// powerpc.cc -- powerpc target support for gold. // Copyright 2008, 2009 Free Software Foundation, Inc. // Written by David S. Miller // and David Edelsohn // This file is part of gold. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #include "gold.h" #include "elfcpp.h" #include "parameters.h" #include "reloc.h" #include "powerpc.h" #include "object.h" #include "symtab.h" #include "layout.h" #include "output.h" #include "copy-relocs.h" #include "target.h" #include "target-reloc.h" #include "target-select.h" #include "tls.h" #include "errors.h" #include "gc.h" namespace { using namespace gold; template class Output_data_plt_powerpc; template class Target_powerpc : public Sized_target { public: typedef Output_data_reloc Reloc_section; Target_powerpc() : Sized_target(&powerpc_info), got_(NULL), got2_(NULL), toc_(NULL), plt_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY), dynbss_(NULL), got_mod_index_offset_(-1U) { } // Process the relocations to determine unreferenced sections for // garbage collection. void gc_process_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols); // Scan the relocations to look for symbol adjustments. void scan_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols); // Finalize the sections. void do_finalize_sections(Layout*, const Input_objects*, Symbol_table*); // Return the value to use for a dynamic which requires special // treatment. uint64_t do_dynsym_value(const Symbol*) const; // Relocate a section. void relocate_section(const Relocate_info*, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, unsigned char* view, typename elfcpp::Elf_types::Elf_Addr view_address, section_size_type view_size, const Reloc_symbol_changes*); // Scan the relocs during a relocatable link. void scan_relocatable_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols, Relocatable_relocs*); // Relocate a section during a relocatable link. void relocate_for_relocatable(const Relocate_info*, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, off_t offset_in_output_section, const Relocatable_relocs*, unsigned char* view, typename elfcpp::Elf_types::Elf_Addr view_address, section_size_type view_size, unsigned char* reloc_view, section_size_type reloc_view_size); // Return whether SYM is defined by the ABI. bool do_is_defined_by_abi(const Symbol* sym) const { return strcmp(sym->name(), "___tls_get_addr") == 0; } // Return the size of the GOT section. section_size_type got_size() { gold_assert(this->got_ != NULL); return this->got_->data_size(); } private: // The class which scans relocations. class Scan { public: Scan() : issued_non_pic_error_(false) { } inline void local(Symbol_table* symtab, Layout* layout, Target_powerpc* target, Sized_relobj* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela& reloc, unsigned int r_type, const elfcpp::Sym& lsym); inline void global(Symbol_table* symtab, Layout* layout, Target_powerpc* target, Sized_relobj* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela& reloc, unsigned int r_type, Symbol* gsym); private: static void unsupported_reloc_local(Sized_relobj*, unsigned int r_type); static void unsupported_reloc_global(Sized_relobj*, unsigned int r_type, Symbol*); static void generate_tls_call(Symbol_table* symtab, Layout* layout, Target_powerpc* target); void check_non_pic(Relobj*, unsigned int r_type); // Whether we have issued an error about a non-PIC compilation. bool issued_non_pic_error_; }; // The class which implements relocation. class Relocate { public: // Do a relocation. Return false if the caller should not issue // any warnings about this relocation. inline bool relocate(const Relocate_info*, Target_powerpc*, Output_section*, size_t relnum, const elfcpp::Rela&, unsigned int r_type, const Sized_symbol*, const Symbol_value*, unsigned char*, typename elfcpp::Elf_types::Elf_Addr, section_size_type); private: // Do a TLS relocation. inline void relocate_tls(const Relocate_info*, Target_powerpc* target, size_t relnum, const elfcpp::Rela&, unsigned int r_type, const Sized_symbol*, const Symbol_value*, unsigned char*, typename elfcpp::Elf_types::Elf_Addr, section_size_type); }; // A class which returns the size required for a relocation type, // used while scanning relocs during a relocatable link. class Relocatable_size_for_reloc { public: unsigned int get_size_for_reloc(unsigned int, Relobj*); }; // Get the GOT section, creating it if necessary. Output_data_got* got_section(Symbol_table*, Layout*); Output_data_space* got2_section() const { gold_assert (this->got2_ != NULL); return this->got2_; } // Get the TOC section. Output_data_space* toc_section() const { gold_assert (this->toc_ != NULL); return this->toc_; } // Create a PLT entry for a global symbol. void make_plt_entry(Symbol_table*, Layout*, Symbol*); // Create a GOT entry for the TLS module index. unsigned int got_mod_index_entry(Symbol_table* symtab, Layout* layout, Sized_relobj* object); // Get the PLT section. const Output_data_plt_powerpc* plt_section() const { gold_assert(this->plt_ != NULL); return this->plt_; } // Get the dynamic reloc section, creating it if necessary. Reloc_section* rela_dyn_section(Layout*); // Copy a relocation against a global symbol. void copy_reloc(Symbol_table* symtab, Layout* layout, Sized_relobj* object, unsigned int shndx, Output_section* output_section, Symbol* sym, const elfcpp::Rela& reloc) { this->copy_relocs_.copy_reloc(symtab, layout, symtab->get_sized_symbol(sym), object, shndx, output_section, reloc, this->rela_dyn_section(layout)); } // Information about this specific target which we pass to the // general Target structure. static Target::Target_info powerpc_info; // The types of GOT entries needed for this platform. enum