = { "pthread_create", /* libstdc++ */ "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE", /* librt */ "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio", "mq_notify", "create_timer", /* libanl */ "getaddrinfo_a", /* libgomp */ "GOMP_parallel", "GOMP_parallel_start", "GOMP_parallel_loop_static", "GOMP_parallel_loop_static_start", "GOMP_parallel_loop_dynamic", "GOMP_parallel_loop_dynamic_start", "GOMP_parallel_loop_guided", "GOMP_parallel_loop_guided_start", "GOMP_parallel_loop_runtime", "GOMP_parallel_loop_runtime_start", "GOMP_parallel_sections", "GOMP_parallel_sections_start", /* libgo */ "__go_go", }; if (parameters->options().shared()) thread_safe = true; else { for (unsigned int i = 0; i < sizeof(thread_starter) / sizeof(thread_starter[0]); i++) { Symbol* sym = symtab->lookup(thread_starter[i], NULL); thread_safe = (sym != NULL && sym->in_reg() && sym->in_real_elf()); if (thread_safe) break; } } } this->plt_thread_safe_ = thread_safe; } if (pass == 1) { this->stub_group_size_ = parameters->options().stub_group_size(); bool no_size_errors = true; if (this->stub_group_size_ == 1) this->stub_group_size_ = 0x1c00000; else if (this->stub_group_size_ == -1) this->stub_group_size_ = -0x1e00000; else no_size_errors = false; this->group_sections(layout, task, no_size_errors); } else if (this->relax_failed_ && this->relax_fail_count_ < 3) { this->branch_lookup_table_.clear(); for (typename Stub_tables::iterator p = this->stub_tables_.begin(); p != this->stub_tables_.end(); ++p) { (*p)->clear_stubs(true); } this->stub_tables_.clear(); this->stub_group_size_ = this->stub_group_size_ / 4 * 3; gold_info(_("%s: stub group size is too large; retrying with %d"), program_name, this->stub_group_size_); this->group_sections(layout, task, true); } // We need address of stub tables valid for make_stub. for (typename Stub_tables::iterator p = this->stub_tables_.begin(); p != this->stub_tables_.end(); ++p) { const Powerpc_relobj* object = static_cast*>((*p)->relobj()); Address off = object->get_output_section_offset((*p)->shndx()); gold_assert(off != invalid_address); Output_section* os = (*p)->output_section(); (*p)->set_address_and_size(os, off); } if (pass != 1) { // Clear plt call stubs, long branch stubs and branch lookup table. prev_brlt_size = this->branch_lookup_table_.size(); this->branch_lookup_table_.clear(); for (typename Stub_tables::iterator p = this->stub_tables_.begin(); p != this->stub_tables_.end(); ++p) { (*p)->clear_stubs(false); } } // Build all the stubs. this->relax_failed_ = false; Stub_table* ifunc_stub_table = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0]; Stub_table* one_stub_table = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table; for (typename Branches::const_iterator b = this->branch_info_.begin(); b != this->branch_info_.end(); b++) { if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab) && !this->relax_failed_) { this->relax_failed_ = true; this->relax_fail_count_++; if (this->relax_fail_count_ < 3) return true; } } // Did anything change size? unsigned int num_huge_branches = this->branch_lookup_table_.size(); bool again = num_huge_branches != prev_brlt_size; if (size == 64 && num_huge_branches != 0) this->make_brlt_section(layout); if (size == 64 && again) this->brlt_section_->set_current_size(num_huge_branches); typedef Unordered_set Output_sections; Output_sections os_need_update; for (typename Stub_tables::iterator p = this->stub_tables_.begin(); p != this->stub_tables_.end(); ++p) { if ((*p)->size_update()) { again = true; (*p)->add_eh_frame(layout); os_need_update.insert((*p)->output_section()); } } // Set output section offsets for all input sections in an output // section that just changed size. Anything past the stubs will // need updating. for (typename Output_sections::iterator p = os_need_update.begin(); p != os_need_update.end(); p++) { Output_section* os = *p; Address off = 0; typedef Output_section::Input_section_list Input_section_list; for (Input_section_list::const_iterator i = os->input_sections().begin(); i != os->input_sections().end(); ++i) { off = align_address(off, i->addralign()); if (i->is_input_section() || i->is_relaxed_input_section()) i->relobj()->set_section_offset(i->shndx(), off); if (i->is_relaxed_input_section()) { Stub_table* stub_table = static_cast*>( i->relaxed_input_section()); off += stub_table->set_address_and_size(os, off); } else off += i->data_size(); } // If .branch_lt is part of this output section, then we have // just done the offset adjustment. os->clear_section_offsets_need_adjustment(); } if (size == 64 && !again && num_huge_branches != 0 && parameters->options().output_is_position_independent()) { // Fill in the BRLT relocs. this->brlt_section_->reset_brlt_sizes(); for (typename Branch_lookup_table::const_iterator p = this->branch_lookup_table_.begin(); p != this->branch_lookup_table_.end(); ++p) { this->brlt_section_->add_reloc(p->first, p->second); } this->brlt_section_->finalize_brlt_sizes(); } return again; } template void Target_powerpc::do_plt_fde_location(const Output_data* plt, unsigned char* oview, uint64_t* paddress, off_t* plen) const { uint64_t address = plt->address(); off_t len = plt->data_size(); if (plt == this->glink_) { // See Output_data_glink::do_write() for glink contents. if (len == 0) { gold_assert(parameters->doing_static_link()); // Static linking may need stubs, to support ifunc and long // branches. We need to create an output section for // .eh_frame early in the link process, to have a place to // attach stub .eh_frame info. We also need to have // registered a CIE that matches the stub CIE. Both of // these requirements are satisfied by creating an FDE and // CIE for .glink, even though static linking will leave // .glink zero length. // ??? Hopefully generating an FDE with a zero address range // won't confuse anything that consumes .eh_frame info. } else if (size == 64) { // There is one word before __glink_PLTresolve address += 8; len -= 8; } else if (parameters->options().output_is_position_independent()) { // There are two FDEs for a position independent glink. // The first covers the branch table, the second // __glink_PLTresolve at the end of glink. off_t resolve_size = this->glink_->pltresolve_size; if (oview[9] == elfcpp::DW_CFA_nop) len -= resolve_size; else { address += len - resolve_size; len = resolve_size; } } } else { // Must be a stub table. const Stub_table* stub_table = static_cast*>(plt); uint64_t stub_address = stub_table->stub_address(); len -= stub_address - address; address = stub_address; } *paddress = address; *plen = len; } // A class to handle the PLT data. template class Output_data_plt_powerpc : public Output_section_data_build { public: typedef Output_data_reloc Reloc_section; Output_data_plt_powerpc(Target_powerpc* targ, Reloc_section* plt_rel, const char* name) : Output_section_data_build(size == 32 ? 4 : 8), rel_(plt_rel), targ_(targ), name_(name) { } // Add an entry to the PLT. void add_entry(Symbol*); void add_ifunc_entry(Symbol*); void add_local_ifunc_entry(Sized_relobj_file*, unsigned int); // Return the .rela.plt section data. Reloc_section* rel_plt() const { return this->rel_; } // Return the number of PLT entries. unsigned int entry_count() const { if (this->current_data_size() == 0) return 0; return ((this->current_data_size() - this->first_plt_entry_offset()) / this->plt_entry_size()); } protected: void do_adjust_output_section(Output_section* os) { os->set_entsize(0); } // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, this->name_); } private: // Return the offset of the first non-reserved PLT entry. unsigned int first_plt_entry_offset() const { // IPLT has no reserved entry. if (this->name_[3] == 'I') return 0; return this->targ_->first_plt_entry_offset(); } // Return the size of each PLT entry. unsigned int plt_entry_size() const { return this->targ_->plt_entry_size(); } // Write out the PLT data. void do_write(Output_file*); // The reloc section. Reloc_section* rel_; // Allows access to .glink for do_write. Target_powerpc* targ_; // What to report in map file. const char *name_; }; // Add an entry to the PLT. template void Output_data_plt_powerpc::add_entry(Symbol* gsym) { if (!gsym->has_plt_offset()) { section_size_type off = this->current_data_size(); if (off == 0) off += this->first_plt_entry_offset(); gsym->set_plt_offset(off); gsym->set_needs_dynsym_entry(); unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT; this->rel_->add_global(gsym, dynrel, this, off, 0); off += this->plt_entry_size(); this->set_current_data_size(off); } } // Add an entry for a global ifunc symbol that resolves locally, to the IPLT. template void Output_data_plt_powerpc::add_ifunc_entry(Symbol* gsym) { if (!gsym->has_plt_offset()) { section_size_type off = this->current_data_size(); gsym->set_plt_offset(off); unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE; if (size == 64 && this->targ_->abiversion() < 2) dynrel = elfcpp::R_PPC64_JMP_IREL; this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0); off += this->plt_entry_size(); this->set_current_data_size(off); } } // Add an entry for a local ifunc symbol to the IPLT. template void Output_data_plt_powerpc::add_local_ifunc_entry( Sized_relobj_file* relobj, unsigned int local_sym_index) { if (!relobj->local_has_plt_offset(local_sym_index)) { section_size_type off = this->current_data_size(); relobj->set_local_plt_offset(local_sym_index, off); unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE; if (size == 64 && this->targ_->abiversion() < 2) dynrel = elfcpp::R_PPC64_JMP_IREL; this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel, this, off, 0); off += this->plt_entry_size(); this->set_current_data_size(off); } } static const uint32_t add_0_11_11 = 0x7c0b5a14; static const uint32_t add_2_2_11 = 0x7c425a14; static const uint32_t add_3_3_2 = 0x7c631214; static const uint32_t add_3_3_13 = 0x7c636a14; static const uint32_t add_11_0_11 = 0x7d605a14; static const uint32_t add_11_2_11 = 0x7d625a14; static const uint32_t add_11_11_2 = 0x7d6b1214; static const uint32_t addi_0_12 = 0x380c0000; static const uint32_t addi_2_2 = 0x38420000; static const uint32_t addi_3_3 = 0x38630000; static const uint32_t addi_11_11 = 0x396b0000; static const uint32_t addi_12_12 = 0x398c0000; static const uint32_t addis_0_2 = 0x3c020000; static const uint32_t addis_0_13 = 0x3c0d0000; static const uint32_t addis_3_2 = 0x3c620000; static const uint32_t addis_3_13 = 0x3c6d0000; static const uint32_t addis_11_2 = 0x3d620000; static const uint32_t addis_11_11 = 0x3d6b0000; static const uint32_t addis_11_30 = 0x3d7e0000; static const uint32_t addis_12_2 = 0x3d820000; static const uint32_t addis_12_12 = 0x3d8c0000; static const uint32_t b = 0x48000000; static const uint32_t bcl_20_31 = 0x429f0005; static const uint32_t bctr = 0x4e800420; static const uint32_t blr = 0x4e800020; static const uint32_t bnectr_p4 = 0x4ce20420; static const uint32_t cmpldi_2_0 = 0x28220000; static const uint32_t cror_15_15_15 = 0x4def7b82; static const uint32_t cror_31_31_31 = 0x4ffffb82; static const uint32_t ld_0_1 = 0xe8010000; static const uint32_t ld_0_12 = 0xe80c0000; static const uint32_t ld_2_1 = 0xe8410000; static const uint32_t ld_2_2 = 0xe8420000; static const uint32_t ld_2_11 = 0xe84b0000; static const uint32_t ld_11_2 = 0xe9620000; static const uint32_t ld_11_11 = 0xe96b0000; static const uint32_t ld_12_2 = 0xe9820000; static const uint32_t ld_12_11 = 0xe98b0000; static const uint32_t ld_12_12 = 0xe98c0000; static const uint32_t lfd_0_1 = 0xc8010000; static const uint32_t li_0_0 = 0x38000000; static const uint32_t li_12_0 = 0x39800000; static const uint32_t lis_0_0 = 0x3c000000; static const uint32_t lis_11 = 0x3d600000; static const uint32_t lis_12 = 0x3d800000; static const uint32_t lvx_0_12_0 = 0x7c0c00ce; static const uint32_t lwz_0_12 = 0x800c0000; static const uint32_t lwz_11_11 = 0x816b0000; static const uint32_t lwz_11_30 = 0x817e0000; static const uint32_t lwz_12_12 = 0x818c0000; static const uint32_t lwzu_0_12 = 0x840c0000; static const uint32_t mflr_0 = 0x7c0802a6; static const uint32_t mflr_11 = 0x7d6802a6; static const uint32_t mflr_12 = 0x7d8802a6; static const uint32_t mtctr_0 = 0x7c0903a6; static const uint32_t mtctr_11 = 0x7d6903a6; static const uint32_t mtctr_12 = 0x7d8903a6; static const uint32_t mtlr_0 = 0x7c0803a6; static const uint32_t mtlr_12 = 0x7d8803a6; static const uint32_t nop = 0x60000000; static const uint32_t ori_0_0_0 = 0x60000000; static const uint32_t srdi_0_0_2 = 0x7800f082; static const uint32_t std_0_1 = 0xf8010000; static const uint32_t std_0_12 = 0xf80c0000; static const uint32_t std_2_1 = 0xf8410000; static const uint32_t stfd_0_1 = 0xd8010000; static const uint32_t stvx_0_12_0 = 0x7c0c01ce; static const uint32_t sub_11_11_12 = 0x7d6c5850; static const uint32_t sub_12_12_11 = 0x7d8b6050; static const uint32_t xor_2_12_12 = 0x7d826278; static const uint32_t xor_11_12_12 = 0x7d8b6278; // Write out the PLT. template void Output_data_plt_powerpc::do_write(Output_file* of) { if (size == 32 && this->name_[3] != 'I') { const section_size_type offset = this->offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(offset, oview_size); unsigned char* pov = oview; unsigned char* endpov = oview + oview_size; // The address of the .glink branch table const Output_data_glink* glink = this->targ_->glink_section(); elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address(); while (pov < endpov) { elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab); pov += 4; branch_tab += 4; } of->write_output_view(offset, oview_size, oview); } } // Create the PLT section. template void Target_powerpc::make_plt_section(Symbol_table* symtab, Layout* layout) { if (this->plt_ == NULL) { if (this->got_ == NULL) this->got_section(symtab, layout); if (this->glink_ == NULL) make_glink_section(layout); // Ensure that .rela.dyn always appears before .rela.plt This is // necessary due to how, on PowerPC and some other targets, .rela.dyn // needs to include .rela.plt in its range. this->rela_dyn_section(layout); Reloc_section* plt_rel = new Reloc_section(false); layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, plt_rel, ORDER_DYNAMIC_PLT_RELOCS, false); this->plt_ = new Output_data_plt_powerpc(this, plt_rel, "** PLT"); layout->add_output_section_data(".plt", (size == 32 ? elfcpp::SHT_PROGBITS : elfcpp::SHT_NOBITS), elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE, this->plt_, (size == 32 ? ORDER_SMALL_DATA : ORDER_SMALL_BSS), false); } } // Create the IPLT section. template void Target_powerpc::make_iplt_section(Symbol_table* symtab, Layout* layout) { if (this->iplt_ == NULL) { this->make_plt_section(symtab, layout); Reloc_section* iplt_rel = new Reloc_section(false); this->rela_dyn_->output_section()->add_output_section_data(iplt_rel); this->iplt_ = new Output_data_plt_powerpc(this, iplt_rel, "** IPLT"); this->plt_->output_section()->add_output_section_data(this->iplt_); } } // A section for huge long branch addresses, similar to plt section. template class Output_data_brlt_powerpc : public Output_section_data_build { public: typedef typename elfcpp::Elf_types::Elf_Addr Address; typedef Output_data_reloc Reloc_section; Output_data_brlt_powerpc(Target_powerpc* targ, Reloc_section* brlt_rel) : Output_section_data_build(size == 32 ? 4 : 8), rel_(brlt_rel), targ_(targ) { } void reset_brlt_sizes() { this->reset_data_size(); this->rel_->reset_data_size(); } void finalize_brlt_sizes() { this->finalize_data_size(); this->rel_->finalize_data_size(); } // Add a reloc for an entry in the BRLT. void add_reloc(Address to, unsigned int off) { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); } // Update section and reloc section size. void set_current_size(unsigned int num_branches) { this->reset_address_and_file_offset(); this->set_current_data_size(num_branches * 16); this->finalize_data_size(); Output_section* os = this->output_section(); os->set_section_offsets_need_adjustment(); if (this->rel_ != NULL) { unsigned int reloc_size = Reloc_types::reloc_size; this->rel_->reset_address_and_file_offset(); this->rel_->set_current_data_size(num_branches * reloc_size); this->rel_->finalize_data_size(); Output_section* os = this->rel_->output_section(); os->set_section_offsets_need_adjustment(); } } protected: void do_adjust_output_section(Output_section* os) { os->set_entsize(0); } // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, "** BRLT"); } private: // Write out the BRLT data. void do_write(Output_file*); // The reloc section. Reloc_section* rel_; Target_powerpc* targ_; }; // Make the branch lookup table section. template void Target_powerpc::make_brlt_section(Layout* layout) { if (size == 64 && this->brlt_section_ == NULL) { Reloc_section* brlt_rel = NULL; bool is_pic = parameters->options().output_is_position_independent(); if (is_pic) { // When PIC we can't fill in .branch_lt (like .plt it can be // a bss style section) but must initialise at runtime via // dynamic relocats. this->rela_dyn_section(layout); brlt_rel = new Reloc_section(false); this->rela_dyn_->output_section()->add_output_section_data(brlt_rel); } this->brlt_section_ = new Output_data_brlt_powerpc(this, brlt_rel); if (this->plt_ && is_pic) this->plt_->output_section() ->add_output_section_data(this->brlt_section_); else layout->add_output_section_data(".branch_lt", (is_pic ? elfcpp::SHT_NOBITS : elfcpp::SHT_PROGBITS), elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE, this->brlt_section_, (is_pic ? ORDER_SMALL_BSS : ORDER_SMALL_DATA), false); } } // Write out .branch_lt when non-PIC. template void Output_data_brlt_powerpc::do_write(Output_file* of) { if (size == 64 && !parameters->options().output_is_position_independent()) { const section_size_type offset = this->offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(offset, oview_size); this->targ_->write_branch_lookup_table(oview); of->write_output_view(offset, oview_size, oview); } } static inline uint32_t l(uint32_t a) { return a & 0xffff; } static inline uint32_t hi(uint32_t a) { return l(a >> 16); } static inline uint32_t ha(uint32_t a) { return hi(a + 0x8000); } template struct Eh_cie { static const unsigned char eh_frame_cie[12]; }; template const unsigned char Eh_cie::eh_frame_cie[] = { 1, // CIE version. 