Got_type { GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair }; // The GOT section. Output_data_got* got_; // The GOT2 section. Output_data_space* got2_; // The TOC section. Output_data_space* toc_; // The PLT section. Output_data_plt_powerpc* plt_; // The dynamic reloc section. Reloc_section* rela_dyn_; // Relocs saved to avoid a COPY reloc. Copy_relocs copy_relocs_; // Space for variables copied with a COPY reloc. Output_data_space* dynbss_; // Offset of the GOT entry for the TLS module index; unsigned int got_mod_index_offset_; }; template<> Target::Target_info Target_powerpc<32, true>::powerpc_info = { 32, // size true, // is_big_endian elfcpp::EM_PPC, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable '\0', // wrap_char "/usr/lib/ld.so.1", // dynamic_linker 0x10000000, // default_text_segment_address 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 4 * 1024, // common_pagesize (overridable by -z common-page-size) elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL // attributes_vendor }; template<> Target::Target_info Target_powerpc<32, false>::powerpc_info = { 32, // size false, // is_big_endian elfcpp::EM_PPC, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable '\0', // wrap_char "/usr/lib/ld.so.1", // dynamic_linker 0x10000000, // default_text_segment_address 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 4 * 1024, // common_pagesize (overridable by -z common-page-size) elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL // attributes_vendor }; template<> Target::Target_info Target_powerpc<64, true>::powerpc_info = { 64, // size true, // is_big_endian elfcpp::EM_PPC64, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable '\0', // wrap_char "/usr/lib/ld.so.1", // dynamic_linker 0x10000000, // default_text_segment_address 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 8 * 1024, // common_pagesize (overridable by -z common-page-size) elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL // attributes_vendor }; template<> Target::Target_info Target_powerpc<64, false>::powerpc_info = { 64, // size false, // is_big_endian elfcpp::EM_PPC64, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable '\0', // wrap_char "/usr/lib/ld.so.1", // dynamic_linker 0x10000000, // default_text_segment_address 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 8 * 1024, // common_pagesize (overridable by -z common-page-size) elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL // attributes_vendor }; template class Powerpc_relocate_functions { private: // Do a simple relocation with the addend in the relocation. template static inline void rela(unsigned char* view, unsigned int right_shift, elfcpp::Elf_Xword dst_mask, typename elfcpp::Swap::Valtype value, typename elfcpp::Swap::Valtype addend) { typedef typename elfcpp::Swap::Valtype Valtype; Valtype* wv = reinterpret_cast(view); Valtype val = elfcpp::Swap::readval(wv); Valtype reloc = ((value + addend) >> right_shift); val &= ~dst_mask; reloc &= dst_mask; elfcpp::Swap::writeval(wv, val | reloc); } // Do a simple relocation using a symbol value with the addend in // the relocation. template static inline void rela(unsigned char* view, unsigned int right_shift, elfcpp::Elf_Xword dst_mask, const Sized_relobj* object, const Symbol_value* psymval, typename elfcpp::Swap::Valtype addend) { typedef typename elfcpp::Swap::Valtype Valtype; Valtype* wv = reinterpret_cast(view); Valtype val = elfcpp::Swap::readval(wv); Valtype reloc = (psymval->value(object, addend) >> right_shift); val &= ~dst_mask; reloc &= dst_mask; elfcpp::Swap::writeval(wv, val | reloc); } // Do a simple relocation using a symbol value with the addend in // the relocation, unaligned. template static inline void rela_ua(unsigned char* view, unsigned int right_shift, elfcpp::Elf_Xword dst_mask, const Sized_relobj* object, const Symbol_value* psymval, typename elfcpp::Swap::Valtype addend) { typedef typename elfcpp::Swap_unaligned::Valtype Valtype; unsigned char* wv = view; Valtype val = elfcpp::Swap_unaligned::readval(wv); Valtype reloc = (psymval->value(object, addend) >> right_shift); val &= ~dst_mask; reloc &= dst_mask; elfcpp::Swap_unaligned::writeval(wv, val | reloc); } // Do a simple PC relative relocation with a Symbol_value with the // addend in the relocation. template static inline void pcrela(unsigned char* view, unsigned int right_shift, elfcpp::Elf_Xword dst_mask, const Sized_relobj* object, const Symbol_value* psymval, typename elfcpp::Swap::Valtype addend, typename elfcpp::Elf_types::Elf_Addr address) { typedef typename elfcpp::Swap::Valtype Valtype; Valtype* wv = reinterpret_cast(view); Valtype val = elfcpp::Swap::readval(wv); Valtype reloc = ((psymval->value(object, addend) - address) >> right_shift); val &= ~dst_mask; reloc &= dst_mask; elfcpp::Swap::writeval(wv, val | reloc); } template static inline void pcrela_unaligned(unsigned char* view, const Sized_relobj* object, const Symbol_value* psymval, typename elfcpp::Swap::Valtype addend, typename elfcpp::Elf_types::Elf_Addr address) { typedef typename elfcpp::Swap_unaligned::Valtype Valtype; unsigned char* wv = view; Valtype reloc = (psymval->value(object, addend) - address); elfcpp::Swap_unaligned::writeval(wv, reloc); } typedef Powerpc_relocate_functions This; typedef Relocate_functions This_reloc; public: // R_POWERPC_REL32: (Symbol + Addend - Address) static inline void rel32(unsigned char* view, const Sized_relobj* object, const Symbol_value* psymval, typename elfcpp::Elf_types::Elf_Addr addend, typename elfcpp::Elf_types::Elf_Addr address) { This_reloc::pcrela32(view, object, psymval, addend, address); } // R_POWERPC_REL24: (Symbol + Addend - Address) & 0x3fffffc static inline void rel24(unsigned char* view, const Sized_relobj* object, const Symbol_value* psymval, typename elfcpp::Elf_types::Elf_Addr addend, typename elfcpp::Elf_types::Elf_Addr address) { This::template pcrela<32>(view, 0, 0x03fffffc, object, psymval, addend, address); } // R_POWERPC_REL14: (Symbol + Addend - Address) & 0xfffc static inline void rel14(unsigned char* view, const Sized_relobj* object, const Symbol_value* psymval, typename elfcpp::Elf_types::Elf_Addr addend, typename elfcpp::Elf_types::Elf_Addr address) { This::template pcrela<32>(view, 0, 0x0000fffc, object, psymval, addend, address); } // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff static inline void addr16(unsigned char* view, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_Addr addend) { This_reloc::rela16(view, value, addend); } static inline void addr16(unsigned char* view, const Sized_relobj* object, const Symbol_value* psymval, typename elfcpp::Elf_types::Elf_Addr addend) { This_reloc::rela16(view, object, psymval, addend); } // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc static inline void addr16_ds(unsigned char* view, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_Addr addend) { This::template rela<16>(view, 0, 0xfffc, value, addend); } // R_POWERPC_ADDR16_LO: (Symbol + Addend) & 0xffff static inline void addr16_lo(unsigned char* view, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_Addr addend) { This_reloc::rela16(view, value, addend); } static inline void addr16_lo(unsigned char* view, const Sized_relobj* object, const Symbol_value* psymval, typename elfcpp::Elf_types::Elf_Addr addend) { This_reloc::rela16(view, object, psymval, addend); } // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff static inline void addr16_hi(unsigned char* view, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_Addr addend) { This::template rela<16>(view, 16, 0xffff, value, addend); } static inline void addr16_hi(unsigned char* view, const Sized_relobj* object, const Symbol_value* psymval, typename elfcpp::Elf_types::Elf_Addr addend) { This::template rela<16>(view, 16, 0xffff, object, psymval, addend); } // R_POWERPC_ADDR16_HA: Same as R_POWERPC_ADDR16_HI except that if the // final value of the low 16 bits of the // relocation is negative, add one. static inline void addr16_ha(unsigned char* view, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_Addr addend) { typename elfcpp::Elf_types::Elf_Addr reloc; reloc = value + addend; if (reloc & 0x8000) reloc += 0x10000; reloc >>= 16; elfcpp::Swap<16, big_endian>::writeval(view, reloc); } static inline void addr16_ha(unsigned char* view, const Sized_relobj* object, const Symbol_value* psymval, typename elfcpp::Elf_types::Elf_Addr addend) { typename elfcpp::Elf_types::Elf_Addr reloc; reloc = psymval->value(object, addend); if (reloc & 0x8000) reloc += 0x10000; reloc >>= 16; elfcpp::Swap<16, big_endian>::writeval(view, reloc); } // R_PPC_REL16: (Symbol + Addend - Address) & 0xffff static inline void rel16(unsigned char* view, const Sized_relobj* object, const Symbol_value* psymval, typename elfcpp::Elf_types::Elf_Addr addend, typename elfcpp::Elf_types::Elf_Addr address) { This_reloc::pcrela16(view, object, psymval, addend, address); } // R_PPC_REL16_LO: (Symbol + Addend - Address) & 0xffff static inline void rel16_lo(unsigned char* view, const Sized_relobj* object, const Symbol_value* psymval, typename elfcpp::Elf_types::Elf_Addr addend, typename elfcpp::Elf_types::Elf_Addr address) { This_reloc::pcrela16(view, object, psymval, addend, address); } // R_PPC_REL16_HI: ((Symbol + Addend - Address) >> 16) & 0xffff static inline void rel16_hi(unsigned char* view, const Sized_relobj* object, const Symbol_value* psymval, typename elfcpp::Elf_types::Elf_Addr addend, typename elfcpp::Elf_types::Elf_Addr address) { This::template pcrela<16>(view, 16, 0xffff, object, psymval, addend, address); } // R_PPC_REL16_HA: Same as R_PPC_REL16_HI except that if the // final value of the low 16 bits of the // relocation is negative, add one. static inline void rel16_ha(unsigned char* view, const Sized_relobj* object, const Symbol_value* psymval, typename elfcpp::Elf_types::Elf_Addr addend, typename elfcpp::Elf_types::Elf_Addr address) { typename elfcpp::Elf_types::Elf_Addr reloc; reloc = (psymval->value(object, addend) - address); if (reloc & 0x8000) reloc += 0x10000; reloc >>= 16; elfcpp::Swap<16, big_endian>::writeval(view, reloc); } }; // Get the GOT section, creating it if necessary. template Output_data_got* Target_powerpc::got_section(Symbol_table* symtab, Layout* layout) { if (this->got_ == NULL) { gold_assert(symtab != NULL && layout != NULL); this->got_ = new Output_data_got(); layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE, this->got_, false); // Create the GOT2 or TOC in the .got section. if (size == 32) { this->got2_ = new Output_data_space(4, "** GOT2"); layout->add_output_section_data(".got2", elfcpp::SHT_PROGBITS, elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE, this->got2_, false); } else { this->toc_ = new Output_data_space(8, "** TOC"); layout->add_output_section_data(".toc", elfcpp::SHT_PROGBITS, elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE, this->toc_, false); } // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section. symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, this->got_, 0, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); } return this->got_; } // Get the dynamic reloc section, creating it if necessary. template typename Target_powerpc::Reloc_section* Target_powerpc::rela_dyn_section(Layout* layout) { if (this->rela_dyn_ == NULL) { gold_assert(layout != NULL); this->rela_dyn_ = new Reloc_section(parameters->options().combreloc()); layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rela_dyn_, true); } return this->rela_dyn_; } // A class to handle the PLT data. template class Output_data_plt_powerpc : public Output_section_data { public: typedef Output_data_reloc Reloc_section; Output_data_plt_powerpc(Layout*); // Add an entry to the PLT. void add_entry(Symbol* gsym); // Return the .rela.plt section data. const Reloc_section* rel_plt() const { return this->rel_; } protected: void do_adjust_output_section(Output_section* os); private: // The size of an entry in the PLT. static const int base_plt_entry_size = (size == 32 ? 