'z', 'R', 0, // Augmentation string. 4, // Code alignment. 0x80 - size / 8 , // Data alignment. 65, // RA reg. 1, // Augmentation size. (elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4), // FDE encoding. elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0. }; // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1. static const unsigned char glink_eh_frame_fde_64v1[] = { 0, 0, 0, 0, // Replaced with offset to .glink. 0, 0, 0, 0, // Replaced with size of .glink. 0, // Augmentation size. elfcpp::DW_CFA_advance_loc + 1, elfcpp::DW_CFA_register, 65, 12, elfcpp::DW_CFA_advance_loc + 4, elfcpp::DW_CFA_restore_extended, 65 }; // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2. static const unsigned char glink_eh_frame_fde_64v2[] = { 0, 0, 0, 0, // Replaced with offset to .glink. 0, 0, 0, 0, // Replaced with size of .glink. 0, // Augmentation size. elfcpp::DW_CFA_advance_loc + 1, elfcpp::DW_CFA_register, 65, 0, elfcpp::DW_CFA_advance_loc + 4, elfcpp::DW_CFA_restore_extended, 65 }; // Describe __glink_PLTresolve use of LR, 32-bit version. static const unsigned char glink_eh_frame_fde_32[] = { 0, 0, 0, 0, // Replaced with offset to .glink. 0, 0, 0, 0, // Replaced with size of .glink. 0, // Augmentation size. elfcpp::DW_CFA_advance_loc + 2, elfcpp::DW_CFA_register, 65, 0, elfcpp::DW_CFA_advance_loc + 4, elfcpp::DW_CFA_restore_extended, 65 }; static const unsigned char default_fde[] = { 0, 0, 0, 0, // Replaced with offset to stubs. 0, 0, 0, 0, // Replaced with size of stubs. 0, // Augmentation size. elfcpp::DW_CFA_nop, // Pad. elfcpp::DW_CFA_nop, elfcpp::DW_CFA_nop }; template static inline void write_insn(unsigned char* p, uint32_t v) { elfcpp::Swap<32, big_endian>::writeval(p, v); } // Stub_table holds information about plt and long branch stubs. // Stubs are built in an area following some input section determined // by group_sections(). This input section is converted to a relaxed // input section allowing it to be resized to accommodate the stubs template class Stub_table : public Output_relaxed_input_section { public: typedef typename elfcpp::Elf_types::Elf_Addr Address; static const Address invalid_address = static_cast
(0) - 1; Stub_table(Target_powerpc* targ, Output_section* output_section, const Output_section::Input_section* owner) : Output_relaxed_input_section(owner->relobj(), owner->shndx(), owner->relobj() ->section_addralign(owner->shndx())), targ_(targ), plt_call_stubs_(), long_branch_stubs_(), orig_data_size_(owner->current_data_size()), plt_size_(0), last_plt_size_(0), branch_size_(0), last_branch_size_(0), eh_frame_added_(false) { this->set_output_section(output_section); std::vector new_relaxed; new_relaxed.push_back(this); output_section->convert_input_sections_to_relaxed_sections(new_relaxed); } // Add a plt call stub. bool add_plt_call_entry(Address, const Sized_relobj_file*, const Symbol*, unsigned int, Address); bool add_plt_call_entry(Address, const Sized_relobj_file*, unsigned int, unsigned int, Address); // Find a given plt call stub. Address find_plt_call_entry(const Symbol*) const; Address find_plt_call_entry(const Sized_relobj_file*, unsigned int) const; Address find_plt_call_entry(const Sized_relobj_file*, const Symbol*, unsigned int, Address) const; Address find_plt_call_entry(const Sized_relobj_file*, unsigned int, unsigned int, Address) const; // Add a long branch stub. bool add_long_branch_entry(const Powerpc_relobj*, unsigned int, Address, Address); Address find_long_branch_entry(const Powerpc_relobj*, Address) const; bool can_reach_stub(Address from, unsigned int off, unsigned int r_type) { unsigned long max_branch_offset = max_branch_delta(r_type); if (max_branch_offset == 0) return true; gold_assert(from != invalid_address); Address loc = off + this->stub_address(); return loc - from + max_branch_offset < 2 * max_branch_offset; } void clear_stubs(bool all) { this->plt_call_stubs_.clear(); this->plt_size_ = 0; this->long_branch_stubs_.clear(); this->branch_size_ = 0; if (all) { this->last_plt_size_ = 0; this->last_branch_size_ = 0; } } Address set_address_and_size(const Output_section* os, Address off) { Address start_off = off; off += this->orig_data_size_; Address my_size = this->plt_size_ + this->branch_size_; if (my_size != 0) off = align_address(off, this->stub_align()); // Include original section size and alignment padding in size my_size += off - start_off; this->reset_address_and_file_offset(); this->set_current_data_size(my_size); this->set_address_and_file_offset(os->address() + start_off, os->offset() + start_off); return my_size; } Address stub_address() const { return align_address(this->address() + this->orig_data_size_, this->stub_align()); } Address stub_offset() const { return align_address(this->offset() + this->orig_data_size_, this->stub_align()); } section_size_type plt_size() const { return this->plt_size_; } bool size_update() { Output_section* os = this->output_section(); if (os->addralign() < this->stub_align()) { os->set_addralign(this->stub_align()); // FIXME: get rid of the insane checkpointing. // We can't increase alignment of the input section to which // stubs are attached; The input section may be .init which // is pasted together with other .init sections to form a // function. Aligning might insert zero padding resulting in // sigill. However we do need to increase alignment of the // output section so that the align_address() on offset in // set_address_and_size() adds the same padding as the // align_address() on address in stub_address(). // What's more, we need this alignment for the layout done in // relaxation_loop_body() so that the output section starts at // a suitably aligned address. os->checkpoint_set_addralign(this->stub_align()); } if (this->last_plt_size_ != this->plt_size_ || this->last_branch_size_ != this->branch_size_) { this->last_plt_size_ = this->plt_size_; this->last_branch_size_ = this->branch_size_; return true; } return false; } // Add .eh_frame info for this stub section. Unlike other linker // generated .eh_frame this is added late in the link, because we // only want the .eh_frame info if this particular stub section is // non-empty. void add_eh_frame(Layout* layout) { if (!this->eh_frame_added_) { if (!parameters->options().ld_generated_unwind_info()) return; // Since we add stub .eh_frame info late, it must be placed // after all other linker generated .eh_frame info so that // merge mapping need not be updated for input sections. // There is no provision to use a different CIE to that used // by .glink. if (!this->targ_->has_glink()) return; layout->add_eh_frame_for_plt(this, Eh_cie::eh_frame_cie, sizeof (Eh_cie::eh_frame_cie), default_fde, sizeof (default_fde)); this->eh_frame_added_ = true; } } Target_powerpc* targ() const { return targ_; } private: class Plt_stub_ent; class Plt_stub_ent_hash; typedef Unordered_map Plt_stub_entries; // Alignment of stub section. unsigned int stub_align() const { if (size == 32) return 16; unsigned int min_align = 32; unsigned int user_align = 1 << parameters->options().plt_align(); return std::max(user_align, min_align); } // Return the plt offset for the given call stub. Address plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const { const Symbol* gsym = p->first.sym_; if (gsym != NULL) { *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC && gsym->can_use_relative_reloc(false)); return gsym->plt_offset(); } else { *is_iplt = true; const Sized_relobj_file* relobj = p->first.object_; unsigned int local_sym_index = p->first.locsym_; return relobj->local_plt_offset(local_sym_index); } } // Size of a given plt call stub. unsigned int plt_call_size(typename Plt_stub_entries::const_iterator p) const { if (size == 32) return 16; bool is_iplt; Address plt_addr = this->plt_off(p, &is_iplt); if (is_iplt) plt_addr += this->targ_->iplt_section()->address(); else plt_addr += this->targ_->plt_section()->address(); Address got_addr = this->targ_->got_section()->output_section()->address(); const Powerpc_relobj* ppcobj = static_cast *>(p->first.object_); got_addr += ppcobj->toc_base_offset(); Address off = plt_addr - got_addr; unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0); if (this->targ_->abiversion() < 2) { bool static_chain = parameters->options().plt_static_chain(); bool thread_safe = this->targ_->plt_thread_safe(); bytes += (4 + 4 * static_chain + 8 * thread_safe + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))); } unsigned int align = 1 << parameters->options().plt_align(); if (align > 1) bytes = (bytes + align - 1) & -align; return bytes; } // Return long branch stub size. unsigned int branch_stub_size(Address to) { Address loc = this->stub_address() + this->last_plt_size_ + this->branch_size_; if (to - loc + (1 << 25) < 2 << 25) return 4; if (size == 64 || !parameters->options().output_is_position_independent()) return 16; return 32; } // Write out stubs. void do_write(Output_file*); // Plt call stub keys. class Plt_stub_ent { public: Plt_stub_ent(const Symbol* sym) : sym_(sym), object_(0), addend_(0), locsym_(0) { } Plt_stub_ent(const Sized_relobj_file* object, unsigned int locsym_index) : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index) { } Plt_stub_ent(const Sized_relobj_file* object, const Symbol* sym, unsigned int r_type, Address addend) : sym_(sym), object_(0), addend_(0), locsym_(0) { if (size != 32) this->addend_ = addend; else if (parameters->options().output_is_position_independent() && r_type == elfcpp::R_PPC_PLTREL24) { this->addend_ = addend; if (this->addend_ >= 32768) this->object_ = object; } } Plt_stub_ent(const Sized_relobj_file* object, unsigned int locsym_index, unsigned int r_type, Address addend) : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index) { if (size != 32) this->addend_ = addend; else if (parameters->options().output_is_position_independent() && r_type == elfcpp::R_PPC_PLTREL24) this->addend_ = addend; } bool operator==(const Plt_stub_ent& that) const { return (this->sym_ == that.sym_ && this->object_ == that.object_ && this->addend_ == that.addend_ && this->locsym_ == that.locsym_); } const Symbol* sym_; const Sized_relobj_file* object_; typename elfcpp::Elf_types::Elf_Addr addend_; unsigned int locsym_; }; class Plt_stub_ent_hash { public: size_t operator()(const Plt_stub_ent& ent) const { return (reinterpret_cast(ent.sym_) ^ reinterpret_cast(ent.object_) ^ ent.addend_ ^ ent.locsym_); } }; // Long branch stub keys. class Branch_stub_ent { public: Branch_stub_ent(const Powerpc_relobj* obj, Address to) : dest_(to), toc_base_off_(0) { if (size == 64) toc_base_off_ = obj->toc_base_offset(); } bool operator==(const Branch_stub_ent& that) const { return (this->dest_ == that.dest_ && (size == 32 || this->toc_base_off_ == that.toc_base_off_)); } Address dest_; unsigned int toc_base_off_; }; class Branch_stub_ent_hash { public: size_t operator()(const Branch_stub_ent& ent) const { return ent.dest_ ^ ent.toc_base_off_; } }; // In a sane world this would be a global. Target_powerpc* targ_; // Map sym/object/addend to stub offset. Plt_stub_entries plt_call_stubs_; // Map destination address to stub offset. typedef Unordered_map Branch_stub_entries; Branch_stub_entries long_branch_stubs_; // size of input section section_size_type orig_data_size_; // size of stubs section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_; // Whether .eh_frame info has been created for this stub section. bool eh_frame_added_; }; // Add a plt call stub, if we do not already have one for this // sym/object/addend combo. template bool Stub_table::add_plt_call_entry( Address from, const Sized_relobj_file* object, const Symbol* gsym, unsigned int r_type, Address addend) { Plt_stub_ent ent(object, gsym, r_type, addend); unsigned int off = this->plt_size_; std::pair p = this->plt_call_stubs_.insert(std::make_pair(ent, off)); if (p.second) this->plt_size_ = off + this->plt_call_size(p.first); return this->can_reach_stub(from, off, r_type); } template bool Stub_table::add_plt_call_entry( Address from, const Sized_relobj_file* object, unsigned int locsym_index, unsigned int r_type, Address addend) { Plt_stub_ent ent(object, locsym_index, r_type, addend); unsigned int off = this->plt_size_; std::pair p = this->plt_call_stubs_.insert(std::make_pair(ent, off)); if (p.second) this->plt_size_ = off + this->plt_call_size(p.first); return this->can_reach_stub(from, off, r_type); } // Find a plt call stub. template typename Stub_table::Address Stub_table::find_plt_call_entry( const Sized_relobj_file* object, const Symbol* gsym, unsigned int r_type, Address addend) const { Plt_stub_ent ent(object, gsym, r_type, addend); typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent); return p == this->plt_call_stubs_.end() ? invalid_address : p->second; } template typename Stub_table::Address Stub_table::find_plt_call_entry(const Symbol* gsym) const { Plt_stub_ent ent(gsym); typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent); return p == this->plt_call_stubs_.end() ? invalid_address : p->second; } template typename Stub_table::Address Stub_table::find_plt_call_entry( const Sized_relobj_file* object, unsigned int locsym_index, unsigned int r_type, Address addend) const { Plt_stub_ent ent(object, locsym_index, r_type, addend); typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent); return p == this->plt_call_stubs_.end() ? invalid_address : p->second; } template typename Stub_table::Address Stub_table::find_plt_call_entry( const Sized_relobj_file* object, unsigned int locsym_index) const { Plt_stub_ent ent(object, locsym_index); typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent); return p == this->plt_call_stubs_.end() ? invalid_address : p->second; } // Add a long branch stub if we don't already have one to given // destination. template bool Stub_table::add_long_branch_entry( const Powerpc_relobj* object, unsigned int r_type, Address from, Address to) { Branch_stub_ent ent(object, to); Address off = this->branch_size_; if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second) { unsigned int stub_size = this->branch_stub_size(to); this->branch_size_ = off + stub_size; if (size == 64 && stub_size != 4) this->targ_->add_branch_lookup_table(to); } return this->can_reach_stub(from, off, r_type); } // Find long branch stub. template typename Stub_table::Address Stub_table::find_long_branch_entry( const Powerpc_relobj* object, Address to) const { Branch_stub_ent ent(object, to); typename Branch_stub_entries::const_iterator p = this->long_branch_stubs_.find(ent); return p == this->long_branch_stubs_.end() ? invalid_address : p->second; } // A class to handle .glink. template class Output_data_glink : public Output_section_data { public: typedef typename elfcpp::Elf_types::Elf_Addr Address; static const Address invalid_address = static_cast