16 : 24); // Set the final size. void set_final_data_size() { unsigned int full_count = this->count_ + 4; this->set_data_size(full_count * base_plt_entry_size); } // Write out the PLT data. void do_write(Output_file*); // The reloc section. Reloc_section* rel_; // The number of PLT entries. unsigned int count_; }; // Create the PLT section. The ordinary .got section is an argument, // since we need to refer to the start. template Output_data_plt_powerpc::Output_data_plt_powerpc(Layout* layout) : Output_section_data(size == 32 ? 4 : 8), count_(0) { this->rel_ = new Reloc_section(false); layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rel_, true); } template void Output_data_plt_powerpc::do_adjust_output_section(Output_section* os) { os->set_entsize(0); } // Add an entry to the PLT. template void Output_data_plt_powerpc::add_entry(Symbol* gsym) { gold_assert(!gsym->has_plt_offset()); unsigned int index = this->count_+ + 4; section_offset_type plt_offset; if (index < 8192) plt_offset = index * base_plt_entry_size; else gold_unreachable(); gsym->set_plt_offset(plt_offset); ++this->count_; gsym->set_needs_dynsym_entry(); this->rel_->add_global(gsym, elfcpp::R_POWERPC_JMP_SLOT, this, plt_offset, 0); } static const unsigned int addis_11_11 = 0x3d6b0000; static const unsigned int addis_11_30 = 0x3d7e0000; static const unsigned int addis_12_12 = 0x3d8c0000; static const unsigned int addi_11_11 = 0x396b0000; static const unsigned int add_0_11_11 = 0x7c0b5a14; static const unsigned int add_11_0_11 = 0x7d605a14; static const unsigned int b = 0x48000000; static const unsigned int bcl_20_31 = 0x429f0005; static const unsigned int bctr = 0x4e800420; static const unsigned int lis_11 = 0x3d600000; static const unsigned int lis_12 = 0x3d800000; static const unsigned int lwzu_0_12 = 0x840c0000; static const unsigned int lwz_0_12 = 0x800c0000; static const unsigned int lwz_11_11 = 0x816b0000; static const unsigned int lwz_11_30 = 0x817e0000; static const unsigned int lwz_12_12 = 0x818c0000; static const unsigned int mflr_0 = 0x7c0802a6; static const unsigned int mflr_12 = 0x7d8802a6; static const unsigned int mtctr_0 = 0x7c0903a6; static const unsigned int mtctr_11 = 0x7d6903a6; static const unsigned int mtlr_0 = 0x7c0803a6; static const unsigned int nop = 0x60000000; static const unsigned int sub_11_11_12 = 0x7d6c5850; static const unsigned int addis_r12_r2 = 0x3d820000; /* addis %r12,%r2,xxx@ha */ static const unsigned int std_r2_40r1 = 0xf8410028; /* std %r2,40(%r1) */ static const unsigned int ld_r11_0r12 = 0xe96c0000; /* ld %r11,xxx+0@l(%r12) */ static const unsigned int ld_r2_0r12 = 0xe84c0000; /* ld %r2,xxx+8@l(%r12) */ /* ld %r11,xxx+16@l(%r12) */ // Write out the PLT. template void Output_data_plt_powerpc::do_write(Output_file* of) { const off_t offset = this->offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(offset, oview_size); unsigned char* pov = oview; memset(pov, 0, base_plt_entry_size * 4); pov += base_plt_entry_size * 4; unsigned int plt_offset = base_plt_entry_size * 4; const unsigned int count = this->count_; if (size == 64) { for (unsigned int i = 0; i < count; i++) { } } else { for (unsigned int i = 0; i < count; i++) { elfcpp::Swap<32, true>::writeval(pov + 0x00, lwz_11_30 + plt_offset); elfcpp::Swap<32, true>::writeval(pov + 0x04, mtctr_11); elfcpp::Swap<32, true>::writeval(pov + 0x08, bctr); elfcpp::Swap<32, true>::writeval(pov + 0x0c, nop); pov += base_plt_entry_size; plt_offset += base_plt_entry_size; } } gold_assert(static_cast(pov - oview) == oview_size); of->write_output_view(offset, oview_size, oview); } // Create a PLT entry for a global symbol. template void Target_powerpc::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym) { if (gsym->has_plt_offset()) return; if (this->plt_ == NULL) { // Create the GOT section first. this->got_section(symtab, layout); this->plt_ = new Output_data_plt_powerpc(layout); layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR | elfcpp::SHF_WRITE), this->plt_, false); // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section. symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL, this->plt_, 0, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); } this->plt_->add_entry(gsym); } // Create a GOT entry for the TLS module index. template unsigned int Target_powerpc::got_mod_index_entry(Symbol_table* symtab, Layout* layout, Sized_relobj* object) { if (this->got_mod_index_offset_ == -1U) { gold_assert(symtab != NULL && layout != NULL && object != NULL); Reloc_section* rela_dyn = this->rela_dyn_section(layout); Output_data_got* got; unsigned int got_offset; got = this->got_section(symtab, layout); got_offset = got->add_constant(0); rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got, got_offset, 0); got->add_constant(0); this->got_mod_index_offset_ = got_offset; } return this->got_mod_index_offset_; } // Optimize the TLS relocation type based on what we know about the // symbol. IS_FINAL is true if the final address of this symbol is // known at link time. static tls::Tls_optimization optimize_tls_reloc(bool /* is_final */, int r_type) { // If we are generating a shared library, then we can't do anything // in the linker. if (parameters->options().shared()) return tls::TLSOPT_NONE; switch (r_type) { // XXX default: gold_unreachable(); } } // Report an unsupported relocation against a local symbol. template void Target_powerpc::Scan::unsupported_reloc_local( Sized_relobj* object, unsigned int r_type) { gold_error(_("%s: unsupported reloc %u against local symbol"), object->name().c_str(), r_type); } // We are about to emit a dynamic relocation of type R_TYPE. If the // dynamic linker does not support it, issue an error. template void Target_powerpc::Scan::check_non_pic(Relobj* object, unsigned int r_type) { gold_assert(r_type != elfcpp::R_POWERPC_NONE); // These are the relocation types supported by glibc for both 32-bit // and 64-bit powerpc. switch (r_type) { case elfcpp::R_POWERPC_RELATIVE: case elfcpp::R_POWERPC_GLOB_DAT: case elfcpp::R_POWERPC_DTPMOD: case elfcpp::R_POWERPC_DTPREL: case elfcpp::R_POWERPC_TPREL: case elfcpp::R_POWERPC_JMP_SLOT: case elfcpp::R_POWERPC_COPY: case elfcpp::R_POWERPC_ADDR32: case elfcpp::R_POWERPC_ADDR24: case elfcpp::R_POWERPC_REL24: return; default: break; } if (size == 64) { switch (r_type) { // These are the relocation types supported only on 64-bit. case elfcpp::R_PPC64_ADDR64: case elfcpp::R_PPC64_TPREL16_LO_DS: case elfcpp::R_PPC64_TPREL16_DS: case elfcpp::R_POWERPC_TPREL16: case elfcpp::R_POWERPC_TPREL16_LO: case elfcpp::R_POWERPC_TPREL16_HI: case elfcpp::R_POWERPC_TPREL16_HA: case elfcpp::R_PPC64_TPREL16_HIGHER: case elfcpp::R_PPC64_TPREL16_HIGHEST: case elfcpp::R_PPC64_TPREL16_HIGHERA: case elfcpp::R_PPC64_TPREL16_HIGHESTA: case elfcpp::R_PPC64_ADDR16_LO_DS: case elfcpp::R_POWERPC_ADDR16_LO: case elfcpp::R_POWERPC_ADDR16_HI: case elfcpp::R_POWERPC_ADDR16_HA: case elfcpp::R_POWERPC_ADDR30: case elfcpp::R_PPC64_UADDR64: case elfcpp::R_POWERPC_UADDR32: case elfcpp::R_POWERPC_ADDR16: case elfcpp::R_POWERPC_UADDR16: case elfcpp::R_PPC64_ADDR16_DS: case elfcpp::R_PPC64_ADDR16_HIGHER: case elfcpp::R_PPC64_ADDR16_HIGHEST: case elfcpp::R_PPC64_ADDR16_HIGHERA: case elfcpp::R_PPC64_ADDR16_HIGHESTA: case elfcpp::R_POWERPC_ADDR14_BRTAKEN: case elfcpp::R_POWERPC_ADDR14_BRNTAKEN: case elfcpp::R_POWERPC_REL32: case elfcpp::R_PPC64_REL64: return; default: break; } } else { switch (r_type) { // These are the relocation types supported only on 32-bit. default: break; } } // This prevents us from issuing more than one error per reloc // section. But we can still wind up issuing more than one // error per object file. if (this->issued_non_pic_error_) return; gold_assert(parameters->options().output_is_position_independent()); object->error(_("requires unsupported dynamic reloc; " "recompile with -fPIC")); this->issued_non_pic_error_ = true; return; } // Scan a relocation for a local symbol. template inline void Target_powerpc::Scan::local( Symbol_table* symtab, Layout* layout, Target_powerpc* target, Sized_relobj* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela& reloc, unsigned int r_type, const elfcpp::Sym& lsym) { switch (r_type) { case elfcpp::R_POWERPC_NONE: case elfcpp::R_POWERPC_GNU_VTINHERIT: case elfcpp::R_POWERPC_GNU_VTENTRY: break; case elfcpp::R_PPC64_ADDR64: case elfcpp::R_POWERPC_ADDR32: case elfcpp::R_POWERPC_ADDR16_HA: case elfcpp::R_POWERPC_ADDR16_LO: // If building a shared library (or a position-independent // executable), we need to create a dynamic relocation for // this location. if (parameters->options().output_is_position_independent()) { Reloc_section* rela_dyn = target->rela_dyn_section(layout); check_non_pic(object, r_type); if (lsym.get_st_type() != elfcpp::STT_SECTION) { unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); rela_dyn->add_local(object, r_sym, r_type, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } else { unsigned int r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); gold_assert(lsym.get_st_value() == 0); rela_dyn->add_local_relative(object, r_sym, r_type, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } } break; case elfcpp::R_POWERPC_REL24: case elfcpp::R_PPC_LOCAL24PC: case elfcpp::R_POWERPC_REL32: case elfcpp::R_PPC_REL16_LO: case elfcpp::R_PPC_REL16_HA: break; case elfcpp::R_POWERPC_GOT16: case elfcpp::R_POWERPC_GOT16_LO: case elfcpp::R_POWERPC_GOT16_HI: case elfcpp::R_POWERPC_GOT16_HA: case elfcpp::R_PPC64_TOC16: case elfcpp::R_PPC64_TOC16_LO: case elfcpp::R_PPC64_TOC16_HI: case elfcpp::R_PPC64_TOC16_HA: case elfcpp::R_PPC64_TOC16_DS: case elfcpp::R_PPC64_TOC16_LO_DS: { // The symbol requires a GOT entry. Output_data_got* got; unsigned int r_sym; got = target->got_section(symtab, layout); r_sym = elfcpp::elf_r_sym(reloc.get_r_info()); // If we are generating a shared object, we need to add a // dynamic relocation for this symbol's GOT entry. if (parameters->options().output_is_position_independent()) { if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD)) { Reloc_section* rela_dyn = target->rela_dyn_section(layout); unsigned int off; off = got->add_constant(0); object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off); rela_dyn->add_local_relative(object, r_sym, elfcpp::R_POWERPC_RELATIVE, got, off, 0); } } else got->add_local(object, r_sym, GOT_TYPE_STANDARD); } break; case elfcpp::R_PPC64_TOC: // We need a GOT section. target->got_section(symtab, layout); break; // These are relocations which should only be seen by the // dynamic linker, and should never be seen here. case elfcpp::R_POWERPC_COPY: case elfcpp::R_POWERPC_GLOB_DAT: case elfcpp::R_POWERPC_JMP_SLOT: case elfcpp::R_POWERPC_RELATIVE: case elfcpp::R_POWERPC_DTPMOD: gold_error(_("%s: unexpected reloc %u in object file"), object->name().c_str(), r_type); break; default: unsupported_reloc_local(object, r_type); break; } } // Report an unsupported relocation against a global symbol. template void Target_powerpc::Scan::unsupported_reloc_global( Sized_relobj* object, unsigned int r_type, Symbol* gsym) { gold_error(_("%s: unsupported reloc %u against global symbol %s"), object->name().c_str(), r_type, gsym->demangled_name().c_str()); } // Scan a relocation for a global symbol. template inline void Target_powerpc::Scan::global( Symbol_table* symtab, Layout* layout, Target_powerpc* target, Sized_relobj* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela& reloc, unsigned int r_type, Symbol* gsym) { switch (r_type) { case elfcpp::R_POWERPC_NONE: case elfcpp::R_POWERPC_GNU_VTINHERIT: case elfcpp::R_POWERPC_GNU_VTENTRY: break; case elfcpp::R_PPC_PLTREL24: // If the symbol is fully resolved, this is just a PC32 reloc. // Otherwise we need a PLT entry. if (gsym->final_value_is_known()) break; // If building a shared library, we can also skip the PLT entry // if the symbol is defined in the output file and is protected // or hidden. if (gsym->is_defined() && !gsym->is_from_dynobj() && !gsym->is_preemptible()) break; target->make_plt_entry(symtab, layout, gsym); break; case elfcpp::R_POWERPC_ADDR16: case elfcpp::R_POWERPC_ADDR16_LO: case elfcpp::R_POWERPC_ADDR16_HI: case elfcpp::R_POWERPC_ADDR16_HA: case elfcpp::R_POWERPC_ADDR32: case elfcpp::R_PPC64_ADDR64: { // Make a PLT entry if necessary. if (gsym->needs_plt_entry()) { target->make_plt_entry(symtab, layout, gsym); // Since this is not a PC-relative relocation, we may be // taking the address of a function. In that case we need to // set the entry in the dynamic symbol table to the address of // the PLT entry. if (gsym->is_from_dynobj() && !parameters->options().shared()) gsym->set_needs_dynsym_value(); } // Make a dynamic relocation if necessary. if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF)) { if (gsym->may_need_copy_reloc()) { target->copy_reloc(symtab, layout, object, data_shndx, output_section, gsym, reloc); } else if ((r_type == elfcpp::R_POWERPC_ADDR32 || r_type == elfcpp::R_PPC64_ADDR64) && gsym->can_use_relative_reloc(false)) { Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_global_relative(gsym, elfcpp::R_POWERPC_RELATIVE, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } else { Reloc_section* rela_dyn = target->rela_dyn_section(layout); check_non_pic(object, r_type); if (gsym->is_from_dynobj() || gsym->is_undefined() || gsym->is_preemptible()) rela_dyn->add_global(gsym, r_type, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); else rela_dyn->add_global_relative(gsym, r_type, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } } } break; case elfcpp::R_POWERPC_REL24: case elfcpp::R_PPC_LOCAL24PC: case elfcpp::R_PPC_REL16: case elfcpp::R_PPC_REL16_LO: case elfcpp::R_PPC_REL16_HI: case elfcpp::R_PPC_REL16_HA: { if (gsym->needs_plt_entry()) target->make_plt_entry(symtab, layout, gsym); // Make a dynamic relocation if necessary. int flags = Symbol::NON_PIC_REF; if (gsym->type() == elfcpp::STT_FUNC) flags |= Symbol::FUNCTION_CALL; if (gsym->needs_dynamic_reloc(flags)) { if (gsym->may_need_copy_reloc()) { target->copy_reloc(symtab, layout, object, data_shndx, output_section, gsym, reloc); } else { Reloc_section* rela_dyn = target->rela_dyn_section(layout); check_non_pic(object, r_type); rela_dyn->add_global(gsym, r_type, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } } } break; case elfcpp::R_POWERPC_GOT16: case elfcpp::R_POWERPC_GOT16_LO: case elfcpp::R_POWERPC_GOT16_HI: case elfcpp::R_POWERPC_GOT16_HA: case elfcpp::R_PPC64_TOC16: case elfcpp::R_PPC64_TOC16_LO: case elfcpp::R_PPC64_TOC16_HI: case elfcpp::R_PPC64_TOC16_HA: case elfcpp::R_PPC64_TOC16_DS: case elfcpp::R_PPC64_TOC16_LO_DS: { // The symbol requires a GOT entry. Output_data_got* got; got = target->got_section(symtab, layout); if (gsym->final_value_is_known()) got->add_global(gsym, GOT_TYPE_STANDARD); else { // If this symbol is not fully resolved, we need to add a // dynamic relocation for it. Reloc_section* rela_dyn = target->rela_dyn_section(layout); if (gsym->is_from_dynobj() || gsym->is_undefined() || gsym->is_preemptible()) got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn, elfcpp::R_POWERPC_GLOB_DAT); else if (!gsym->has_got_offset(GOT_TYPE_STANDARD)) { unsigned int off = got->add_constant(0); gsym->set_got_offset(GOT_TYPE_STANDARD, off); rela_dyn->add_global_relative(gsym, elfcpp::R_POWERPC_RELATIVE, got, off, 0); } } } break; case elfcpp::R_PPC64_TOC: // We need a GOT section. target->got_section(symtab, layout); break; case elfcpp::R_POWERPC_GOT_TPREL16: case elfcpp::R_POWERPC_TLS: // XXX TLS break; // These are relocations which should only be seen by the // dynamic linker, and should never be seen here. case elfcpp::R_POWERPC_COPY: case elfcpp::R_POWERPC_GLOB_DAT: case elfcpp::R_POWERPC_JMP_SLOT: case elfcpp::R_POWERPC_RELATIVE: case elfcpp::R_POWERPC_DTPMOD: gold_error(_("%s: unexpected reloc %u in object file"), object->name().c_str(), r_type); break; default: unsupported_reloc_global(object, r_type, gsym); break; } } // Process relocations for gc. template void Target_powerpc::gc_process_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj* object, unsigned int data_shndx, unsigned int, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols) { typedef Target_powerpc Powerpc; typedef typename Target_powerpc::Scan Scan; gold::gc_process_relocs( symtab, layout, this, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols); } // Scan relocations for a section. template void Target_powerpc::scan_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols) { typedef Target_powerpc