(0) - 1; static const int pltresolve_size = 16*4; Output_data_glink(Target_powerpc* targ) : Output_section_data(16), targ_(targ), global_entry_stubs_(), end_branch_table_(), ge_size_(0) { } void add_eh_frame(Layout* layout); void add_global_entry(const Symbol*); Address find_global_entry(const Symbol*) const; Address global_entry_address() const { gold_assert(this->is_data_size_valid()); unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16; return this->address() + global_entry_off; } protected: // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, _("** glink")); } private: void set_final_data_size(); // Write out .glink void do_write(Output_file*); // Allows access to .got and .plt for do_write. Target_powerpc* targ_; // Map sym to stub offset. typedef Unordered_map Global_entry_stub_entries; Global_entry_stub_entries global_entry_stubs_; unsigned int end_branch_table_, ge_size_; }; template void Output_data_glink::add_eh_frame(Layout* layout) { if (!parameters->options().ld_generated_unwind_info()) return; if (size == 64) { if (this->targ_->abiversion() < 2) layout->add_eh_frame_for_plt(this, Eh_cie<64>::eh_frame_cie, sizeof (Eh_cie<64>::eh_frame_cie), glink_eh_frame_fde_64v1, sizeof (glink_eh_frame_fde_64v1)); else layout->add_eh_frame_for_plt(this, Eh_cie<64>::eh_frame_cie, sizeof (Eh_cie<64>::eh_frame_cie), glink_eh_frame_fde_64v2, sizeof (glink_eh_frame_fde_64v2)); } else { // 32-bit .glink can use the default since the CIE return // address reg, LR, is valid. layout->add_eh_frame_for_plt(this, Eh_cie<32>::eh_frame_cie, sizeof (Eh_cie<32>::eh_frame_cie), default_fde, sizeof (default_fde)); // Except where LR is used in a PIC __glink_PLTresolve. if (parameters->options().output_is_position_independent()) layout->add_eh_frame_for_plt(this, Eh_cie<32>::eh_frame_cie, sizeof (Eh_cie<32>::eh_frame_cie), glink_eh_frame_fde_32, sizeof (glink_eh_frame_fde_32)); } } template void Output_data_glink::add_global_entry(const Symbol* gsym) { std::pair p = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_)); if (p.second) this->ge_size_ += 16; } template typename Output_data_glink::Address Output_data_glink::find_global_entry(const Symbol* gsym) const { typename Global_entry_stub_entries::const_iterator p = this->global_entry_stubs_.find(gsym); return p == this->global_entry_stubs_.end() ? invalid_address : p->second; } template void Output_data_glink::set_final_data_size() { unsigned int count = this->targ_->plt_entry_count(); section_size_type total = 0; if (count != 0) { if (size == 32) { // space for branch table total += 4 * (count - 1); total += -total & 15; total += this->pltresolve_size; } else { total += this->pltresolve_size; // space for branch table total += 4 * count; if (this->targ_->abiversion() < 2) { total += 4 * count; if (count > 0x8000) total += 4 * (count - 0x8000); } } } this->end_branch_table_ = total; total = (total + 15) & -16; total += this->ge_size_; this->set_data_size(total); } // Write out plt and long branch stub code. template void Stub_table::do_write(Output_file* of) { if (this->plt_call_stubs_.empty() && this->long_branch_stubs_.empty()) return; const section_size_type start_off = this->offset(); const section_size_type off = this->stub_offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size() - (off - start_off)); unsigned char* const oview = of->get_output_view(off, oview_size); unsigned char* p; if (size == 64) { const Output_data_got_powerpc* got = this->targ_->got_section(); Address got_os_addr = got->output_section()->address(); if (!this->plt_call_stubs_.empty()) { // The base address of the .plt section. Address plt_base = this->targ_->plt_section()->address(); Address iplt_base = invalid_address; // Write out plt call stubs. typename Plt_stub_entries::const_iterator cs; for (cs = this->plt_call_stubs_.begin(); cs != this->plt_call_stubs_.end(); ++cs) { bool is_iplt; Address pltoff = this->plt_off(cs, &is_iplt); Address plt_addr = pltoff; if (is_iplt) { if (iplt_base == invalid_address) iplt_base = this->targ_->iplt_section()->address(); plt_addr += iplt_base; } else plt_addr += plt_base; const Powerpc_relobj* ppcobj = static_cast *>(cs->first.object_); Address got_addr = got_os_addr + ppcobj->toc_base_offset(); Address off = plt_addr - got_addr; if (off + 0x80008000 > 0xffffffff || (off & 7) != 0) gold_error(_("%s: linkage table error against `%s'"), cs->first.object_->name().c_str(), cs->first.sym_->demangled_name().c_str()); bool plt_load_toc = this->targ_->abiversion() < 2; bool static_chain = plt_load_toc && parameters->options().plt_static_chain(); bool thread_safe = plt_load_toc && this->targ_->plt_thread_safe(); bool use_fake_dep = false; Address cmp_branch_off = 0; if (thread_safe) { unsigned int pltindex = ((pltoff - this->targ_->first_plt_entry_offset()) / this->targ_->plt_entry_size()); Address glinkoff = (this->targ_->glink_section()->pltresolve_size + pltindex * 8); if (pltindex > 32768) glinkoff += (pltindex - 32768) * 4; Address to = this->targ_->glink_section()->address() + glinkoff; Address from = (this->stub_address() + cs->second + 24 + 4 * (ha(off) != 0) + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)) + 4 * static_chain); cmp_branch_off = to - from; use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26); } p = oview + cs->second; if (ha(off) != 0) { write_insn(p, std_2_1 + this->targ_->stk_toc()); p += 4; if (plt_load_toc) { write_insn(p, addis_11_2 + ha(off)); p += 4; write_insn(p, ld_12_11 + l(off)); p += 4; } else { write_insn(p, addis_12_2 + ha(off)); p += 4; write_insn(p, ld_12_12 + l(off)); p += 4; } if (plt_load_toc && ha(off + 8 + 8 * static_chain) != ha(off)) { write_insn(p, addi_11_11 + l(off)); p += 4; off = 0; } write_insn(p, mtctr_12); p += 4; if (plt_load_toc) { if (use_fake_dep) { write_insn(p, xor_2_12_12); p += 4; write_insn(p, add_11_11_2); p += 4; } write_insn(p, ld_2_11 + l(off + 8)); p += 4; if (static_chain) { write_insn(p, ld_11_11 + l(off + 16)); p += 4; } } } else { write_insn(p, std_2_1 + this->targ_->stk_toc()); p += 4; write_insn(p, ld_12_2 + l(off)); p += 4; if (plt_load_toc && ha(off + 8 + 8 * static_chain) != ha(off)) { write_insn(p, addi_2_2 + l(off)); p += 4; off = 0; } write_insn(p, mtctr_12); p += 4; if (plt_load_toc) { if (use_fake_dep) { write_insn(p, xor_11_12_12); p += 4; write_insn(p, add_2_2_11); p += 4; } if (static_chain) { write_insn(p, ld_11_2 + l(off + 16)); p += 4; } write_insn(p, ld_2_2 + l(off + 8)); p += 4; } } if (thread_safe && !use_fake_dep) { write_insn(p, cmpldi_2_0); p += 4; write_insn(p, bnectr_p4); p += 4; write_insn(p, b | (cmp_branch_off & 0x3fffffc)); } else write_insn(p, bctr); } } // Write out long branch stubs. typename Branch_stub_entries::const_iterator bs; for (bs = this->long_branch_stubs_.begin(); bs != this->long_branch_stubs_.end(); ++bs) { p = oview + this->plt_size_ + bs->second; Address loc = this->stub_address() + this->plt_size_ + bs->second; Address delta = bs->first.dest_ - loc; if (delta + (1 << 25) < 2 << 25) write_insn(p, b | (delta & 0x3fffffc)); else { Address brlt_addr = this->targ_->find_branch_lookup_table(bs->first.dest_); gold_assert(brlt_addr != invalid_address); brlt_addr += this->targ_->brlt_section()->address(); Address got_addr = got_os_addr + bs->first.toc_base_off_; Address brltoff = brlt_addr - got_addr; if (ha(brltoff) == 0) { write_insn(p, ld_12_2 + l(brltoff)), p += 4; } else { write_insn(p, addis_12_2 + ha(brltoff)), p += 4; write_insn(p, ld_12_12 + l(brltoff)), p += 4; } write_insn(p, mtctr_12), p += 4; write_insn(p, bctr); } } } else { if (!this->plt_call_stubs_.empty()) { // The base address of the .plt section. Address plt_base = this->targ_->plt_section()->address(); Address iplt_base = invalid_address; // The address of _GLOBAL_OFFSET_TABLE_. Address g_o_t = invalid_address; // Write out plt call stubs. typename Plt_stub_entries::const_iterator cs; for (cs = this->plt_call_stubs_.begin(); cs != this->plt_call_stubs_.end(); ++cs) { bool is_iplt; Address plt_addr = this->plt_off(cs, &is_iplt); if (is_iplt) { if (iplt_base == invalid_address) iplt_base = this->targ_->iplt_section()->address(); plt_addr += iplt_base; } else plt_addr += plt_base; p = oview + cs->second; if (parameters->options().output_is_position_independent()) { Address got_addr; const Powerpc_relobj* ppcobj = (static_cast*> (cs->first.object_)); if (ppcobj != NULL && cs->first.addend_ >= 32768) { unsigned int got2 = ppcobj->got2_shndx(); got_addr = ppcobj->get_output_section_offset(got2); gold_assert(got_addr != invalid_address); got_addr += (ppcobj->output_section(got2)->address() + cs->first.addend_); } else { if (g_o_t == invalid_address) { const Output_data_got_powerpc* got = this->targ_->got_section(); g_o_t = got->address() + got->g_o_t(); } got_addr = g_o_t; } Address off = plt_addr - got_addr; if (ha(off) == 0) { write_insn(p + 0, lwz_11_30 + l(off)); write_insn(p + 4, mtctr_11); write_insn(p + 8, bctr); } else { write_insn(p + 0, addis_11_30 + ha(off)); write_insn(p + 4, lwz_11_11 + l(off)); write_insn(p + 8, mtctr_11); write_insn(p + 12, bctr); } } else { write_insn(p + 0, lis_11 + ha(plt_addr)); write_insn(p + 4, lwz_11_11 + l(plt_addr)); write_insn(p + 8, mtctr_11); write_insn(p + 12, bctr); } } } // Write out long branch stubs. typename Branch_stub_entries::const_iterator bs; for (bs = this->long_branch_stubs_.begin(); bs != this->long_branch_stubs_.end(); ++bs) { p = oview + this->plt_size_ + bs->second; Address loc = this->stub_address() + this->plt_size_ + bs->second; Address delta = bs->first.dest_ - loc; if (delta + (1 << 25) < 2 << 25) write_insn(p, b | (delta & 0x3fffffc)); else if (!parameters->options().output_is_position_independent()) { write_insn(p + 0, lis_12 + ha(bs->first.dest_)); write_insn(p + 4, addi_12_12 + l(bs->first.dest_)); write_insn(p + 8, mtctr_12); write_insn(p + 12, bctr); } else { delta -= 8; write_insn(p + 0, mflr_0); write_insn(p + 4, bcl_20_31); write_insn(p + 8, mflr_12); write_insn(p + 12, addis_12_12 + ha(delta)); write_insn(p + 16, addi_12_12 + l(delta)); write_insn(p + 20, mtlr_0); write_insn(p + 24, mtctr_12); write_insn(p + 28, bctr); } } } } // Write out .glink. template void Output_data_glink::do_write(Output_file* of) { const section_size_type off = this->offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(off, oview_size); unsigned char* p; // The base address of the .plt section. typedef typename elfcpp::Elf_types::Elf_Addr Address; Address plt_base = this->targ_->plt_section()->address(); if (size == 64) { if (this->end_branch_table_ != 0) { // Write pltresolve stub. p = oview; Address after_bcl = this->address() + 16; Address pltoff = plt_base - after_bcl; elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8; if (this->targ_->abiversion() < 2) { write_insn(p, mflr_12), p += 4; write_insn(p, bcl_20_31), p += 4; write_insn(p, mflr_11), p += 4; write_insn(p, ld_2_11 + l(-16)), p += 4; write_insn(p, mtlr_12), p += 4; write_insn(p, add_11_2_11), p += 4; write_insn(p, ld_12_11 + 0), p += 4; write_insn(p, ld_2_11 + 8), p += 4; write_insn(p, mtctr_12), p += 4; write_insn(p, ld_11_11 + 16), p += 4; } else { write_insn(p, mflr_0), p += 4; write_insn(p, bcl_20_31), p += 4; write_insn(p, mflr_11), p += 4; write_insn(p, ld_2_11 + l(-16)), p += 4; write_insn(p, mtlr_0), p += 4; write_insn(p, sub_12_12_11), p += 4; write_insn(p, add_11_2_11), p += 4; write_insn(p, addi_0_12 + l(-48)), p += 4; write_insn(p, ld_12_11 + 0), p += 4; write_insn(p, srdi_0_0_2), p += 4; write_insn(p, mtctr_12), p += 4; write_insn(p, ld_11_11 + 8), p += 4; } write_insn(p, bctr), p += 4; while (p < oview + this->pltresolve_size) write_insn(p, nop), p += 4; // Write lazy link call stubs. uint32_t indx = 0; while (p < oview + this->end_branch_table_) { if (this->targ_->abiversion() < 2) { if (indx < 0x8000) { write_insn(p, li_0_0 + indx), p += 4; } else { write_insn(p, lis_0_0 + hi(indx)), p += 4; write_insn(p, ori_0_0_0 + l(indx)), p += 4; } } uint32_t branch_off = 8 - (p - oview); write_insn(p, b + (branch_off & 0x3fffffc)), p += 4; indx++; } } Address plt_base = this->targ_->plt_section()->address(); Address iplt_base = invalid_address; unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16; Address global_entry_base = this->address() + global_entry_off; typename Global_entry_stub_entries::const_iterator ge; for (ge = this->global_entry_stubs_.begin(); ge != this->global_entry_stubs_.end(); ++ge) { p = oview + global_entry_off + ge->second; Address plt_addr = ge->first->plt_offset(); if (ge->first->type() == elfcpp::STT_GNU_IFUNC && ge->first->can_use_relative_reloc(false)) { if (iplt_base == invalid_address) iplt_base = this->targ_->iplt_section()->address(); plt_addr += iplt_base; } else plt_addr += plt_base; Address my_addr = global_entry_base + ge->second; Address off = plt_addr - my_addr; if (off + 0x80008000 > 0xffffffff || (off & 3) != 0) gold_error(_("%s: linkage table error against `%s'"), ge->first->object()->name().c_str(), ge->first->demangled_name().c_str()); write_insn(p, addis_12_12 + ha(off)), p += 4; write_insn(p, ld_12_12 + l(off)), p += 4; write_insn(p, mtctr_12), p += 4; write_insn(p, bctr); } } else { const Output_data_got_powerpc* got = this->targ_->got_section(); // The address of _GLOBAL_OFFSET_TABLE_. Address g_o_t = got->address() + got->g_o_t(); // Write out pltresolve branch table. p = oview; unsigned int the_end = oview_size - this->pltresolve_size; unsigned char* end_p = oview + the_end; while (p < end_p - 8 * 4) write_insn(p, b + end_p - p), p += 4; while (p < end_p) write_insn(p, nop), p += 4; // Write out pltresolve call stub. if (parameters->options().output_is_position_independent()) { Address res0_off = 0; Address after_bcl_off = the_end + 12; Address bcl_res0 = after_bcl_off - res0_off; write_insn(p + 0, addis_11_11 + ha(bcl_res0)); write_insn(p + 4, mflr_0); write_insn(p + 8, bcl_20_31); write_insn(p + 12, addi_11_11 + l(bcl_res0)); write_insn(p + 16, mflr_12); write_insn(p + 20, mtlr_0); write_insn(p + 24, sub_11_11_12); Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address()); write_insn(p + 28, addis_12_12 + ha(got_bcl)); if (ha(got_bcl) == ha(got_bcl + 4)) { write_insn(p + 32, lwz_0_12 + l(got_bcl)); write_insn(p + 36, lwz_12_12 + l(got_bcl + 4)); } else { write_insn(p + 32, lwzu_0_12 + l(got_bcl)); write_insn(p + 36, lwz_12_12 + 4); } write_insn(p + 40, mtctr_0); write_insn(p + 44, add_0_11_11); write_insn(p + 48, add_11_0_11); write_insn(p + 52, bctr); write_insn(p + 56, nop); write_insn(p + 60, nop); } else { Address res0 = this->address(); write_insn(p + 0, lis_12 + ha(g_o_t + 4)); write_insn(p + 4, addis_11_11 + ha(-res0)); if (ha(g_o_t + 4) == ha(g_o_t + 8)) write_insn(p + 8, lwz_0_12 + l(g_o_t + 4)); else write_insn(p + 8, lwzu_0_12 + l(g_o_t + 4)); write_insn(p + 12, addi_11_11 + l(-res0)); write_insn(p + 16, mtctr_0); write_insn(p + 20, add_0_11_11); if (ha(g_o_t + 4) == ha(g_o_t + 8)) write_insn(p + 24, lwz_12_12 + l(g_o_t + 8)); else write_insn(p + 24, lwz_12_12 + 4); write_insn(p + 28, add_11_0_11); write_insn(p + 32, bctr); write_insn(p + 36, nop); write_insn(p + 40, nop); write_insn(p + 44, nop); write_insn(p + 48, nop); write_insn(p + 52, nop); write_insn(p + 56, nop); write_insn(p + 60, nop); } p += 64; } of->write_output_view(off, oview_size, oview); } // A class to handle linker generated save/restore functions. template class Output_data_save_res : public Output_section_data_build { public: Output_data_save_res(Symbol_table* symtab); protected: // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, _("** save/restore")); } void do_write(Output_file*); private: // The maximum size of save/restore contents. static const unsigned int savres_max = 218*4; void savres_define(Symbol_table* symtab, const char *name, unsigned int lo, unsigned int hi, unsigned char* write_ent(unsigned char*, int), unsigned char* write_tail(unsigned char*, int)); unsigned char *contents_; }; template static unsigned char* savegpr0(unsigned char* p, int r) { uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8; write_insn(p, insn); return p + 4; } template static unsigned char* savegpr0_tail(unsigned char* p, int r) { p = savegpr0(p, r); uint32_t insn = std_0_1 + 16; write_insn(p, insn); p = p + 4; write_insn(p, blr); return p + 4; } template static unsigned char* restgpr0(unsigned char* p, int r) { uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8; write_insn(p, insn); return p + 4; } template static unsigned char* restgpr0_tail(unsigned char* p, int r) { uint32_t insn = ld_0_1 + 16; write_insn(p, insn); p = p + 4; p = restgpr0(p, r); write_insn(p, mtlr_0); p = p + 4; if (r == 29) { p = restgpr0(p, 30); p = restgpr0(p, 31); } write_insn(p, blr); return p + 4; } template static unsigned char* savegpr1(unsigned char* p, int r) { uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8; write_insn(p, insn); return p + 4; } template static unsigned char* savegpr1_tail(unsigned char* p, int r) { p = savegpr1(p, r); write_insn(p, blr); return p + 4; } template static unsigned char* restgpr1(unsigned char* p, int r) { uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8; write_insn(p, insn); return p + 4; } template static unsigned char* restgpr1_tail(unsigned char* p, int r) { p = restgpr1(p, r); write_insn(p, blr); return p + 4; } template static unsigned char* savefpr(unsigned char* p, int r) { uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8; write_insn(p, insn); return p + 4; } template static unsigned char* savefpr0_tail(unsigned char* p, int r) { p = savefpr(p, r); write_insn(p, std_0_1 + 16); p = p + 4; write_insn(p, blr); return p + 4; } template static unsigned char* restfpr(unsigned char* p, int r) { uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8; write_insn(p, insn); return p + 4; } template static unsigned char* restfpr0_tail(unsigned char* p, int r) { write_insn(p, ld_0_1 + 16); p = p + 4; p = restfpr(p, r); write_insn(p, mtlr_0); p = p + 4; if (r == 29) { p = restfpr(p, 30); p = restfpr(p, 31); } write_insn(p, blr); return p + 4; } template static unsigned char* savefpr1_tail(unsigned char* p, int r) { p = savefpr(p, r); write_insn(p, blr); return p + 4; } template static unsigned char* restfpr1_tail(unsigned char* p, int r) { p = restfpr(p, r); write_insn(p, blr); return p + 4; } template static unsigned char* savevr(unsigned char* p, int r) { uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16; write_insn(p, insn); p = p + 4; insn = stvx_0_12_0 + (r << 21); write_insn(p, insn); return p + 4; } template static unsigned char* savevr_tail(unsigned char* p, int r) { p = savevr(p, r); write_insn(p, blr); return p + 4; } template static