Powerpc; typedef typename Target_powerpc::Scan Scan; static Output_data_space* sdata; if (sh_type == elfcpp::SHT_REL) { gold_error(_("%s: unsupported REL reloc section"), object->name().c_str()); return; } // Define _SDA_BASE_ at the start of the .sdata section. if (sdata == NULL) { // layout->find_output_section(".sdata") == NULL sdata = new Output_data_space(4, "** sdata"); Output_section* os = layout->add_output_section_data(".sdata", 0, elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE, sdata, false); symtab->define_in_output_data("_SDA_BASE_", NULL, os, 32768, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); } gold::scan_relocs( symtab, layout, this, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols); } // Finalize the sections. template void Target_powerpc::do_finalize_sections( Layout* layout, const Input_objects*, Symbol_table*) { // Fill in some more dynamic tags. Output_data_dynamic* const odyn = layout->dynamic_data(); if (odyn != NULL) { if (this->plt_ != NULL && this->plt_->output_section() != NULL) { const Output_data* od = this->plt_->rel_plt(); odyn->add_section_size(elfcpp::DT_PLTRELSZ, od); odyn->add_section_address(elfcpp::DT_JMPREL, od); odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA); odyn->add_section_address(elfcpp::DT_PLTGOT, this->plt_); } if (this->rela_dyn_ != NULL && this->rela_dyn_->output_section() != NULL) { const Output_data* od = this->rela_dyn_; odyn->add_section_address(elfcpp::DT_RELA, od); odyn->add_section_size(elfcpp::DT_RELASZ, od); odyn->add_constant(elfcpp::DT_RELAENT, elfcpp::Elf_sizes::rela_size); } if (!parameters->options().shared()) { // The value of the DT_DEBUG tag is filled in by the dynamic // linker at run time, and used by the debugger. odyn->add_constant(elfcpp::DT_DEBUG, 0); } } // Emit any relocs we saved in an attempt to avoid generating COPY // relocs. if (this->copy_relocs_.any_saved_relocs()) this->copy_relocs_.emit(this->rela_dyn_section(layout)); } // Perform a relocation. template inline bool Target_powerpc::Relocate::relocate( const Relocate_info* relinfo, Target_powerpc* target, Output_section*, size_t relnum, const elfcpp::Rela& rela, unsigned int r_type, const Sized_symbol* gsym, const Symbol_value* psymval, unsigned char* view, typename elfcpp::Elf_types::Elf_Addr address, section_size_type /* view_size */) { const unsigned int toc_base_offset = 0x8000; typedef Powerpc_relocate_functions Reloc; // Pick the value to use for symbols defined in shared objects. Symbol_value symval; if (gsym != NULL && gsym->use_plt_offset(r_type == elfcpp::R_POWERPC_REL24 || r_type == elfcpp::R_PPC_LOCAL24PC || r_type == elfcpp::R_PPC_REL16 || r_type == elfcpp::R_PPC_REL16_LO || r_type == elfcpp::R_PPC_REL16_HI || r_type == elfcpp::R_PPC_REL16_HA)) { elfcpp::Elf_Xword value; value = target->plt_section()->address() + gsym->plt_offset(); symval.set_output_value(value); psymval = &symval; } const Sized_relobj* object = relinfo->object; elfcpp::Elf_Xword addend = rela.get_r_addend(); // Get the GOT offset if needed. Unlike i386 and x86_64, our GOT // pointer points to the beginning, not the end, of the table. // So we just use the plain offset. bool have_got_offset = false; unsigned int got_offset = 0; unsigned int got2_offset = 0; switch (r_type) { case elfcpp::R_PPC64_TOC16: case elfcpp::R_PPC64_TOC16_LO: case elfcpp::R_PPC64_TOC16_HI: case elfcpp::R_PPC64_TOC16_HA: case elfcpp::R_PPC64_TOC16_DS: case elfcpp::R_PPC64_TOC16_LO_DS: // Subtract the TOC base address. addend -= target->toc_section()->address() + toc_base_offset; /* FALLTHRU */ case elfcpp::R_POWERPC_GOT16: case elfcpp::R_POWERPC_GOT16_LO: case elfcpp::R_POWERPC_GOT16_HI: case elfcpp::R_POWERPC_GOT16_HA: case elfcpp::R_PPC64_GOT16_DS: case elfcpp::R_PPC64_GOT16_LO_DS: if (gsym != NULL) { gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD)); got_offset = gsym->got_offset(GOT_TYPE_STANDARD); } else { unsigned int r_sym = elfcpp::elf_r_sym(rela.get_r_info()); gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD)); got_offset = object->local_got_offset(r_sym, GOT_TYPE_STANDARD); } have_got_offset = true; break; // R_PPC_PLTREL24 is rather special. If non-zero, // the addend specifies the GOT pointer offset within .got2. case elfcpp::R_PPC_PLTREL24: if (addend >= 32768) { Output_data_space* got2; got2 = target->got2_section(); got2_offset = got2->offset(); addend += got2_offset; } have_got_offset = true; break; default: break; } switch (r_type) { case elfcpp::R_POWERPC_NONE: case elfcpp::R_POWERPC_GNU_VTINHERIT: case elfcpp::R_POWERPC_GNU_VTENTRY: break; case elfcpp::R_POWERPC_REL32: Reloc::rel32(view, object, psymval, addend, address); break; case elfcpp::R_POWERPC_REL24: Reloc::rel24(view, object, psymval, addend, address); break; case elfcpp::R_POWERPC_REL14: Reloc::rel14(view, object, psymval, addend, address); break; case elfcpp::R_PPC_PLTREL24: Reloc::rel24(view, object, psymval, addend, address); break; case elfcpp::R_PPC_LOCAL24PC: Reloc::rel24(view, object, psymval, addend, address); break; case elfcpp::R_PPC64_ADDR64: if (!parameters->options().output_is_position_independent()) Relocate_functions::rela64(view, object, psymval, addend); break; case elfcpp::R_POWERPC_ADDR32: if (!parameters->options().output_is_position_independent()) Relocate_functions::rela32(view, object, psymval, addend); break; case elfcpp::R_POWERPC_ADDR16_LO: Reloc::addr16_lo(view, object, psymval, addend); break; case elfcpp::R_POWERPC_ADDR16_HI: Reloc::addr16_hi(view, object, psymval, addend); break; case elfcpp::R_POWERPC_ADDR16_HA: Reloc::addr16_ha(view, object, psymval, addend); break; case elfcpp::R_PPC_REL16_LO: Reloc::rel16_lo(view, object, psymval, addend, address); break; case