unsigned char* restvr(unsigned char* p, int r) { uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16; write_insn(p, insn); p = p + 4; insn = lvx_0_12_0 + (r << 21); write_insn(p, insn); return p + 4; } template static unsigned char* restvr_tail(unsigned char* p, int r) { p = restvr(p, r); write_insn(p, blr); return p + 4; } template Output_data_save_res::Output_data_save_res( Symbol_table* symtab) : Output_section_data_build(4), contents_(NULL) { this->savres_define(symtab, "_savegpr0_", 14, 31, savegpr0, savegpr0_tail); this->savres_define(symtab, "_restgpr0_", 14, 29, restgpr0, restgpr0_tail); this->savres_define(symtab, "_restgpr0_", 30, 31, restgpr0, restgpr0_tail); this->savres_define(symtab, "_savegpr1_", 14, 31, savegpr1, savegpr1_tail); this->savres_define(symtab, "_restgpr1_", 14, 31, restgpr1, restgpr1_tail); this->savres_define(symtab, "_savefpr_", 14, 31, savefpr, savefpr0_tail); this->savres_define(symtab, "_restfpr_", 14, 29, restfpr, restfpr0_tail); this->savres_define(symtab, "_restfpr_", 30, 31, restfpr, restfpr0_tail); this->savres_define(symtab, "._savef", 14, 31, savefpr, savefpr1_tail); this->savres_define(symtab, "._restf", 14, 31, restfpr, restfpr1_tail); this->savres_define(symtab, "_savevr_", 20, 31, savevr, savevr_tail); this->savres_define(symtab, "_restvr_", 20, 31, restvr, restvr_tail); } template void Output_data_save_res::savres_define( Symbol_table* symtab, const char *name, unsigned int lo, unsigned int hi, unsigned char* write_ent(unsigned char*, int), unsigned char* write_tail(unsigned char*, int)) { size_t len = strlen(name); bool writing = false; char sym[16]; memcpy(sym, name, len); sym[len + 2] = 0; for (unsigned int i = lo; i <= hi; i++) { sym[len + 0] = i / 10 + '0'; sym[len + 1] = i % 10 + '0'; Symbol* gsym = symtab->lookup(sym); bool refd = gsym != NULL && gsym->is_undefined(); writing = writing || refd; if (writing) { if (this->contents_ == NULL) this->contents_ = new unsigned char[this->savres_max]; section_size_type value = this->current_data_size(); unsigned char* p = this->contents_ + value; if (i != hi) p = write_ent(p, i); else p = write_tail(p, i); section_size_type cur_size = p - this->contents_; this->set_current_data_size(cur_size); if (refd) symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED, this, value, cur_size - value, elfcpp::STT_FUNC, elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, false, false); } } } // Write out save/restore. template void Output_data_save_res::do_write(Output_file* of) { const section_size_type off = this->offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(off, oview_size); memcpy(oview, this->contents_, oview_size); of->write_output_view(off, oview_size, oview); } // Create the glink section. template void Target_powerpc::make_glink_section(Layout* layout) { if (this->glink_ == NULL) { this->glink_ = new Output_data_glink(this); this->glink_->add_eh_frame(layout); layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS, elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR, this->glink_, ORDER_TEXT, false); } } // Create a PLT entry for a global symbol. template void Target_powerpc::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym) { if (gsym->type() == elfcpp::STT_GNU_IFUNC && gsym->can_use_relative_reloc(false)) { if (this->iplt_ == NULL) this->make_iplt_section(symtab, layout); this->iplt_->add_ifunc_entry(gsym); } else { if (this->plt_ == NULL) this->make_plt_section(symtab, layout); this->plt_->add_entry(gsym); } } // Make a PLT entry for a local STT_GNU_IFUNC symbol. template void Target_powerpc::make_local_ifunc_plt_entry( Symbol_table* symtab, Layout* layout, Sized_relobj_file* relobj, unsigned int r_sym) { if (this->iplt_ == NULL) this->make_iplt_section(symtab, layout); this->iplt_->add_local_ifunc_entry(relobj, r_sym); } // Return the number of entries in the PLT. template unsigned int Target_powerpc::plt_entry_count() const { if (this->plt_ == NULL) return 0; return this->plt_->entry_count(); } // Create a GOT entry for local dynamic __tls_get_addr calls. template unsigned int Target_powerpc::tlsld_got_offset( Symbol_table* symtab, Layout* layout, Sized_relobj_file* object) { if (this->tlsld_got_offset_ == -1U) { gold_assert(symtab != NULL && layout != NULL && object != NULL); Reloc_section* rela_dyn = this->rela_dyn_section(layout); Output_data_got_powerpc* got = this->got_section(symtab, layout); unsigned int got_offset = got->add_constant_pair(0, 0); rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got, got_offset, 0); this->tlsld_got_offset_ = got_offset; } return this->tlsld_got_offset_; } // Get the Reference_flags for a particular relocation. template int Target_powerpc::Scan::get_reference_flags( unsigned int r_type, const Target_powerpc* target) { int ref = 0; switch (r_type) { case elfcpp::R_POWERPC_NONE: case elfcpp::R_POWERPC_GNU_VTINHERIT: case elfcpp::R_POWERPC_GNU_VTENTRY: case elfcpp::R_PPC64_TOC: // No symbol reference. break; case elfcpp::R_PPC64_ADDR64: case elfcpp::R_PPC64_UADDR64: case elfcpp::R_POWERPC_ADDR32: case elfcpp::R_POWERPC_UADDR32: case elfcpp::R_POWERPC_ADDR16: case elfcpp::R_POWERPC_UADDR16: case elfcpp::R_POWERPC_ADDR16_LO: case elfcpp::R_POWERPC_ADDR16_HI: case elfcpp::R_POWERPC_ADDR16_HA: ref = Symbol::ABSOLUTE_REF; break; case elfcpp::R_POWERPC_ADDR24: case elfcpp::R_POWERPC_ADDR14: case elfcpp::R_POWERPC_ADDR14_BRTAKEN: case elfcpp::R_POWERPC_ADDR14_BRNTAKEN: ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF; break; case elfcpp::R_PPC64_REL64: case elfcpp::R_POWERPC_REL32: case elfcpp::R_PPC_LOCAL24PC: case elfcpp::R_POWERPC_REL16: case elfcpp::R_POWERPC_REL16_LO: case elfcpp::R_POWERPC_REL16_HI: case elfcpp::R_POWERPC_REL16_HA: ref = Symbol::RELATIVE_REF; break; case elfcpp::R_POWERPC_REL24: case elfcpp::R_PPC_PLTREL24: case elfcpp::R_POWERPC_REL14: case elfcpp::R_POWERPC_REL14_BRTAKEN: case elfcpp::R_POWERPC_REL14_BRNTAKEN: ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF; break; case elfcpp::R_POWERPC_GOT16: case elfcpp::R_POWERPC_GOT16_LO: case elfcpp::R_POWERPC_GOT16_HI: case elfcpp::R_POWERPC_GOT16_HA: case elfcpp::R_PPC64_GOT16_DS: case elfcpp::R_PPC64_GOT16_LO_DS: case elfcpp::R_PPC64_TOC16: case elfcpp::R_PPC64_TOC16_LO: case elfcpp::R_PPC64_TOC16_HI: case elfcpp::R_PPC64_TOC16_HA: case elfcpp::R_PPC64_TOC16_DS: case elfcpp::R_PPC64_TOC16_LO_DS: // Absolute in GOT. ref = Symbol::ABSOLUTE_REF; break; case elfcpp::R_POWERPC_GOT_TPREL16: case elfcpp::R_POWERPC_TLS: ref = Symbol::TLS_REF; break; case elfcpp::R_POWERPC_COPY: case elfcpp::R_POWERPC_GLOB_DAT: case elfcpp::R_POWERPC_JMP_SLOT: case elfcpp::R_POWERPC_RELATIVE: case elfcpp::R_POWERPC_DTPMOD: default: // Not expected. We will give an error later. break; } if (size == 64 && target->abiversion() < 2) ref |= Symbol::FUNC_DESC_ABI; return ref; } // Report an unsupported relocation against a local symbol. template void Target_powerpc::Scan::unsupported_reloc_local( Sized_relobj_file* object, unsigned int r_type) { gold_error(_("%s: unsupported reloc %u against local symbol"), object->name().c_str(), r_type); } // We are about to emit a dynamic relocation of type R_TYPE. If the // dynamic linker does not support it, issue an error. template void Target_powerpc::Scan::check_non_pic(Relobj* object, unsigned int r_type) { gold_assert(r_type != elfcpp::R_POWERPC_NONE); // These are the relocation types supported by glibc for both 32-bit // and 64-bit powerpc. switch (r_type) { case elfcpp::R_POWERPC_NONE: case elfcpp::R_POWERPC_RELATIVE: case elfcpp::R_POWERPC_GLOB_DAT: case elfcpp::R_POWERPC_DTPMOD: case elfcpp::R_POWERPC_DTPREL: case elfcpp::R_POWERPC_TPREL: case elfcpp::R_POWERPC_JMP_SLOT: case elfcpp::R_POWERPC_COPY: case elfcpp::R_POWERPC_IRELATIVE: case elfcpp::R_POWERPC_ADDR32: case elfcpp::R_POWERPC_UADDR32: case elfcpp::R_POWERPC_ADDR24: case elfcpp::R_POWERPC_ADDR16: case elfcpp::R_POWERPC_UADDR16: case elfcpp::R_POWERPC_ADDR16_LO: case elfcpp::R_POWERPC_ADDR16_HI: case elfcpp::R_POWERPC_ADDR16_HA: case elfcpp::R_POWERPC_ADDR14: case elfcpp::R_POWERPC_ADDR14_BRTAKEN: case elfcpp::R_POWERPC_ADDR14_BRNTAKEN: case elfcpp::R_POWERPC_REL32: case elfcpp::R_POWERPC_REL24: case elfcpp::R_POWERPC_TPREL16: case elfcpp::R_POWERPC_TPREL16_LO: case elfcpp::R_POWERPC_TPREL16_HI: case elfcpp::R_POWERPC_TPREL16_HA: return; default: break; } if (size == 64) { switch (r_type) { // These are the relocation types supported only on 64-bit. case elfcpp::R_PPC64_ADDR64: case elfcpp::R_PPC64_UADDR64: case elfcpp::R_PPC64_JMP_IREL: case elfcpp::R_PPC64_ADDR16_DS: case elfcpp::R_PPC64_ADDR16_LO_DS: case elfcpp::R_PPC64_ADDR16_HIGH: case elfcpp::R_PPC64_ADDR16_HIGHA: case elfcpp::R_PPC64_ADDR16_HIGHER: case elfcpp::R_PPC64_ADDR16_HIGHEST: case elfcpp::R_PPC64_ADDR16_HIGHERA: case elfcpp::R_PPC64_ADDR16_HIGHESTA: case elfcpp::R_PPC64_REL64: case elfcpp::R_POWERPC_ADDR30: case elfcpp::R_PPC64_TPREL16_DS: case elfcpp::R_PPC64_TPREL16_LO_DS: case elfcpp::R_PPC64_TPREL16_HIGH: case elfcpp::R_PPC64_TPREL16_HIGHA: case elfcpp::R_PPC64_TPREL16_HIGHER: case elfcpp::R_PPC64_TPREL16_HIGHEST: case elfcpp::R_PPC64_TPREL16_HIGHERA: case elfcpp::R_PPC64_TPREL16_HIGHESTA: return; default: break; } } else { switch (r_type) { // These are the relocation types supported only on 32-bit. // ??? glibc ld.so doesn't need to support these. case elfcpp::R_POWERPC_DTPREL16: case elfcpp::R_POWERPC_DTPREL16_LO: case elfcpp::R_POWERPC_DTPREL16_HI: case elfcpp::R_POWERPC_DTPREL16_HA: return; default: break; } } // This prevents us from issuing more than one error per reloc // section. But we can still wind up issuing more than one // error per object file. if (this->issued_non_pic_error_) return; gold_assert(parameters->options().output_is_position_independent()); object->error(_("requires unsupported dynamic reloc; " "recompile with -fPIC")); this->issued_non_pic_error_ = true; return; } // Return whether we need to make a PLT entry for a relocation of the // given type against a STT_GNU_IFUNC symbol. template bool Target_powerpc::Scan::reloc_needs_plt_for_ifunc( Target_powerpc* target, Sized_relobj_file* object, unsigned int r_type, bool report_err) { // In non-pic code any reference will resolve to the plt call stub // for the ifunc symbol. if ((size == 32 || target->abiversion() >= 2) && !parameters->options().output_is_position_independent()) return true; switch (r_type) { // Word size refs from data sections are OK, but don't need a PLT entry. case elfcpp::R_POWERPC_ADDR32: case elfcpp::R_POWERPC_UADDR32: if (size == 32) return false; break; case elfcpp::R_PPC64_ADDR64: case elfcpp::R_PPC64_UADDR64: if (size == 64) return false; break; // GOT refs are good, but also don't need a PLT entry. case elfcpp::R_POWERPC_GOT16: case elfcpp::R_POWERPC_GOT16_LO: case elfcpp::R_POWERPC_GOT16_HI: case elfcpp::R_POWERPC_GOT16_HA: case elfcpp::R_PPC64_GOT16_DS: case elfcpp::R_PPC64_GOT16_LO_DS: return false; // Function calls are good, and these do need a PLT entry. case elfcpp::R_POWERPC_ADDR24: case elfcpp::R_POWERPC_ADDR14: case elfcpp::R_POWERPC_ADDR14_BRTAKEN: case elfcpp::R_POWERPC_ADDR14_BRNTAKEN: case elfcpp::R_POWERPC_REL24: case elfcpp::R_PPC_PLTREL24: case elfcpp::R_POWERPC_REL14: case elfcpp::R_POWERPC_REL14_BRTAKEN: case elfcpp::R_POWERPC_REL14_BRNTAKEN: return true; default: break; } // Anything else is a problem. // If we are building a static executable, the libc startup function // responsible for applying indirect function relocations is going // to complain about the reloc type. // If we are building a dynamic executable, we will have a text // relocation. The dynamic loader will set the text segment // writable and non-executable to apply text relocations. So we'll // segfault when trying to run the indirection function to resolve // the reloc. if (report_err) gold_error(_("%s: unsupported reloc %u for IFUNC symbol"), object->name().c_str(), r_type); return false; } // Scan a relocation for a local symbol. template inline void Target_powerpc::Scan::local( Symbol_table* symtab, Layout* layout, Target_powerpc* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela& reloc, unsigned int r_type, const elfcpp::Sym& lsym, bool is_discarded) { this->maybe_skip_tls_get_addr_call(r_type, NULL); if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD) || (size == 32 && r_type == elfcpp::R_PPC_TLSGD)) { this->expect_tls_get_addr_call(); const tls::Tls_optimization tls_type = target->optimize_tls_gd(true); if (tls_type != tls::TLSOPT_NONE) this->skip_next_tls_get_addr_call(); } else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD) || (size == 32 && r_type == elfcpp::R_PPC_TLSLD)) { this->expect_tls_get_addr_call(); const tls::Tls_optimization tls_type = target->optimize_tls_ld(); if (tls_type != tls::TLSOPT_NONE) this->skip_next_tls_get_addr_call(); } Powerpc_relobj* ppc_object = static_cast*>(object); if (is_discarded) { if (size == 64 && data_shndx == ppc_object->opd_shndx() && r_type == elfcpp::R_PPC64_ADDR64) ppc_object->set_opd_discard(reloc.get_r_offset()); return; } // A local STT_GNU_IFUNC symbol may require a PLT entry. bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC; if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true)) { unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(), r_type, r_sym, reloc.get_r_addend()); target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym); } switch (r_type) { case elfcpp::R_POWERPC_NONE: case elfcpp::R_POWERPC_GNU_VTINHERIT: case elfcpp::R_POWERPC_GNU_VTENTRY: case elfcpp::R_PPC64_TOCSAVE: case elfcpp::R_POWERPC_TLS: break; case elfcpp::R_PPC64_TOC: { Output_data_got_powerpc* got = target->got_section(symtab, layout); if (parameters->options().output_is_position_independent()) { Address off = reloc.get_r_offset(); if (size == 64 && target->abiversion() < 2 && data_shndx == ppc_object->opd_shndx() && ppc_object->get_opd_discard(off - 8)) break; Reloc_section* rela_dyn = target->rela_dyn_section(layout); Powerpc_relobj* symobj = ppc_object; rela_dyn->add_output_section_relative(got->output_section(), elfcpp::R_POWERPC_RELATIVE, output_section, object, data_shndx, off, symobj->toc_base_offset()); } } break; case elfcpp::R_PPC64_ADDR64: case elfcpp::R_PPC64_UADDR64: case elfcpp::R_POWERPC_ADDR32: case elfcpp::R_POWERPC_UADDR32: case elfcpp::R_POWERPC_ADDR24: case elfcpp::R_POWERPC_ADDR16: case elfcpp::R_POWERPC_ADDR16_LO: case elfcpp::R_POWERPC_ADDR16_HI: case elfcpp::R_POWERPC_ADDR16_HA: case elfcpp::R_POWERPC_UADDR16: case elfcpp::R_PPC64_ADDR16_HIGH: case elfcpp::R_PPC64_ADDR16_HIGHA: case elfcpp::R_PPC64_ADDR16_HIGHER: case elfcpp::R_PPC64_ADDR16_HIGHERA: case elfcpp::R_PPC64_ADDR16_HIGHEST: case elfcpp::R_PPC64_ADDR16_HIGHESTA: case elfcpp::R_PPC64_ADDR16_DS: case elfcpp::R_PPC64_ADDR16_LO_DS: case elfcpp::R_POWERPC_ADDR14: case elfcpp::R_POWERPC_ADDR14_BRTAKEN: case elfcpp::R_POWERPC_ADDR14_BRNTAKEN: // If building a shared library (or a position-independent // executable), we need to create a dynamic relocation for // this location. if (parameters->options().output_is_position_independent() || (size == 64 && is_ifunc && target->abiversion() < 2)) { Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout, is_ifunc); if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32) || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64)) { unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE : elfcpp::R_POWERPC_RELATIVE); rela_dyn->add_local_relative(object, r_sym, dynrel, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend(), false); } else { check_non_pic(object, r_type); unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); rela_dyn->add_local(object, r_sym, r_type, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } } break; case elfcpp::R_POWERPC_REL24: case elfcpp::R_PPC_PLTREL24: case elfcpp::R_PPC_LOCAL24PC: case elfcpp::R_POWERPC_REL14: case elfcpp::R_POWERPC_REL14_BRTAKEN: case elfcpp::R_POWERPC_REL14_BRNTAKEN: if (!is_ifunc) target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(), r_type, elfcpp::elf_r_sym(reloc.get_r_info()), reloc.get_r_addend()); break; case elfcpp::R_PPC64_REL64: case elfcpp::R_POWERPC_REL32: case elfcpp::R_POWERPC_REL16: case elfcpp::R_POWERPC_REL16_LO: case elfcpp::R_POWERPC_REL16_HI: case elfcpp::R_POWERPC_REL16_HA: case elfcpp::R_POWERPC_SECTOFF: case elfcpp::R_POWERPC_SECTOFF_LO: case elfcpp::R_POWERPC_SECTOFF_HI: case elfcpp::R_POWERPC_SECTOFF_HA: case elfcpp::R_PPC64_SECTOFF_DS: case elfcpp::R_PPC64_SECTOFF_LO_DS: case elfcpp::R_POWERPC_TPREL16: case elfcpp::R_POWERPC_TPREL16_LO: case elfcpp::R_POWERPC_TPREL16_HI: case elfcpp::R_POWERPC_TPREL16_HA: case elfcpp::R_PPC64_TPREL16_DS: case elfcpp::R_PPC64_TPREL16_LO_DS: case elfcpp::R_PPC64_TPREL16_HIGH: case elfcpp::R_PPC64_TPREL16_HIGHA: case elfcpp::R_PPC64_TPREL16_HIGHER: case elfcpp::R_PPC64_TPREL16_HIGHERA: case elfcpp::R_PPC64_TPREL16_HIGHEST: case elfcpp::R_PPC64_TPREL16_HIGHESTA: case elfcpp::R_POWERPC_DTPREL16: case elfcpp::R_POWERPC_DTPREL16_LO: case elfcpp::R_POWERPC_DTPREL16_HI: case elfcpp::R_POWERPC_DTPREL16_HA: case elfcpp::R_PPC64_DTPREL16_DS: case elfcpp::R_PPC64_DTPREL16_LO_DS: case elfcpp::R_PPC64_DTPREL16_HIGH: case elfcpp::R_PPC64_DTPREL16_HIGHA: case elfcpp::R_PPC64_DTPREL16_HIGHER: case elfcpp::R_PPC64_DTPREL16_HIGHERA: case elfcpp::R_PPC64_DTPREL16_HIGHEST: case elfcpp::R_PPC64_DTPREL16_HIGHESTA: case elfcpp::R_PPC64_TLSGD: case elfcpp::R_PPC64_TLSLD: case elfcpp::R_PPC64_ADDR64_LOCAL: break; case elfcpp::R_POWERPC_GOT16: case elfcpp::R_POWERPC_GOT16_LO: case elfcpp::R_POWERPC_GOT16_HI: case elfcpp::R_POWERPC_GOT16_HA: case elfcpp::R_PPC64_GOT16_DS: case elfcpp::R_PPC64_GOT16_LO_DS: { // The symbol requires a GOT entry. Output_data_got_powerpc* got = target->got_section(symtab, layout); unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); if (!parameters->options().output_is_position_independent()) { if ((size == 32 && is_ifunc) || (size == 64 && target->abiversion() >= 2)) got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD); else got->add_local(object, r_sym, GOT_TYPE_STANDARD); } else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD)) { // If we are generating a shared object or a pie, this // symbol's GOT entry will be set by a dynamic relocation. unsigned int off; off = got->add_constant(0); object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off); Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout, is_ifunc); unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE : elfcpp::R_POWERPC_RELATIVE); rela_dyn->add_local_relative(object, r_sym, dynrel, got, off, 0, false); } } break; case elfcpp::R_PPC64_TOC16: case elfcpp::R_PPC64_TOC16_LO: case elfcpp::R_PPC64_TOC16_HI: case elfcpp::R_PPC64_TOC16_HA: case elfcpp::R_PPC64_TOC16_DS: case elfcpp::R_PPC64_TOC16_LO_DS: // We need a GOT section. target->got_section(symtab, layout); break; case elfcpp::R_POWERPC_GOT_TLSGD16: case elfcpp::R_POWERPC_GOT_TLSGD16_LO: case elfcpp::R_POWERPC_GOT_TLSGD16_HI: case elfcpp::R_POWERPC_GOT_TLSGD16_HA: { const tls::Tls_optimization tls_type = target->optimize_tls_gd(true); if (tls_type == tls::TLSOPT_NONE) { Output_data_got_powerpc* got = target->got_section(symtab, layout); unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); Reloc_section* rela_dyn = target->rela_dyn_section(layout); got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD, rela_dyn, elfcpp::R_POWERPC_DTPMOD); } else if (tls_type == tls::TLSOPT_TO_LE) { // no GOT relocs needed for Local Exec. } else gold_unreachable(); } break; case elfcpp::R_POWERPC_GOT_TLSLD16: case elfcpp::R_POWERPC_GOT_TLSLD16_LO: case elfcpp::R_POWERPC_GOT_TLSLD16_HI: case elfcpp::R_POWERPC_GOT_TLSLD16_HA: { const tls::Tls_optimization tls_type = target->optimize_tls_ld(); if (tls_type == tls::TLSOPT_NONE) target->tlsld_got_offset(symtab, layout, object); else if (tls_type == tls::TLSOPT_TO_LE) { // no GOT relocs needed for Local Exec. if (parameters->options().emit_relocs()) { Output_section* os = layout->tls_segment()->first_section(); gold_assert(os != NULL); os->set_needs_symtab_index(); } } else gold_unreachable(); } break; case elfcpp::R_POWERPC_GOT_DTPREL16: case elfcpp::R_POWERPC_GOT_DTPREL16_LO: case elfcpp::R_POWERPC_GOT_DTPREL16_HI: case elfcpp::R_POWERPC_GOT_DTPREL16_HA: { Output_data_got_powerpc* got = target->got_section(symtab, layout); unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL); } break; case elfcpp::R_POWERPC_GOT_TPREL16: case elfcpp::R_POWERPC_GOT_TPREL16_LO: case elfcpp::R_POWERPC_GOT_TPREL16_HI: case elfcpp::R_POWERPC_GOT_TPREL16_HA: { const tls::Tls_optimization tls_type = target->optimize_tls_ie(true); if (tls_type == tls::TLSOPT_NONE) { unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL)) { Output_data_got_powerpc* got = target->got_section(symtab, layout); unsigned int off = got->add_constant(0); object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off); Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_symbolless_local_addend(object, r_sym, elfcpp::R_POWERPC_TPREL, got, off, 0); } } else if (tls_type == tls::TLSOPT_TO_LE) { // no GOT relocs needed for Local Exec. } else gold_unreachable(); } break; default: unsupported_reloc_local(object, r_type); break; } switch (r_type) { case elfcpp::R_POWERPC_GOT_TLSLD16: case elfcpp::R_POWERPC_GOT_TLSGD16: case elfcpp::R_POWERPC_GOT_TPREL16: case elfcpp::R_POWERPC_GOT_DTPREL16: case elfcpp::R_POWERPC_GOT16: case elfcpp::R_PPC64_GOT16_DS: case elfcpp::R_PPC64_TOC16: case elfcpp::R_PPC64_TOC16_DS: ppc_object->set_has_small_toc_reloc(); default: break; } } // Report an unsupported relocation against a global symbol. template void Target_powerpc::Scan::unsupported_reloc_global( Sized_relobj_file* object, unsigned int r_type, Symbol* gsym) { gold_error(_("%s: unsupported reloc %u against global symbol %s"), object->name().c_str(), r_type, gsym->demangled_name().c_str()); } // Scan a relocation for a global symbol. template inline void Target_powerpc::Scan::global( Symbol_table* symtab, Layout* layout, Target_powerpc* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela& reloc, unsigned int r_type, Symbol* gsym) { if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP) return; if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD) || (size == 32 && r_type == elfcpp::R_PPC_TLSGD)) { this->expect_tls_get_addr_call(); const bool final = gsym->final_value_is_known(); const tls::Tls_optimization tls_type = target->optimize_tls_gd(final); if (tls_type != tls::TLSOPT_NONE) this->skip_next_tls_get_addr_call(); } else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD) || (size == 32 && r_type == elfcpp::R_PPC_TLSLD)) { this->expect_tls_get_addr_call(); const tls::Tls_optimization tls_type = target->optimize_tls_ld(); if (tls_type != tls::TLSOPT_NONE) this->skip_next_tls_get_addr_call(); } Powerpc_relobj* ppc_object = static_cast*>(object); // A STT_GNU_IFUNC symbol may require a PLT entry. bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC; bool pushed_ifunc = false; if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true)) { target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(), r_type, elfcpp::elf_r_sym(reloc.get_r_info()), reloc.get_r_addend()); target->make_plt_entry(symtab, layout, gsym); pushed_ifunc = true; } switch (r_type) { case elfcpp::R_POWERPC_NONE: case elfcpp::R_POWERPC_GNU_VTINHERIT: case elfcpp::R_POWERPC_GNU_VTENTRY: case elfcpp::R_PPC_LOCAL24PC: case elfcpp::R_POWERPC_TLS: break; case elfcpp::R_PPC64_TOC: { Output_data_got_powerpc* got = target->got_section(symtab, layout); if (parameters->options().output_is_position_independent()) { Address off = reloc.get_r_offset(); if (size == 64 && data_shndx == ppc_object->opd_shndx() && ppc_object->get_opd_discard(off - 8)) break; Reloc_section* rela_dyn = target->rela_dyn_section(layout); Powerpc_relobj* symobj = ppc_object; if (data_shndx != ppc_object->opd_shndx()) symobj = static_cast *>(gsym->object()); rela_dyn->add_output_section_relative(got->output_section(), elfcpp::R_POWERPC_RELATIVE, output_section, object, data_shndx, off, symobj->toc_base_offset()); } } break; case elfcpp::R_PPC64_ADDR64: if (size == 64 && target->abiversion() < 2 && data_shndx == ppc_object->opd_shndx() && (gsym->is_defined_in_discarded_section() || gsym->object() != object)) { ppc_object->set_opd_discard(reloc.get_r_offset()); break; } // Fall thru case elfcpp::R_PPC64_UADDR64: case elfcpp::R_POWERPC_ADDR32: case elfcpp::R_POWERPC_UADDR32: case elfcpp::R_POWERPC_ADDR24: case elfcpp::R_POWERPC_ADDR16: case elfcpp::R_POWERPC_ADDR16_LO: case elfcpp::R_POWERPC_ADDR16_HI: case elfcpp::R_POWERPC_ADDR16_HA: case elfcpp::R_POWERPC_UADDR16: case elfcpp::R_PPC64_ADDR16_HIGH: case elfcpp::R_PPC64_ADDR16_HIGHA: case elfcpp::R_PPC64_ADDR16_HIGHER: case elfcpp::R_PPC64_ADDR16_HIGHERA: case elfcpp::R_PPC64_ADDR16_HIGHEST: case elfcpp::R_PPC64_ADDR16_HIGHESTA: case elfcpp::R_PPC64_ADDR16_DS: case elfcpp::R_PPC64_ADDR16_LO_DS: case elfcpp::R_POWERPC_ADDR14: case elfcpp::R_POWERPC_ADDR14_BRTAKEN: case elfcpp::R_POWERPC_ADDR14_BRNTAKEN: { // Make a PLT entry if necessary. if (gsym->needs_plt_entry()) { // Since this is not a PC-relative relocation, we may be // taking the address of a function. In that case we need to // set the entry in the dynamic symbol table to the address of // the PLT call stub. bool need_ifunc_plt = false; if ((size == 32 || target->abiversion() >= 2) && gsym->is_from_dynobj() && !parameters->options().output_is_position_independent()) { gsym->set_needs_dynsym_value(); need_ifunc_plt = true; } if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt)) { target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(), r_type, elfcpp::elf_r_sym(reloc.get_r_info()), reloc.get_r_addend()); target->make_plt_entry(symtab, layout, gsym); } } // Make a dynamic relocation if necessary. if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)) || (size == 64 && is_ifunc && target->abiversion() < 2)) { if (!parameters->options().output_is_position_independent() && gsym->may_need_copy_reloc()) { target->copy_reloc(symtab, layout, object, data_shndx, output_section, gsym, reloc); } else if ((((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32) || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64 && target->abiversion() >= 2)) && gsym->can_use_relative_reloc(false) && !(gsym->visibility() == elfcpp::STV_PROTECTED && parameters->options().shared())) || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64 && target->abiversion() < 2 && (gsym->can_use_relative_reloc(false) || data_shndx == ppc_object->opd_shndx()))) { Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout, is_ifunc); unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE : elfcpp::R_POWERPC_RELATIVE); rela_dyn->add_symbolless_global_addend( gsym, dynrel, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } else { Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout, is_ifunc); check_non_pic(object, r_type); rela_dyn->add_global(gsym, r_type, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } } } break; case elfcpp::R_PPC_PLTREL24: case elfcpp::R_POWERPC_REL24: if (!is_ifunc) { target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(), r_type, elfcpp::elf_r_sym(reloc.get_r_info()), reloc.get_r_addend()); if (gsym->needs_plt_entry() || (!gsym->final_value_is_known() && (gsym->is_undefined() || gsym->is_from_dynobj() || gsym->is_preemptible()))) target->make_plt_entry(symtab, layout, gsym); } // Fall thru case elfcpp::R_PPC64_REL64: case elfcpp::R_POWERPC_REL32: // Make a dynamic relocation if necessary. if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))) { if (!parameters->options().output_is_position_independent() && gsym->may_need_copy_reloc()) { target->copy_reloc(symtab, layout, object, data_shndx, output_section, gsym, reloc); } else { Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout, is_ifunc); check_non_pic(object, r_type); rela_dyn->add_global(gsym, r_type, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } } break; case elfcpp::R_POWERPC_REL14: case elfcpp::R_POWERPC_REL14_BRTAKEN: case elfcpp::R_POWERPC_REL14_BRNTAKEN: if (!is_ifunc) target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(), r_type, elfcpp::elf_r_sym(reloc.get_r_info()), reloc.get_r_addend()); break; case elfcpp::R_POWERPC_REL16: case elfcpp::R_POWERPC_REL16_LO: case elfcpp::R_POWERPC_REL16_HI: case elfcpp::R_POWERPC_REL16_HA: case elfcpp::R_POWERPC_SECTOFF: case elfcpp::R_POWERPC_SECTOFF_LO: case elfcpp::R_POWERPC_SECTOFF_HI: case elfcpp::R_POWERPC_SECTOFF_HA: case elfcpp::R_PPC64_SECTOFF_DS: case elfcpp::R_PPC64_SECTOFF_LO_DS: case elfcpp::R_POWERPC_TPREL16: case elfcpp::R_POWERPC_TPREL16_LO: case elfcpp::R_POWERPC_TPREL16_HI: case elfcpp::R_POWERPC_TPREL16_HA: case elfcpp::R_PPC64_TPREL16_DS: case elfcpp::R_PPC64_TPREL16_LO_DS: case elfcpp::R_PPC64_TPREL16_HIGH: case elfcpp::R_PPC64_TPREL16_HIGHA: case elfcpp::R_PPC64_TPREL16_HIGHER: case elfcpp::R_PPC64_TPREL16_HIGHERA: case elfcpp::R_PPC64_TPREL16_HIGHEST: case elfcpp::R_PPC64_TPREL16_HIGHESTA: case elfcpp::R_POWERPC_DTPREL16: case elfcpp::R_POWERPC_DTPREL16_LO: case elfcpp::R_POWERPC_DTPREL16_HI: case elfcpp::R_POWERPC_DTPREL16_HA: case elfcpp::R_PPC64_DTPREL16_DS: case elfcpp::R_PPC64_DTPREL16_LO_DS: case elfcpp::R_PPC64_DTPREL16_HIGH: case elfcpp::R_PPC64_DTPREL16_HIGHA: case elfcpp::R_PPC64_DTPREL16_HIGHER: case elfcpp::R_PPC64_DTPREL16_HIGHERA: case elfcpp::R_PPC64_DTPREL16_HIGHEST: case elfcpp::R_PPC64_DTPREL16_HIGHESTA: case elfcpp::R_PPC64_TLSGD: case elfcpp::R_PPC64_TLSLD: case elfcpp::R_PPC64_ADDR64_LOCAL: break; case elfcpp::R_POWERPC_GOT16: case elfcpp::R_POWERPC_GOT16_LO: case elfcpp::R_POWERPC_GOT16_HI: case elfcpp::R_POWERPC_GOT16_HA: case elfcpp::R_PPC64_GOT16_DS: case elfcpp::R_PPC64_GOT16_LO_DS: { // The symbol requires a GOT entry. Output_data_got_powerpc* got; got = target->got_section(symtab, layout); if (gsym->final_value_is_known()) { if ((size == 32 && is_ifunc) || (size == 64 && target->abiversion() >= 2)) got->add_global_plt(gsym, GOT_TYPE_STANDARD); else got->add_global(gsym, GOT_TYPE_STANDARD); } else if (!gsym->has_got_offset(GOT_TYPE_STANDARD)) { // If we are generating a shared object or a pie, this // symbol's GOT entry will be set by a dynamic relocation. unsigned int off = got->add_constant(0); gsym->set_got_offset(GOT_TYPE_STANDARD, off); Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout, is_ifunc); if (gsym->can_use_relative_reloc(false) && !((size == 32 || target->abiversion() >= 2) && gsym->visibility() == elfcpp::STV_PROTECTED && parameters->options().shared())) { unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE : elfcpp::R_POWERPC_RELATIVE); rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false); } else { unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT; rela_dyn->add_global(gsym, dynrel, got, off, 0); } } } break; case elfcpp::R_PPC64_TOC16: case elfcpp::R_PPC64_TOC16_LO: case elfcpp::R_PPC64_TOC16_HI: case elfcpp::R_PPC64_TOC16_HA: case elfcpp::R_PPC64_TOC16_DS: case elfcpp::R_PPC64_TOC16_LO_DS: // We need a GOT section. target->got_section(symtab, layout); break; case elfcpp::R_POWERPC_GOT_TLSGD16: case elfcpp::R_POWERPC_GOT_TLSGD16_LO: case elfcpp::R_POWERPC_GOT_TLSGD16_HI: case elfcpp::R_POWERPC_GOT_TLSGD16_HA: { const bool final = gsym->final_value_is_known(); const tls::Tls_optimization tls_type = target->optimize_tls_gd(final); if (tls_type == tls::TLSOPT_NONE) { Output_data_got_powerpc* got = target->got_section(symtab, layout); Reloc_section* rela_dyn = target->rela_dyn_section(layout); got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn, elfcpp::R_POWERPC_DTPMOD, elfcpp::R_POWERPC_DTPREL); } else if (tls_type == tls::TLSOPT_TO_IE) { if (!gsym->has_got_offset(GOT_TYPE_TPREL)) { Output_data_got_powerpc* got = target->got_section(symtab, layout); Reloc_section* rela_dyn = target->rela_dyn_section(layout); if (gsym->is_undefined() || gsym->is_from_dynobj()) { got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn, elfcpp::R_POWERPC_TPREL); } else { unsigned int off = got->add_constant(0); gsym->set_got_offset(GOT_TYPE_TPREL, off); unsigned int dynrel = elfcpp::R_POWERPC_TPREL; rela_dyn->add_symbolless_global_addend(gsym, dynrel, got, off, 0); } } } else if (tls_type == tls::TLSOPT_TO_LE) { // no GOT relocs needed for Local Exec. } else gold_unreachable(); } break; case elfcpp::R_POWERPC_GOT_TLSLD16: case elfcpp::R_POWERPC_GOT_TLSLD16_LO: case elfcpp::R_POWERPC_GOT_TLSLD16_HI: case elfcpp::R_POWERPC_GOT_TLSLD16_HA: { const tls::Tls_optimization tls_type = target->optimize_tls_ld(); if (tls_type == tls::TLSOPT_NONE) target->tlsld_got_offset(symtab, layout, object); else if (tls_type == tls::TLSOPT_TO_LE) { // no GOT relocs needed for Local Exec. if (parameters->options().emit_relocs()) { Output_section* os = layout->tls_segment()->first_section(); gold_assert(os != NULL); os->set_needs_symtab_index(); } } else gold_unreachable(); } break; case elfcpp::R_POWERPC_GOT_DTPREL16: case elfcpp::R_POWERPC_GOT_DTPREL16_LO: case elfcpp::R_POWERPC_GOT_DTPREL16_HI: case elfcpp::R_POWERPC_GOT_DTPREL16_HA: { Output_data_got_powerpc* got = target->got_section(symtab, layout); if (!gsym->final_value_is_known() && (gsym->is_from_dynobj() || gsym->is_undefined() || gsym->is_preemptible())) got->add_global_with_rel(gsym, GOT_TYPE_DTPREL, target->rela_dyn_section(layout), elfcpp::R_POWERPC_DTPREL); else got->add_global_tls(gsym, GOT_TYPE_DTPREL); } break; case elfcpp::R_POWERPC_GOT_TPREL16: case elfcpp::R_POWERPC_GOT_TPREL16_LO: case elfcpp::R_POWERPC_GOT_TPREL16_HI: case elfcpp::R_POWERPC_GOT_TPREL16_HA: { const bool final = gsym->final_value_is_known(); const tls::Tls_optimization tls_type = target->optimize_tls_ie(final); if (tls_type == tls::TLSOPT_NONE) { if (!gsym->has_got_offset(GOT_TYPE_TPREL)) { Output_data_got_powerpc* got = target->got_section(symtab, layout); Reloc_section* rela_dyn = target->rela_dyn_section(layout); if (gsym->is_undefined() || gsym->is_from_dynobj()) { got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn, elfcpp::R_POWERPC_TPREL); } else { unsigned int off = got->add_constant(0); gsym->set_got_offset(GOT_TYPE_TPREL, off); unsigned int dynrel = elfcpp::R_POWERPC_TPREL; rela_dyn->add_symbolless_global_addend(gsym, dynrel, got, off, 0); } } } else if (tls_type == tls::TLSOPT_TO_LE) { // no GOT relocs needed for Local Exec. } else gold_unreachable(); } break; default: unsupported_reloc_global(object, r_type, gsym); break; } switch (r_type) { case elfcpp::R_POWERPC_GOT_TLSLD16: case elfcpp::R_POWERPC_GOT_TLSGD16: case elfcpp::R_POWERPC_GOT_TPREL16: case elfcpp::R_POWERPC_GOT_DTPREL16: case elfcpp::R_POWERPC_GOT16: case elfcpp::R_PPC64_GOT16_DS: case elfcpp::R_PPC64_TOC16: case elfcpp::R_PPC64_TOC16_DS: ppc_object->set_has_small_toc_reloc(); default: break; } } // Process relocations for gc. template void Target_powerpc::gc_process_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols) { typedef Target_powerpc Powerpc; typedef typename Target_powerpc::Scan Scan; Powerpc_relobj* ppc_object = static_cast*>(object); if (size == 64) ppc_object->set_opd_valid(); if (size == 64 && data_shndx == ppc_object->opd_shndx()) { typename Powerpc_relobj::Access_from::iterator p; for (p = ppc_object->access_from_map()->begin(); p != ppc_object->access_from_map()->end(); ++p) { Address dst_off = p->first; unsigned int dst_indx = ppc_object->get_opd_ent(dst_off); typename Powerpc_relobj::Section_refs::iterator s; for (s = p->second.begin(); s != p->second.end(); ++s) { Object* src_obj = s->first; unsigned int src_indx = s->second; symtab->gc()->add_reference(src_obj, src_indx, ppc_object, dst_indx); } p->second.clear(); } ppc_object->access_from_map()->clear(); ppc_object->process_gc_mark(symtab); // Don't look at .opd relocs as .opd will reference everything. return; } gold::gc_process_relocs( symtab, layout, this, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols); } // Handle target specific gc actions when adding a gc reference from // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX // and DST_OFF. For powerpc64, this adds a referenc to the code // section of a function descriptor. template void Target_powerpc::do_gc_add_reference( Symbol_table* symtab, Object* src_obj, unsigned int src_shndx, Object* dst_obj, unsigned int dst_shndx, Address dst_off) const { if (size != 64 || dst_obj->is_dynamic()) return; Powerpc_relobj* ppc_object = static_cast*>(dst_obj); if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx()) { if (ppc_object->opd_valid()) { dst_shndx = ppc_object->get_opd_ent(dst_off); symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx); } else { // If we haven't run scan_opd_relocs, we must delay // processing this function descriptor reference. ppc_object->add_reference(src_obj, src_shndx, dst_off); } } } // Add any special sections for this symbol to the gc work list. // For powerpc64, this adds the code section of a function // descriptor. template void Target_powerpc::do_gc_mark_symbol( Symbol_table* symtab, Symbol* sym) const { if (size == 64) { Powerpc_relobj* ppc_object = static_cast*>(sym->object()); bool is_ordinary; unsigned int shndx = sym->shndx(&is_ordinary); if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx()) { Sized_symbol* gsym = symtab->get_sized_symbol(sym); Address dst_off = gsym->value(); if (ppc_object->opd_valid()) { unsigned int dst_indx = ppc_object->get_opd_ent(dst_off); symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx)); } else ppc_object->add_gc_mark(dst_off); } } } // For a symbol location in .opd, set LOC to the location of the // function entry. template void Target_powerpc::do_function_location( Symbol_location* loc) const { if (size == 64 && loc->shndx != 0) { if (loc->object->is_dynamic()) { Powerpc_dynobj* ppc_object = static_cast*>(loc->object); if (loc->shndx == ppc_object->opd_shndx()) { Address dest_off; Address off = loc->offset - ppc_object->opd_address(); loc->shndx = ppc_object->get_opd_ent(off, &dest_off); loc->offset = dest_off; } } else { const Powerpc_relobj* ppc_object = static_cast*>(loc->object); if (loc->shndx == ppc_object->opd_shndx()) { Address dest_off; loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off); loc->offset = dest_off; } } } } // Scan relocations for a section. template void Target_powerpc::scan_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols) { typedef Target_powerpc Powerpc; typedef typename Target_powerpc::Scan Scan; if (sh_type == elfcpp::SHT_REL) { gold_error(_("%s: unsupported REL reloc section"), object->name().c_str()); return; } gold::scan_relocs( symtab, layout, this, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols); } // Functor class for processing the global symbol table. // Removes symbols defined on discarded opd entries. template class Global_symbol_visitor_opd { public: Global_symbol_visitor_opd() { } void operator()(Sized_symbol<64>* sym) { if (sym->has_symtab_index() || sym->source() != Symbol::FROM_OBJECT || !sym->in_real_elf()) return; if (sym->object()->is_dynamic()) return; Powerpc_relobj<64, big_endian>* symobj = static_cast*>(sym->object()); if (symobj->opd_shndx() == 0) return; bool is_ordinary; unsigned int shndx = sym->shndx(&is_ordinary); if (shndx == symobj->opd_shndx() && symobj->get_opd_discard(sym->value())) sym->set_symtab_index(-1U); } }; template void Target_powerpc::define_save_restore_funcs( Layout* layout, Symbol_table* symtab) { if (size == 64) { Output_data_save_res<64, big_endian>* savres = new Output_data_save_res<64, big_endian>(symtab); layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS, elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR, savres, ORDER_TEXT, false); } } // Sort linker created .got section first (for the header), then input // sections belonging to files using small model code. template class Sort_toc_sections { public: bool operator()(const Output_section::Input_section& is1, const Output_section::Input_section& is2) const { if (!is1.is_input_section() && is2.is_input_section()) return true; bool small1 = (is1.is_input_section() && (static_cast*>(is1.relobj()) ->has_small_toc_reloc())); bool small2 = (is2.is_input_section() && (static_cast*>(is2.relobj()) ->has_small_toc_reloc())); return small1 && !small2; } }; // Finalize the sections. template void Target_powerpc::do_finalize_sections( Layout* layout, const Input_objects*, Symbol_table* symtab) { if (parameters->doing_static_link()) { // At least some versions of glibc elf-init.o have a strong // reference to __rela_iplt marker syms. A weak ref would be // better.. if (this->iplt_ != NULL) { Reloc_section* rel = this->iplt_->rel_plt(); symtab->define_in_output_data("__rela_iplt_start", NULL, Symbol_table::PREDEFINED, rel, 0, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, false, true); symtab->define_in_output_data("__rela_iplt_end", NULL, Symbol_table::PREDEFINED, rel, 0, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, true, true); } else { symtab->define_as_constant("__rela_iplt_start", NULL, Symbol_table::PREDEFINED, 0, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, true, false); symtab->define_as_constant("__rela_iplt_end", NULL, Symbol_table::PREDEFINED, 0, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, true, false); } } if (size == 64) { typedef Global_symbol_visitor_opd Symbol_visitor; symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor()); if (!parameters->options().relocatable()) { this->define_save_restore_funcs(layout, symtab); // Annoyingly, we need to make these sections now whether or // not we need them. If we delay until do_relax then we // need to mess with the relaxation machinery checkpointing. this->got_section(symtab, layout); this->make_brlt_section(layout); if (parameters->options().toc_sort()) { Output_section* os = this->got_->output_section(); if (os != NULL && os->input_sections().size() > 1) std::stable_sort(os->input_sections().begin(), os->input_sections().end(), Sort_toc_sections()); } } } // Fill in some more dynamic tags. Output_data_dynamic* odyn = layout->dynamic_data(); if (odyn != NULL) { const Reloc_section* rel_plt = (this->plt_ == NULL ? NULL : this->plt_->rel_plt()); layout->add_target_dynamic_tags(false, this->plt_, rel_plt, this->rela_dyn_, true, size == 32); if (size == 32) { if (this->got_ != NULL) { this->got_->finalize_data_size(); odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT, this->got_, this->got_->g_o_t()); } } else { if (this->glink_ != NULL) { this->glink_->finalize_data_size(); odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK, this->glink_, (this->glink_->pltresolve_size - 32)); } } } // Emit any relocs we saved in an attempt to avoid generating COPY // relocs. if (this->copy_relocs_.any_saved_relocs()) this->copy_relocs_.emit(this->rela_dyn_section(layout)); } // Return TRUE iff INSN is one we expect on a _LO variety toc/got // reloc. static bool ok_lo_toc_insn(uint32_t insn) { return ((insn & (0x3f << 26)) == 14u << 26 /* addi */ || (insn & (0x3f << 26)) == 32u << 26 /* lwz */ || (insn & (0x3f << 26)) == 34u << 26 /* lbz */ || (insn & (0x3f << 26)) == 36u << 26 /* stw */ || (insn & (0x3f << 26)) == 38u << 26 /* stb */ || (insn & (0x3f << 26)) == 40u << 26 /* lhz */ || (insn & (0x3f << 26)) == 42u << 26 /* lha */ || (insn & (0x3f << 26)) == 44u << 26 /* sth */ || (insn & (0x3f << 26)) == 46u << 26 /* lmw */ || (insn & (0x3f << 26)) == 47u << 26 /* stmw */ || (insn & (0x3f << 26)) == 48u << 26 /* lfs */ || (insn & (0x3f << 26)) == 50u << 26 /* lfd */ || (insn & (0x3f << 26)) == 52u << 26 /* stfs */ || (insn & (0x3f << 26)) == 54u << 26 /* stfd */ || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */ && (insn & 3) != 1) || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */ && ((insn & 3) == 0 || (insn & 3) == 3)) || (insn & (0x3f << 26)) == 12u << 26 /* addic */); } // Return the value to use for a branch relocation. template typename Target_powerpc::Address Target_powerpc::symval_for_branch( const Symbol_table* symtab, Address value, const Sized_symbol* gsym, Powerpc_relobj* object, unsigned int *dest_shndx) { if (size == 32 || this->abiversion() >= 2) gold_unreachable(); *dest_shndx = 0; // If the symbol is defined in an opd section, ie. is a function // descriptor, use the function descriptor code entry address Powerpc_relobj* symobj = object; if (gsym != NULL && gsym->source() != Symbol::FROM_OBJECT) return value; if (gsym != NULL) symobj = static_cast*>(gsym->object()); unsigned int shndx = symobj->opd_shndx(); if (shndx == 0) return value; Address opd_addr = symobj->get_output_section_offset(shndx); if (opd_addr == invalid_address) return value; opd_addr += symobj->output_section_address(shndx); if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx)) { Address sec_off; *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off); if (symtab->is_section_folded(symobj, *dest_shndx)) { Section_id folded = symtab->icf()->get_folded_section(symobj, *dest_shndx); symobj = static_cast*>(folded.first); *dest_shndx = folded.second; } Address sec_addr = symobj->get_output_section_offset(*dest_shndx); gold_assert(sec_addr != invalid_address); sec_addr += symobj->output_section(*dest_shndx)->address(); value = sec_addr + sec_off; } return value; } // Perform a relocation. template inline bool Target_powerpc::Relocate::relocate( const Relocate_info* relinfo, Target_powerpc* target, Output_section* os, size_t relnum, const elfcpp::Rela& rela, unsigned int r_type, const Sized_symbol* gsym, const Symbol_value* psymval, unsigned char* view, Address address, section_size_type view_size) { if (view == NULL) return true; switch (this->maybe_skip_tls_get_addr_call(r_type, gsym)) { case Track_tls::NOT_EXPECTED: gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("__tls_get_addr call lacks marker reloc")); break; case Track_tls::EXPECTED: // We have already complained. break; case Track_tls::SKIP: return true; case Track_tls::NORMAL: break; } typedef Powerpc_relocate_functions Reloc; typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn; Powerpc_relobj* const object = static_cast*>(relinfo->object); Address value = 0; bool has_stub_value = false; unsigned int r_sym = elfcpp::elf_r_sym(rela.get_r_info()); if ((gsym != NULL ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target)) : object->local_has_plt_offset(r_sym)) && (!psymval->is_ifunc_symbol() || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false))) { if (size == 64 && gsym != NULL && target->abiversion() >= 2 && !parameters->options().output_is_position_independent() && !is_branch_reloc(r_type)) { unsigned int off = target->glink_section()->find_global_entry(gsym); gold_assert(off != (unsigned int)-1); value = target->glink_section()->global_entry_address() + off; } else { Stub_table* stub_table = object->stub_table(relinfo->data_shndx); if (stub_table == NULL) { // This is a ref from a data section to an ifunc symbol. if (target->stub_tables().size() != 0) stub_table = target->stub_tables()[0]; } gold_assert(stub_table != NULL); Address off; if (gsym != NULL) off = stub_table->find_plt_call_entry(object, gsym, r_type, rela.get_r_addend()); else off = stub_table->find_plt_call_entry(object, r_sym, r_type, rela.get_r_addend()); gold_assert(off != invalid_address); value = stub_table->stub_address() + off; } has_stub_value = true; } if (r_type == elfcpp::R_POWERPC_GOT16 || r_type == elfcpp::R_POWERPC_GOT16_LO || r_type == elfcpp::R_POWERPC_GOT16_HI || r_type == elfcpp::R_POWERPC_GOT16_HA || r_type == elfcpp::R_PPC64_GOT16_DS || r_type == elfcpp::R_PPC64_GOT16_LO_DS) { if (gsym != NULL) { gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD)); value = gsym->got_offset(GOT_TYPE_STANDARD); } else { unsigned int r_sym = elfcpp::elf_r_sym(rela.get_r_info()); gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD)); value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD); } value -= target->got_section()->got_base_offset(object); } else if (r_type == elfcpp::R_PPC64_TOC) { value = (target->got_section()->output_section()->address() + object->toc_base_offset()); } else if (gsym != NULL && (r_type == elfcpp::R_POWERPC_REL24 || r_type == elfcpp::R_PPC_PLTREL24) && has_stub_value) { if (size == 64) { typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; Valtype* wv = reinterpret_cast(view); bool can_plt_call = false; if (rela.get_r_offset() + 8 <= view_size) { Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv); Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1); if ((insn & 1) != 0 && (insn2 == nop || insn2 == cror_15_15_15 || insn2 == cror_31_31_31)) { elfcpp::Swap<32, big_endian>:: writeval(wv + 1, ld_2_1 + target->stk_toc()); can_plt_call = true; } } if (!can_plt_call) { // If we don't have a branch and link followed by a nop, // we can't go via the plt because there is no place to // put a toc restoring instruction. // Unless we know we won't be returning. if (strcmp(gsym->name(), "__libc_start_main") == 0) can_plt_call = true; } if (!can_plt_call) { // g++ as of 20130507 emits self-calls without a // following nop. This is arguably wrong since we have // conflicting information. On the one hand a global // symbol and on the other a local call sequence, but // don't error for this special case. // It isn't possible to cheaply verify we have exactly // such a call. Allow all calls to the same section. bool ok = false; Address code = value; if (gsym->source() == Symbol::FROM_OBJECT && gsym->object() == object) { unsigned int dest_shndx = 0; if (target->abiversion() < 2) { Address addend = rela.get_r_addend(); Address opdent = psymval->value(object, addend); code = target->symval_for_branch(relinfo->symtab, opdent, gsym, object, &dest_shndx); } bool is_ordinary; if (dest_shndx == 0) dest_shndx = gsym->shndx(&is_ordinary); ok = dest_shndx == relinfo->data_shndx; } if (!ok) { gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("call lacks nop, can't restore toc; " "recompile with -fPIC")); value = code; } } } } else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA) { // First instruction of a global dynamic sequence, arg setup insn. const bool final = gsym == NULL || gsym->final_value_is_known(); const tls::Tls_optimization tls_type = target->optimize_tls_gd(final); enum Got_type got_type = GOT_TYPE_STANDARD; if (tls_type == tls::TLSOPT_NONE) got_type = GOT_TYPE_TLSGD; else if (tls_type == tls::TLSOPT_TO_IE) got_type = GOT_TYPE_TPREL; if (got_type != GOT_TYPE_STANDARD) { if (gsym != NULL) { gold_assert(gsym->has_got_offset(got_type)); value = gsym->got_offset(got_type); } else { unsigned int r_sym = elfcpp::elf_r_sym(rela.get_r_info()); gold_assert(object->local_has_got_offset(r_sym, got_type)); value = object->local_got_offset(r_sym, got_type); } value -= target->got_section()->got_base_offset(object); } if (tls_type == tls::TLSOPT_TO_IE) { if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO) { Insn* iview = reinterpret_cast(view - 2 * big_endian); Insn insn = elfcpp::Swap<32, big_endian>::readval(iview); insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi if (size == 32) insn |= 32 << 26; // lwz else insn |= 58 << 26; // ld elfcpp::Swap<32, big_endian>::writeval(iview, insn); } r_type += (elfcpp::R_POWERPC_GOT_TPREL16 - elfcpp::R_POWERPC_GOT_TLSGD16); } else if (tls_type == tls::TLSOPT_TO_LE) { if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO) { Insn* iview = reinterpret_cast(view - 2 * big_endian); Insn insn = addis_3_13; if (size == 32) insn = addis_3_2; elfcpp::Swap<32, big_endian>::writeval(iview, insn); r_type = elfcpp::R_POWERPC_TPREL16_HA; value = psymval->value(object, rela.get_r_addend()); } else { Insn* iview = reinterpret_cast(view - 2 * big_endian); Insn insn = nop; elfcpp::Swap<32, big_endian>::writeval(iview, insn); r_type = elfcpp::R_POWERPC_NONE; } } } else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA) { // First