elfcpp::R_PPC_REL16_HI: Reloc::rel16_lo(view, object, psymval, addend, address); break; case elfcpp::R_PPC_REL16_HA: Reloc::rel16_ha(view, object, psymval, addend, address); break; case elfcpp::R_POWERPC_GOT16: Reloc::addr16(view, got_offset, addend); break; case elfcpp::R_POWERPC_GOT16_LO: Reloc::addr16_lo(view, got_offset, addend); break; case elfcpp::R_POWERPC_GOT16_HI: Reloc::addr16_hi(view, got_offset, addend); break; case elfcpp::R_POWERPC_GOT16_HA: Reloc::addr16_ha(view, got_offset, addend); break; case elfcpp::R_PPC64_TOC16: Reloc::addr16(view, got_offset, addend); break; case elfcpp::R_PPC64_TOC16_LO: Reloc::addr16_lo(view, got_offset, addend); break; case elfcpp::R_PPC64_TOC16_HI: Reloc::addr16_hi(view, got_offset, addend); break; case elfcpp::R_PPC64_TOC16_HA: Reloc::addr16_ha(view, got_offset, addend); break; case elfcpp::R_PPC64_TOC16_DS: case elfcpp::R_PPC64_TOC16_LO_DS: Reloc::addr16_ds(view, got_offset, addend); break; case elfcpp::R_PPC64_TOC: { elfcpp::Elf_types<64>::Elf_Addr value; value = target->toc_section()->address() + toc_base_offset; Relocate_functions<64, false>::rela64(view, value, addend); } break; case elfcpp::R_POWERPC_COPY: case elfcpp::R_POWERPC_GLOB_DAT: case elfcpp::R_POWERPC_JMP_SLOT: case elfcpp::R_POWERPC_RELATIVE: // This is an outstanding tls reloc, which is unexpected when // linking. case elfcpp::R_POWERPC_DTPMOD: gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unexpected reloc %u in object file"), r_type); break; default: gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported reloc %u"), r_type); break; } return true; } // Perform a TLS relocation. template inline void Target_powerpc::Relocate::relocate_tls( const Relocate_info* relinfo, Target_powerpc* target, size_t relnum, const elfcpp::Rela& rela, unsigned int r_type, const Sized_symbol* gsym, const Symbol_value* psymval, unsigned char* view, typename elfcpp::Elf_types::Elf_Addr address, section_size_type) { Output_segment* tls_segment = relinfo->layout->tls_segment(); typedef Powerpc_relocate_functions Reloc; const Sized_relobj* object = relinfo->object; const elfcpp::Elf_Xword addend = rela.get_r_addend(); typename elfcpp::Elf_types::Elf_Addr value = psymval->value(object, 0); const bool is_final = (gsym == NULL ? !parameters->options().output_is_position_independent() : gsym->final_value_is_known()); const tls::Tls_optimization optimized_type = optimize_tls_reloc(is_final, r_type); switch (r_type) { // XXX } } // Relocate section data. template void Target_powerpc::relocate_section( const Relocate_info* relinfo, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, unsigned char* view, typename elfcpp::Elf_types::Elf_Addr address, section_size_type view_size, const Reloc_symbol_changes* reloc_symbol_changes) { typedef Target_powerpc Powerpc; typedef typename Target_powerpc::Relocate Powerpc_relocate; gold_assert(sh_type == elfcpp::SHT_RELA); gold::relocate_section( relinfo, this, prelocs, reloc_count, output_section, needs_special_offset_handling, view, address, view_size, reloc_symbol_changes); } // Return the size of a relocation while scanning during a relocatable // link. template unsigned int Target_powerpc::Relocatable_size_for_reloc::get_size_for_reloc( unsigned int, Relobj*) { // We are always SHT_RELA, so we should never get here. gold_unreachable(); return 0; } // Scan the relocs during a relocatable link. template void Target_powerpc::scan_relocatable_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols, Relocatable_relocs* rr) { gold_assert(sh_type == elfcpp::SHT_RELA); typedef gold::Default_scan_relocatable_relocs Scan_relocatable_relocs; gold::scan_relocatable_relocs( symtab, layout, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols, rr); } // Relocate a section during a relocatable link. template void Target_powerpc::relocate_for_relocatable( const Relocate_info* relinfo, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, off_t offset_in_output_section, const Relocatable_relocs* rr, unsigned char* view, typename elfcpp::Elf_types::Elf_Addr view_address, section_size_type view_size, unsigned char* reloc_view, section_size_type reloc_view_size) { gold_assert(sh_type == elfcpp::SHT_RELA); gold::relocate_for_relocatable( relinfo, prelocs, reloc_count, output_section, offset_in_output_section, rr, view, view_address, view_size, reloc_view, reloc_view_size); } // Return the value to use for a dynamic which requires special // treatment. This is how we support equality comparisons of function // pointers across shared library boundaries, as described in the // processor specific ABI supplement. template uint64_t Target_powerpc::do_dynsym_value(const Symbol* gsym) const { gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset()); return this->plt_section()->address() + gsym->plt_offset(); } // The selector for powerpc object files. template class Target_selector_powerpc : public Target_selector { public: Target_selector_powerpc() : Target_selector(elfcpp::EM_NONE, size, big_endian, (size == 64 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle") : (big_endian ? "elf32-powerpc" : "elf32-powerpcle"))) { } Target* do_recognize(int machine, int, int) { switch (size) { case 64: if (machine != elfcpp::EM_PPC64) return NULL; break; case 32: if (machine != elfcpp::EM_PPC) return NULL; break; default: return NULL; } return this->instantiate_target(); } Target* do_instantiate_target() { return new Target_powerpc(); } }; Target_selector_powerpc<32, true> target_selector_ppc32; Target_selector_powerpc<32, false> target_selector_ppc32le; Target_selector_powerpc<64, true> target_selector_ppc64; Target_selector_powerpc<64, false> target_selector_ppc64le; } // End anonymous namespace.