instruction of a local dynamic sequence, arg setup insn. const tls::Tls_optimization tls_type = target->optimize_tls_ld(); if (tls_type == tls::TLSOPT_NONE) { value = target->tlsld_got_offset(); value -= target->got_section()->got_base_offset(object); } else { gold_assert(tls_type == tls::TLSOPT_TO_LE); if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO) { Insn* iview = reinterpret_cast(view - 2 * big_endian); Insn insn = addis_3_13; if (size == 32) insn = addis_3_2; elfcpp::Swap<32, big_endian>::writeval(iview, insn); r_type = elfcpp::R_POWERPC_TPREL16_HA; value = dtp_offset; } else { Insn* iview = reinterpret_cast(view - 2 * big_endian); Insn insn = nop; elfcpp::Swap<32, big_endian>::writeval(iview, insn); r_type = elfcpp::R_POWERPC_NONE; } } } else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA) { // Accesses relative to a local dynamic sequence address, // no optimisation here. if (gsym != NULL) { gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL)); value = gsym->got_offset(GOT_TYPE_DTPREL); } else { unsigned int r_sym = elfcpp::elf_r_sym(rela.get_r_info()); gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL)); value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL); } value -= target->got_section()->got_base_offset(object); } else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA) { // First instruction of initial exec sequence. const bool final = gsym == NULL || gsym->final_value_is_known(); const tls::Tls_optimization tls_type = target->optimize_tls_ie(final); if (tls_type == tls::TLSOPT_NONE) { if (gsym != NULL) { gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL)); value = gsym->got_offset(GOT_TYPE_TPREL); } else { unsigned int r_sym = elfcpp::elf_r_sym(rela.get_r_info()); gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL)); value = object->local_got_offset(r_sym, GOT_TYPE_TPREL); } value -= target->got_section()->got_base_offset(object); } else { gold_assert(tls_type == tls::TLSOPT_TO_LE); if (r_type == elfcpp::R_POWERPC_GOT_TPREL16 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO) { Insn* iview = reinterpret_cast(view - 2 * big_endian); Insn insn = elfcpp::Swap<32, big_endian>::readval(iview); insn &= (1 << 26) - (1 << 21); // extract rt from ld if (size == 32) insn |= addis_0_2; else insn |= addis_0_13; elfcpp::Swap<32, big_endian>::writeval(iview, insn); r_type = elfcpp::R_POWERPC_TPREL16_HA; value = psymval->value(object, rela.get_r_addend()); } else { Insn* iview = reinterpret_cast(view - 2 * big_endian); Insn insn = nop; elfcpp::Swap<32, big_endian>::writeval(iview, insn); r_type = elfcpp::R_POWERPC_NONE; } } } else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD) || (size == 32 && r_type == elfcpp::R_PPC_TLSGD)) { // Second instruction of a global dynamic sequence, // the __tls_get_addr call this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset()); const bool final = gsym == NULL || gsym->final_value_is_known(); const tls::Tls_optimization tls_type = target->optimize_tls_gd(final); if (tls_type != tls::TLSOPT_NONE) { if (tls_type == tls::TLSOPT_TO_IE) { Insn* iview = reinterpret_cast(view); Insn insn = add_3_3_13; if (size == 32) insn = add_3_3_2; elfcpp::Swap<32, big_endian>::writeval(iview, insn); r_type = elfcpp::R_POWERPC_NONE; } else { Insn* iview = reinterpret_cast(view); Insn insn = addi_3_3; elfcpp::Swap<32, big_endian>::writeval(iview, insn); r_type = elfcpp::R_POWERPC_TPREL16_LO; view += 2 * big_endian; value = psymval->value(object, rela.get_r_addend()); } this->skip_next_tls_get_addr_call(); } } else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD) || (size == 32 && r_type == elfcpp::R_PPC_TLSLD)) { // Second instruction of a local dynamic sequence, // the __tls_get_addr call this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset()); const tls::Tls_optimization tls_type = target->optimize_tls_ld(); if (tls_type == tls::TLSOPT_TO_LE) { Insn* iview = reinterpret_cast(view); Insn insn = addi_3_3; elfcpp::Swap<32, big_endian>::writeval(iview, insn); this->skip_next_tls_get_addr_call(); r_type = elfcpp::R_POWERPC_TPREL16_LO; view += 2 * big_endian; value = dtp_offset; } } else if (r_type == elfcpp::R_POWERPC_TLS) { // Second instruction of an initial exec sequence const bool final = gsym == NULL || gsym->final_value_is_known(); const tls::Tls_optimization tls_type = target->optimize_tls_ie(final); if (tls_type == tls::TLSOPT_TO_LE) { Insn* iview = reinterpret_cast(view); Insn insn = elfcpp::Swap<32, big_endian>::readval(iview); unsigned int reg = size == 32 ? 2 : 13; insn = at_tls_transform(insn, reg); gold_assert(insn != 0); elfcpp::Swap<32, big_endian>::writeval(iview, insn); r_type = elfcpp::R_POWERPC_TPREL16_LO; view += 2 * big_endian; value = psymval->value(object, rela.get_r_addend()); } } else if (!has_stub_value) { Address addend = 0; unsigned int dest_shndx; if (r_type != elfcpp::R_PPC_PLTREL24) addend = rela.get_r_addend(); value = psymval->value(object, addend); if (size == 64 && is_branch_reloc(r_type)) { if (target->abiversion() >= 2) { if (gsym != NULL) value += object->ppc64_local_entry_offset(gsym); else value += object->ppc64_local_entry_offset(r_sym); } else value = target->symval_for_branch(relinfo->symtab, value, gsym, object, &dest_shndx); } unsigned long max_branch_offset = max_branch_delta(r_type); if (max_branch_offset != 0 && value - address + max_branch_offset >= 2 * max_branch_offset) { Stub_table* stub_table = object->stub_table(relinfo->data_shndx); if (stub_table != NULL) { Address off = stub_table->find_long_branch_entry(object, value); if (off != invalid_address) { value = (stub_table->stub_address() + stub_table->plt_size() + off); has_stub_value = true; } } } } switch (r_type) { case elfcpp::R_PPC64_REL64: case elfcpp::R_POWERPC_REL32: case elfcpp::R_POWERPC_REL24: case elfcpp::R_PPC_PLTREL24: case elfcpp::R_PPC_LOCAL24PC: case elfcpp::R_POWERPC_REL16: case elfcpp::R_POWERPC_REL16_LO: case elfcpp::R_POWERPC_REL16_HI: case elfcpp::R_POWERPC_REL16_HA: case elfcpp::R_POWERPC_REL14: case elfcpp::R_POWERPC_REL14_BRTAKEN: case elfcpp::R_POWERPC_REL14_BRNTAKEN: value -= address; break; case elfcpp::R_PPC64_TOC16: case elfcpp::R_PPC64_TOC16_LO: case elfcpp::R_PPC64_TOC16_HI: case elfcpp::R_PPC64_TOC16_HA: case elfcpp::R_PPC64_TOC16_DS: case elfcpp::R_PPC64_TOC16_LO_DS: // Subtract the TOC base address. value -= (target->got_section()->output_section()->address() + object->toc_base_offset()); break; case elfcpp::R_POWERPC_SECTOFF: case elfcpp::R_POWERPC_SECTOFF_LO: case elfcpp::R_POWERPC_SECTOFF_HI: case elfcpp::R_POWERPC_SECTOFF_HA: case elfcpp::R_PPC64_SECTOFF_DS: case elfcpp::R_PPC64_SECTOFF_LO_DS: if (os != NULL) value -= os->address(); break; case elfcpp::R_PPC64_TPREL16_DS: case elfcpp::R_PPC64_TPREL16_LO_DS: case elfcpp::R_PPC64_TPREL16_HIGH: case elfcpp::R_PPC64_TPREL16_HIGHA: if (size != 64) // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI break; case elfcpp::R_POWERPC_TPREL16: case elfcpp::R_POWERPC_TPREL16_LO: case elfcpp::R_POWERPC_TPREL16_HI: case elfcpp::R_POWERPC_TPREL16_HA: case elfcpp::R_POWERPC_TPREL: case elfcpp::R_PPC64_TPREL16_HIGHER: case elfcpp::R_PPC64_TPREL16_HIGHERA: case elfcpp::R_PPC64_TPREL16_HIGHEST: case elfcpp::R_PPC64_TPREL16_HIGHESTA: // tls symbol values are relative to tls_segment()->vaddr() value -= tp_offset; break; case elfcpp::R_PPC64_DTPREL16_DS: case elfcpp::R_PPC64_DTPREL16_LO_DS: case elfcpp::R_PPC64_DTPREL16_HIGHER: case elfcpp::R_PPC64_DTPREL16_HIGHERA: case elfcpp::R_PPC64_DTPREL16_HIGHEST: case elfcpp::R_PPC64_DTPREL16_HIGHESTA: if (size != 64) // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16 break; case elfcpp::R_POWERPC_DTPREL16: case elfcpp::R_POWERPC_DTPREL16_LO: case elfcpp::R_POWERPC_DTPREL16_HI: case elfcpp::R_POWERPC_DTPREL16_HA: case elfcpp::R_POWERPC_DTPREL: case elfcpp::R_PPC64_DTPREL16_HIGH: case elfcpp::R_PPC64_DTPREL16_HIGHA: // tls symbol values are relative to tls_segment()->vaddr() value -= dtp_offset; break; case elfcpp::R_PPC64_ADDR64_LOCAL: if (gsym != NULL) value += object->ppc64_local_entry_offset(gsym); else value += object->ppc64_local_entry_offset(r_sym); break; default: break; } Insn branch_bit = 0; switch (r_type) { case elfcpp::R_POWERPC_ADDR14_BRTAKEN: case elfcpp::R_POWERPC_REL14_BRTAKEN: branch_bit = 1 << 21; case elfcpp::R_POWERPC_ADDR14_BRNTAKEN: case elfcpp::R_POWERPC_REL14_BRNTAKEN: { Insn* iview = reinterpret_cast(view); Insn insn = elfcpp::Swap<32, big_endian>::readval(iview); insn &= ~(1 << 21); insn |= branch_bit; if (this->is_isa_v2) { // Set 'a' bit. This is 0b00010 in BO field for branch // on CR(BI) insns (BO == 001at or 011at), and 0b01000 // for branch on CTR insns (BO == 1a00t or 1a01t). if ((insn & (0x14 << 21)) == (0x04 << 21)) insn |= 0x02 << 21; else if ((insn & (0x14 << 21)) == (0x10 << 21)) insn |= 0x08 << 21; else break; } else { // Invert 'y' bit if not the default. if (static_cast(value) < 0) insn ^= 1 << 21; } elfcpp::Swap<32, big_endian>::writeval(iview, insn); } break; default: break; } if (size == 64) { // Multi-instruction sequences that access the TOC can be // optimized, eg. addis ra,r2,0; addi rb,ra,x; // to nop; addi rb,r2,x; switch (r_type) { default: break; case elfcpp::R_POWERPC_GOT_TLSLD16_HA: case elfcpp::R_POWERPC_GOT_TLSGD16_HA: case elfcpp::R_POWERPC_GOT_TPREL16_HA: case elfcpp::R_POWERPC_GOT_DTPREL16_HA: case elfcpp::R_POWERPC_GOT16_HA: case elfcpp::R_PPC64_TOC16_HA: if (parameters->options().toc_optimize()) { Insn* iview = reinterpret_cast(view - 2 * big_endian); Insn insn = elfcpp::Swap<32, big_endian>::readval(iview); if ((insn & ((0x3f << 26) | 0x1f << 16)) != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */) gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("toc optimization is not supported " "for %#08x instruction"), insn); else if (value + 0x8000 < 0x10000) { elfcpp::Swap<32, big_endian>::writeval(iview, nop); return true; } } break; case elfcpp::R_POWERPC_GOT_TLSLD16_LO: case elfcpp::R_POWERPC_GOT_TLSGD16_LO: case elfcpp::R_POWERPC_GOT_TPREL16_LO: case elfcpp::R_POWERPC_GOT_DTPREL16_LO: case elfcpp::R_POWERPC_GOT16_LO: case elfcpp::R_PPC64_GOT16_LO_DS: case elfcpp::R_PPC64_TOC16_LO: case elfcpp::R_PPC64_TOC16_LO_DS: if (parameters->options().toc_optimize()) { Insn* iview = reinterpret_cast(view - 2 * big_endian); Insn insn = elfcpp::Swap<32, big_endian>::readval(iview); if (!ok_lo_toc_insn(insn)) gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("toc optimization is not supported " "for %#08x instruction"), insn); else if (value + 0x8000 < 0x10000) { if ((insn & (0x3f << 26)) == 12u << 26 /* addic */) { // Transform addic to addi when we change reg. insn &= ~((0x3f << 26) | (0x1f << 16)); insn |= (14u << 26) | (2 << 16); } else { insn &= ~(0x1f << 16); insn |= 2 << 16; } elfcpp::Swap<32, big_endian>::writeval(iview, insn); } } break; } } typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE; elfcpp::Shdr shdr(relinfo->data_shdr); switch (r_type) { case elfcpp::R_POWERPC_ADDR32: case elfcpp::R_POWERPC_UADDR32: if (size == 64) overflow = Reloc::CHECK_BITFIELD; break; case elfcpp::R_POWERPC_REL32: if (size == 64) overflow = Reloc::CHECK_SIGNED; break; case elfcpp::R_POWERPC_UADDR16: overflow = Reloc::CHECK_BITFIELD; break; case elfcpp::R_POWERPC_ADDR16: // We really should have three separate relocations, // one for 16-bit data, one for insns with 16-bit signed fields, // and one for insns with 16-bit unsigned fields. overflow = Reloc::CHECK_BITFIELD; if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0) overflow = Reloc::CHECK_LOW_INSN; break; case elfcpp::R_POWERPC_ADDR16_HI: case elfcpp::R_POWERPC_ADDR16_HA: case elfcpp::R_POWERPC_GOT16_HI: case elfcpp::R_POWERPC_GOT16_HA: case elfcpp::R_POWERPC_PLT16_HI: case elfcpp::R_POWERPC_PLT16_HA: case elfcpp::R_POWERPC_SECTOFF_HI: case elfcpp::R_POWERPC_SECTOFF_HA: case elfcpp::R_PPC64_TOC16_HI: case elfcpp::R_PPC64_TOC16_HA: case elfcpp::R_PPC64_PLTGOT16_HI: case elfcpp::R_PPC64_PLTGOT16_HA: case elfcpp::R_POWERPC_TPREL16_HI: case elfcpp::R_POWERPC_TPREL16_HA: case elfcpp::R_POWERPC_DTPREL16_HI: case elfcpp::R_POWERPC_DTPREL16_HA: case elfcpp::R_POWERPC_GOT_TLSGD16_HI: case elfcpp::R_POWERPC_GOT_TLSGD16_HA: case elfcpp::R_POWERPC_GOT_TLSLD16_HI: case elfcpp::R_POWERPC_GOT_TLSLD16_HA: case elfcpp::R_POWERPC_GOT_TPREL16_HI: case elfcpp::R_POWERPC_GOT_TPREL16_HA: case elfcpp::R_POWERPC_GOT_DTPREL16_HI: case elfcpp::R_POWERPC_GOT_DTPREL16_HA: case elfcpp::R_POWERPC_REL16_HI: case elfcpp::R_POWERPC_REL16_HA: if (size != 32) overflow = Reloc::CHECK_HIGH_INSN; break; case elfcpp::R_POWERPC_REL16: case elfcpp::R_PPC64_TOC16: case elfcpp::R_POWERPC_GOT16: case elfcpp::R_POWERPC_SECTOFF: case elfcpp::R_POWERPC_TPREL16: case elfcpp::R_POWERPC_DTPREL16: case elfcpp::R_POWERPC_GOT_TLSGD16: case elfcpp::R_POWERPC_GOT_TLSLD16: case elfcpp::R_POWERPC_GOT_TPREL16: case elfcpp::R_POWERPC_GOT_DTPREL16: overflow = Reloc::CHECK_LOW_INSN; break; case elfcpp::R_POWERPC_ADDR24: case elfcpp::R_POWERPC_ADDR14: case elfcpp::R_POWERPC_ADDR14_BRTAKEN: case elfcpp::R_POWERPC_ADDR14_BRNTAKEN: case elfcpp::R_PPC64_ADDR16_DS: case elfcpp::R_POWERPC_REL24: case elfcpp::R_PPC_PLTREL24: case elfcpp::R_PPC_LOCAL24PC: case elfcpp::R_PPC64_TPREL16_DS: case elfcpp::R_PPC64_DTPREL16_DS: case elfcpp::R_PPC64_TOC16_DS: case elfcpp::R_PPC64_GOT16_DS: case elfcpp::R_PPC64_SECTOFF_DS: case elfcpp::R_POWERPC_REL14: case elfcpp::R_POWERPC_REL14_BRTAKEN: case elfcpp::R_POWERPC_REL14_BRNTAKEN: overflow = Reloc::CHECK_SIGNED; break; } if (overflow == Reloc::CHECK_LOW_INSN || overflow == Reloc::CHECK_HIGH_INSN) { Insn* iview = reinterpret_cast(view - 2 * big_endian); Insn insn = elfcpp::Swap<32, big_endian>::readval(iview); overflow = Reloc::CHECK_SIGNED; if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */) overflow = Reloc::CHECK_BITFIELD; else if (overflow == Reloc::CHECK_LOW_INSN ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */ || (insn & (0x3f << 26)) == 24u << 26 /* ori */ || (insn & (0x3f << 26)) == 26u << 26 /* xori */) : ((insn & (0x3f << 26)) == 29u << 26 /* andis */ || (insn & (0x3f << 26)) == 25u << 26 /* oris */ || (insn & (0x3f << 26)) == 27u << 26 /* xoris */)) overflow = Reloc::CHECK_UNSIGNED; } typename Powerpc_relocate_functions::Status status = Powerpc_relocate_functions::STATUS_OK; switch (r_type) { case elfcpp::R_POWERPC_NONE: case elfcpp::R_POWERPC_TLS: case elfcpp::R_POWERPC_GNU_VTINHERIT: case elfcpp::R_POWERPC_GNU_VTENTRY: break; case elfcpp::R_PPC64_ADDR64: case elfcpp::R_PPC64_REL64: case elfcpp::R_PPC64_TOC: case elfcpp::R_PPC64_ADDR64_LOCAL: Reloc::addr64(view, value); break; case elfcpp::R_POWERPC_TPREL: case elfcpp::R_POWERPC_DTPREL: if (size == 64) Reloc::addr64(view, value); else status = Reloc::addr32(view, value, overflow); break; case elfcpp::R_PPC64_UADDR64: Reloc::addr64_u(view, value); break; case elfcpp::R_POWERPC_ADDR32: status = Reloc::addr32(view, value, overflow); break; case elfcpp::R_POWERPC_REL32: case elfcpp::R_POWERPC_UADDR32: status = Reloc::addr32_u(view, value, overflow); break; case elfcpp::R_POWERPC_ADDR24: case elfcpp::R_POWERPC_REL24: case elfcpp::R_PPC_PLTREL24: case elfcpp::R_PPC_LOCAL24PC: status = Reloc::addr24(view, value, overflow); break; case elfcpp::R_POWERPC_GOT_DTPREL16: case elfcpp::R_POWERPC_GOT_DTPREL16_LO: if (size == 64) { status = Reloc::addr16_ds(view, value, overflow); break; } case elfcpp::R_POWERPC_ADDR16: case elfcpp::R_POWERPC_REL16: case elfcpp::R_PPC64_TOC16: case elfcpp::R_POWERPC_GOT16: case elfcpp::R_POWERPC_SECTOFF: case elfcpp::R_POWERPC_TPREL16: case elfcpp::R_POWERPC_DTPREL16: case elfcpp::R_POWERPC_GOT_TLSGD16: case elfcpp::R_POWERPC_GOT_TLSLD16: case elfcpp::R_POWERPC_GOT_TPREL16: case elfcpp::R_POWERPC_ADDR16_LO: case elfcpp::R_POWERPC_REL16_LO: case elfcpp::R_PPC64_TOC16_LO: case elfcpp::R_POWERPC_GOT16_LO: case elfcpp::R_POWERPC_SECTOFF_LO: case elfcpp::R_POWERPC_TPREL16_LO: case elfcpp::R_POWERPC_DTPREL16_LO: case elfcpp::R_POWERPC_GOT_TLSGD16_LO: case elfcpp::R_POWERPC_GOT_TLSLD16_LO: case elfcpp::R_POWERPC_GOT_TPREL16_LO: status = Reloc::addr16(view, value, overflow); break; case elfcpp::R_POWERPC_UADDR16: status = Reloc::addr16_u(view, value, overflow); break; case elfcpp::R_PPC64_ADDR16_HIGH: case elfcpp::R_PPC64_TPREL16_HIGH: case elfcpp::R_PPC64_DTPREL16_HIGH: if (size == 32) // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA goto unsupp; case elfcpp::R_POWERPC_ADDR16_HI: case elfcpp::R_POWERPC_REL16_HI: case elfcpp::R_PPC64_TOC16_HI: case elfcpp::R_POWERPC_GOT16_HI: case elfcpp::R_POWERPC_SECTOFF_HI: case elfcpp::R_POWERPC_TPREL16_HI: case elfcpp::R_POWERPC_DTPREL16_HI: case elfcpp::R_POWERPC_GOT_TLSGD16_HI: case elfcpp::R_POWERPC_GOT_TLSLD16_HI: case elfcpp::R_POWERPC_GOT_TPREL16_HI: case elfcpp::R_POWERPC_GOT_DTPREL16_HI: Reloc::addr16_hi(view, value); break; case elfcpp::R_PPC64_ADDR16_HIGHA: case elfcpp::R_PPC64_TPREL16_HIGHA: case elfcpp::R_PPC64_DTPREL16_HIGHA: if (size == 32) // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD goto unsupp; case elfcpp::R_POWERPC_ADDR16_HA: case elfcpp::R_POWERPC_REL16_HA: case elfcpp::R_PPC64_TOC16_HA: case elfcpp::R_POWERPC_GOT16_HA: case elfcpp::R_POWERPC_SECTOFF_HA: case elfcpp::R_POWERPC_TPREL16_HA: case elfcpp::R_POWERPC_DTPREL16_HA: case elfcpp::R_POWERPC_GOT_TLSGD16_HA: case elfcpp::R_POWERPC_GOT_TLSLD16_HA: case elfcpp::R_POWERPC_GOT_TPREL16_HA: case elfcpp::R_POWERPC_GOT_DTPREL16_HA: Reloc::addr16_ha(view, value); break; case elfcpp::R_PPC64_DTPREL16_HIGHER: if (size == 32) // R_PPC_EMB_NADDR16_LO goto unsupp; case elfcpp::R_PPC64_ADDR16_HIGHER: case elfcpp::R_PPC64_TPREL16_HIGHER: Reloc::addr16_hi2(view, value); break; case elfcpp::R_PPC64_DTPREL16_HIGHERA: if (size == 32) // R_PPC_EMB_NADDR16_HI goto unsupp; case elfcpp::R_PPC64_ADDR16_HIGHERA: case elfcpp::R_PPC64_TPREL16_HIGHERA: Reloc::addr16_ha2(view, value); break; case elfcpp::R_PPC64_DTPREL16_HIGHEST: if (size == 32) // R_PPC_EMB_NADDR16_HA goto unsupp; case elfcpp::R_PPC64_ADDR16_HIGHEST: case elfcpp::R_PPC64_TPREL16_HIGHEST: Reloc::addr16_hi3(view, value); break; case elfcpp::R_PPC64_DTPREL16_HIGHESTA: if (size == 32) // R_PPC_EMB_SDAI16 goto unsupp; case elfcpp::R_PPC64_ADDR16_HIGHESTA: case elfcpp::R_PPC64_TPREL16_HIGHESTA: Reloc::addr16_ha3(view, value); break; case elfcpp::R_PPC64_DTPREL16_DS: case elfcpp::R_PPC64_DTPREL16_LO_DS: if (size == 32) // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16 goto unsupp; case elfcpp::R_PPC64_TPREL16_DS: case elfcpp::R_PPC64_TPREL16_LO_DS: if (size == 32) // R_PPC_TLSGD, R_PPC_TLSLD break; case elfcpp::R_PPC64_ADDR16_DS: case elfcpp::R_PPC64_ADDR16_LO_DS: case elfcpp::R_PPC64_TOC16_DS: case elfcpp::R_PPC64_TOC16_LO_DS: case elfcpp::R_PPC64_GOT16_DS: case elfcpp::R_PPC64_GOT16_LO_DS: case elfcpp::R_PPC64_SECTOFF_DS: case elfcpp::R_PPC64_SECTOFF_LO_DS: status = Reloc::addr16_ds(view, value, overflow); break; case elfcpp::R_POWERPC_ADDR14: case elfcpp::R_POWERPC_ADDR14_BRTAKEN: case elfcpp::R_POWERPC_ADDR14_BRNTAKEN: case elfcpp::R_POWERPC_REL14: case elfcpp::R_POWERPC_REL14_BRTAKEN: case elfcpp::R_POWERPC_REL14_BRNTAKEN: status = Reloc::addr14(view, value, overflow); break; case elfcpp::R_POWERPC_COPY: case elfcpp::R_POWERPC_GLOB_DAT: case elfcpp::R_POWERPC_JMP_SLOT: case elfcpp::R_POWERPC_RELATIVE: case elfcpp::R_POWERPC_DTPMOD: case elfcpp::R_PPC64_JMP_IREL: case elfcpp::R_POWERPC_IRELATIVE: gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unexpected reloc %u in object file"), r_type); break; case elfcpp::R_PPC_EMB_SDA21: if (size == 32) goto unsupp; else { // R_PPC64_TOCSAVE. For the time being this can be ignored. } break; case elfcpp::R_PPC_EMB_SDA2I16: case elfcpp::R_PPC_EMB_SDA2REL: if (size == 32) goto unsupp; // R_PPC64_TLSGD, R_PPC64_TLSLD break; case elfcpp::R_POWERPC_PLT32: case elfcpp::R_POWERPC_PLTREL32: case elfcpp::R_POWERPC_PLT16_LO: case elfcpp::R_POWERPC_PLT16_HI: case elfcpp::R_POWERPC_PLT16_HA: case elfcpp::R_PPC_SDAREL16: case elfcpp::R_POWERPC_ADDR30: case elfcpp::R_PPC64_PLT64: case elfcpp::R_PPC64_PLTREL64: case elfcpp::R_PPC64_PLTGOT16: case elfcpp::R_PPC64_PLTGOT16_LO: case elfcpp::R_PPC64_PLTGOT16_HI: case elfcpp::R_PPC64_PLTGOT16_HA: case elfcpp::R_PPC64_PLT16_LO_DS: case elfcpp::R_PPC64_PLTGOT16_DS: case elfcpp::R_PPC64_PLTGOT16_LO_DS: case elfcpp::R_PPC_EMB_RELSDA: case elfcpp::R_PPC_TOC16: default: unsupp: gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported reloc %u"), r_type); break; } if (status != Powerpc_relocate_functions::STATUS_OK && (has_stub_value || !(gsym != NULL && gsym->is_weak_undefined() && is_branch_reloc(r_type)))) { gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("relocation overflow")); if (has_stub_value) gold_info(_("try relinking with a smaller --stub-group-size")); } return true; } // Relocate section data. template void Target_powerpc::relocate_section( const Relocate_info* relinfo, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, unsigned char* view, Address address, section_size_type view_size, const Reloc_symbol_changes* reloc_symbol_changes) { typedef Target_powerpc Powerpc; typedef typename Target_powerpc::Relocate Powerpc_relocate; typedef typename Target_powerpc::Relocate_comdat_behavior Powerpc_comdat_behavior; gold_assert(sh_type == elfcpp::SHT_RELA); gold::relocate_section( relinfo, this, prelocs, reloc_count, output_section, needs_special_offset_handling, view, address, view_size, reloc_symbol_changes); } class Powerpc_scan_relocatable_reloc { public: // Return the strategy to use for a local symbol which is not a // section symbol, given the relocation type. inline Relocatable_relocs::Reloc_strategy local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym) { if (r_type == 0 && r_sym == 0) return Relocatable_relocs::RELOC_DISCARD; return Relocatable_relocs::RELOC_COPY; } // Return the strategy to use for a local symbol which is a section // symbol, given the relocation type. inline Relocatable_relocs::Reloc_strategy local_section_strategy(unsigned int, Relobj*) { return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA; } // Return the strategy to use for a global symbol, given the // relocation type, the object, and the symbol index. inline Relocatable_relocs::Reloc_strategy global_strategy(unsigned int r_type, Relobj*, unsigned int) { if (r_type == elfcpp::R_PPC_PLTREL24) return Relocatable_relocs::RELOC_SPECIAL; return Relocatable_relocs::RELOC_COPY; } }; // Scan the relocs during a relocatable link. template void Target_powerpc::scan_relocatable_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols, Relocatable_relocs* rr) { gold_assert(sh_type == elfcpp::SHT_RELA); gold::scan_relocatable_relocs( symtab, layout, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols, rr); } // Emit relocations for a section. // This is a modified version of the function by the same name in // target-reloc.h. Using relocate_special_relocatable for // R_PPC_PLTREL24 would require duplication of the entire body of the // loop, so we may as well duplicate the whole thing. template void Target_powerpc::relocate_relocs( const Relocate_info* relinfo, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, typename elfcpp::Elf_types::Elf_Off offset_in_output_section, const Relocatable_relocs* rr, unsigned char*, Address view_address, section_size_type, unsigned char* reloc_view, section_size_type reloc_view_size) { gold_assert(sh_type == elfcpp::SHT_RELA); typedef typename Reloc_types::Reloc Reltype; typedef typename Reloc_types::Reloc_write Reltype_write; const int reloc_size = Reloc_types::reloc_size; Powerpc_relobj* const object = static_cast*>(relinfo->object); const unsigned int local_count = object->local_symbol_count(); unsigned int got2_shndx = object->got2_shndx(); Address got2_addend = 0; if (got2_shndx != 0) { got2_addend = object->get_output_section_offset(got2_shndx); gold_assert(got2_addend != invalid_address); } unsigned char* pwrite = reloc_view; bool zap_next = false; for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size) { Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i); if (strategy == Relocatable_relocs::RELOC_DISCARD) continue; Reltype reloc(prelocs); Reltype_write reloc_write(pwrite); Address offset = reloc.get_r_offset(); typename elfcpp::Elf_types::Elf_WXword r_info = reloc.get_r_info(); unsigned int r_sym = elfcpp::elf_r_sym(r_info); unsigned int r_type = elfcpp::elf_r_type(r_info); const unsigned int orig_r_sym = r_sym; typename elfcpp::Elf_types::Elf_Swxword addend = reloc.get_r_addend(); const Symbol* gsym = NULL; if (zap_next) { // We could arrange to discard these and other relocs for // tls optimised sequences in the strategy methods, but for // now do as BFD ld does. r_type = elfcpp::R_POWERPC_NONE; zap_next = false; } // Get the new symbol index. if (r_sym < local_count) { switch (strategy) { case Relocatable_relocs::RELOC_COPY: case Relocatable_relocs::RELOC_SPECIAL: if (r_sym != 0) { r_sym = object->symtab_index(r_sym); gold_assert(r_sym != -1U); } break; case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA: { // We are adjusting a section symbol. We need to find // the symbol table index of the section symbol for // the output section corresponding to input section // in which this symbol is defined. gold_assert(r_sym < local_count); bool is_ordinary; unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary); gold_assert(is_ordinary); Output_section* os = object->output_section(shndx); gold_assert(os != NULL); gold_assert(os->needs_symtab_index()); r_sym = os->symtab_index(); } break; default: gold_unreachable(); } } else { gsym = object->global_symbol(r_sym); gold_assert(gsym != NULL); if (gsym->is_forwarder()) gsym = relinfo->symtab->resolve_forwards(gsym); gold_assert(gsym->has_symtab_index()); r_sym = gsym->symtab_index(); } // Get the new offset--the location in the output section where // this relocation should be applied. if (static_cast
(offset_in_output_section) != invalid_address) offset += offset_in_output_section; else { section_offset_type sot_offset = convert_types(offset); section_offset_type new_sot_offset = output_section->output_offset(object, relinfo->data_shndx, sot_offset); gold_assert(new_sot_offset != -1); offset = new_sot_offset; } // In an object file, r_offset is an offset within the section. // In an executable or dynamic object, generated by // --emit-relocs, r_offset is an absolute address. if (!parameters->options().relocatable()) { offset += view_address; if (static_cast
(offset_in_output_section) != invalid_address) offset -= offset_in_output_section; } // Handle the reloc addend based on the strategy. if (strategy == Relocatable_relocs::RELOC_COPY) ; else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA) { const Symbol_value* psymval = object->local_symbol(orig_r_sym); addend = psymval->value(object, addend); } else if (strategy == Relocatable_relocs::RELOC_SPECIAL) { if (addend >= 32768) addend += got2_addend; } else gold_unreachable(); if (!parameters->options().relocatable()) { if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA) { // First instruction of a global dynamic sequence, // arg setup insn. const bool final = gsym == NULL || gsym->final_value_is_known(); switch (this->optimize_tls_gd(final)) { case tls::TLSOPT_TO_IE: r_type += (elfcpp::R_POWERPC_GOT_TPREL16 - elfcpp::R_POWERPC_GOT_TLSGD16); break; case tls::TLSOPT_TO_LE: if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO) r_type = elfcpp::R_POWERPC_TPREL16_HA; else { r_type = elfcpp::R_POWERPC_NONE; offset -= 2 * big_endian; } break; default: break; } } else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA) { // First instruction of a local dynamic sequence, // arg setup insn. if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE) { if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO) { r_type = elfcpp::R_POWERPC_TPREL16_HA; const Output_section* os = relinfo->layout->tls_segment() ->first_section(); gold_assert(os != NULL); gold_assert(os->needs_symtab_index()); r_sym = os->symtab_index(); addend = dtp_offset; } else { r_type = elfcpp::R_POWERPC_NONE; offset -= 2 * big_endian; } } } else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA) { // First instruction of initial exec sequence. const bool final = gsym == NULL || gsym->final_value_is_known(); if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE) { if (r_type == elfcpp::R_POWERPC_GOT_TPREL16 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO) r_type = elfcpp::R_POWERPC_TPREL16_HA; else { r_type = elfcpp::R_POWERPC_NONE; offset -= 2 * big_endian; } } } else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD) || (size == 32 && r_type == elfcpp::R_PPC_TLSGD)) { // Second instruction of a global dynamic sequence, // the __tls_get_addr call const bool final = gsym == NULL || gsym->final_value_is_known(); switch (this->optimize_tls_gd(final)) { case tls::TLSOPT_TO_IE: r_type = elfcpp::R_POWERPC_NONE; zap_next = true; break; case tls::TLSOPT_TO_LE: r_type = elfcpp::R_POWERPC_TPREL16_LO; offset += 2 * big_endian; zap_next = true; break; default: break; } } else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD) || (size == 32 && r_type == elfcpp::R_PPC_TLSLD)) { // Second instruction of a local dynamic sequence, // the __tls_get_addr call if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE) { const Output_section* os = relinfo->layout->tls_segment() ->first_section(); gold_assert(os != NULL); gold_assert(os->needs_symtab_index()); r_sym = os->symtab_index(); addend = dtp_offset; r_type = elfcpp::R_POWERPC_TPREL16_LO; offset += 2 * big_endian; zap_next = true; } } else if (r_type == elfcpp::R_POWERPC_TLS) { // Second instruction of an initial exec sequence const bool final = gsym == NULL || gsym->final_value_is_known(); if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE) { r_type = elfcpp::R_POWERPC_TPREL16_LO; offset += 2 * big_endian; } } } reloc_write.put_r_offset(offset); reloc_write.put_r_info(elfcpp::elf_r_info(r_sym, r_type)); reloc_write.put_r_addend(addend); pwrite += reloc_size; } gold_assert(static_cast(pwrite - reloc_view) == reloc_view_size); } // Return the value to use for a dynamic symbol which requires special // treatment. This is how we support equality comparisons of function // pointers across shared library boundaries, as described in the // processor specific ABI supplement. template uint64_t Target_powerpc::do_dynsym_value(const Symbol* gsym) const { if (size == 32) { gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset()); for (typename Stub_tables::const_iterator p = this->stub_tables_.begin(); p != this->stub_tables_.end(); ++p) { Address off = (*p)->find_plt_call_entry(gsym); if (off != invalid_address) return (*p)->stub_address() + off; } } else if (this->abiversion() >= 2) { unsigned int off = this->glink_section()->find_global_entry(gsym); if (off != (unsigned int)-1) return this->glink_section()->global_entry_address() + off; } gold_unreachable(); } // Return the PLT address to use for a local symbol. template uint64_t Target_powerpc::do_plt_address_for_local( const Relobj* object, unsigned int symndx) const { if (size == 32) { const Sized_relobj* relobj = static_cast*>(object); for (typename Stub_tables::const_iterator p = this->stub_tables_.begin(); p != this->stub_tables_.end(); ++p) { Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(), symndx); if (off != invalid_address) return (*p)->stub_address() + off; } } gold_unreachable(); } // Return the PLT address to use for a global symbol. template uint64_t Target_powerpc::do_plt_address_for_global( const Symbol* gsym) const { if (size == 32) { for (typename Stub_tables::const_iterator p = this->stub_tables_.begin(); p != this->stub_tables_.end(); ++p) { Address off = (*p)->find_plt_call_entry(gsym); if (off != invalid_address) return (*p)->stub_address() + off; } } else if (this->abiversion() >= 2) { unsigned int off = this->glink_section()->find_global_entry(gsym); if (off != (unsigned int)-1) return this->glink_section()->global_entry_address() + off; } gold_unreachable(); } // Return the offset to use for the GOT_INDX'th got entry which is // for a local tls symbol specified by OBJECT, SYMNDX. template int64_t Target_powerpc::do_tls_offset_for_local( const Relobj* object, unsigned int symndx, unsigned int got_indx) const { const Powerpc_relobj* ppc_object = static_cast*>(object); if (ppc_object->local_symbol(symndx)->is_tls_symbol()) { for (Got_type got_type = GOT_TYPE_TLSGD; got_type <= GOT_TYPE_TPREL; got_type = Got_type(got_type + 1)) if (ppc_object->local_has_got_offset(symndx, got_type)) { unsigned int off = ppc_object->local_got_offset(symndx, got_type); if (got_type == GOT_TYPE_TLSGD) off += size / 8; if (off == got_indx * (size / 8)) { if (got_type == GOT_TYPE_TPREL) return -tp_offset; else return -dtp_offset; } } } gold_unreachable(); } // Return the offset to use for the GOT_INDX'th got entry which is // for global tls symbol GSYM. template int64_t Target_powerpc::do_tls_offset_for_global( Symbol* gsym, unsigned int got_indx) const { if (gsym->type() == elfcpp::STT_TLS) { for (Got_type got_type = GOT_TYPE_TLSGD; got_type <= GOT_TYPE_TPREL; got_type = Got_type(got_type + 1)) if (gsym->has_got_offset(got_type)) { unsigned int off = gsym->got_offset(got_type); if (got_type == GOT_TYPE_TLSGD) off += size / 8; if (off == got_indx * (size / 8)) { if (got_type == GOT_TYPE_TPREL) return -tp_offset; else return -dtp_offset; } } } gold_unreachable(); } // The selector for powerpc object files. template class Target_selector_powerpc : public Target_selector { public: Target_selector_powerpc() : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC, size, big_endian, (size == 64 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle") : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")), (size == 64 ? (big_endian ? "elf64ppc" : "elf64lppc") : (big_endian ? "elf32ppc" : "elf32lppc"))) { } virtual Target* do_instantiate_target() { return new Target_powerpc(); } }; Target_selector_powerpc<32, true> target_selector_ppc32; Target_selector_powerpc<32, false> target_selector_ppc32le; Target_selector_powerpc<64, true> target_selector_ppc64; Target_selector_powerpc<64, false> target_selector_ppc64le; // Instantiate these constants for -O0 template const int Output_data_glink::pltresolve_size; template const typename Output_data_glink::Address Output_data_glink::invalid_address; template const typename Stub_table::Address Stub_table::invalid_address; template const typename Target_powerpc::Address Target_powerpc::invalid_address; } // End anonymous namespace.