// object.cc -- support for an object file for linking in gold // Copyright 2006, 2007 Free Software Foundation, Inc. // Written by Ian Lance Taylor . // This file is part of gold. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #include "gold.h" #include #include #include #include "target-select.h" #include "layout.h" #include "output.h" #include "symtab.h" #include "object.h" #include "dynobj.h" namespace gold { // Class Object. // Set the target based on fields in the ELF file header. void Object::set_target(int machine, int size, bool big_endian, int osabi, int abiversion) { Target* target = select_target(machine, size, big_endian, osabi, abiversion); if (target == NULL) { fprintf(stderr, _("%s: %s: unsupported ELF machine number %d\n"), program_name, this->name().c_str(), machine); gold_exit(false); } this->target_ = target; } // Report an error for the elfcpp::Elf_file interface. void Object::error(const char* format, ...) { va_list args; fprintf(stderr, "%s: %s: ", program_name, this->name().c_str()); va_start(args, format); vfprintf(stderr, format, args); va_end(args); putc('\n', stderr); gold_exit(false); } // Return a view of the contents of a section. const unsigned char* Object::section_contents(unsigned int shndx, off_t* plen, bool cache) { Location loc(this->do_section_contents(shndx)); *plen = loc.data_size; return this->get_view(loc.file_offset, loc.data_size, cache); } // Read the section data into SD. This is code common to Sized_relobj // and Sized_dynobj, so we put it into Object. template void Object::read_section_data(elfcpp::Elf_file* elf_file, Read_symbols_data* sd) { const int shdr_size = elfcpp::Elf_sizes::shdr_size; // Read the section headers. const off_t shoff = elf_file->shoff(); const unsigned int shnum = this->shnum(); sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size, true); // Read the section names. const unsigned char* pshdrs = sd->section_headers->data(); const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size; typename elfcpp::Shdr shdrnames(pshdrnames); if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB) { fprintf(stderr, _("%s: %s: section name section has wrong type: %u\n"), program_name, this->name().c_str(), static_cast(shdrnames.get_sh_type())); gold_exit(false); } sd->section_names_size = shdrnames.get_sh_size(); sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(), sd->section_names_size, false); } // If NAME is the name of a special .gnu.warning section, arrange for // the warning to be issued. SHNDX is the section index. Return // whether it is a warning section. bool Object::handle_gnu_warning_section(const char* name, unsigned int shndx, Symbol_table* symtab) { const char warn_prefix[] = ".gnu.warning."; const int warn_prefix_len = sizeof warn_prefix - 1; if (strncmp(name, warn_prefix, warn_prefix_len) == 0) { symtab->add_warning(name + warn_prefix_len, this, shndx); return true; } return false; } // Class Sized_relobj. template Sized_relobj::Sized_relobj( const std::string& name, Input_file* input_file, off_t offset, const elfcpp::Ehdr& ehdr) : Relobj(name, input_file, offset), elf_file_(this, ehdr), symtab_shndx_(-1U), local_symbol_count_(0), output_local_symbol_count_(0), symbols_(NULL), local_symbol_offset_(0), local_values_() { } template Sized_relobj::~Sized_relobj() { } // Set up an object file based on the file header. This sets up the // target and reads the section information. template void Sized_relobj::setup( const elfcpp::Ehdr& ehdr) { this->set_target(ehdr.get_e_machine(), size, big_endian, ehdr.get_e_ident()[elfcpp::EI_OSABI], ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]); const unsigned int shnum = this->elf_file_.shnum(); this->set_shnum(shnum); } // Find the SHT_SYMTAB section, given the section headers. The ELF // standard says that maybe in the future there can be more than one // SHT_SYMTAB section. Until somebody figures out how that could // work, we assume there is only one. template void Sized_relobj::find_symtab(const unsigned char* pshdrs) { const unsigned int shnum = this->shnum(); this->symtab_shndx_ = 0; if (shnum > 0) { // Look through the sections in reverse order, since gas tends // to put the symbol table at the end. const unsigned char* p = pshdrs + shnum * This::shdr_size; unsigned int i = shnum; while (i > 0) { --i; p -= This::shdr_size; typename This::Shdr shdr(p); if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB) { this->symtab_shndx_ = i; break; } } } } // Read the sections and symbols from an object file. template void Sized_relobj::do_read_symbols(Read_symbols_data* sd) { this->read_section_data(&this->elf_file_, sd); const unsigned char* const pshdrs = sd->section_headers->data(); this->find_symtab(pshdrs); if (this->symtab_shndx_ == 0) { // No symbol table. Weird but legal. sd->symbols = NULL; sd->symbols_size = 0; sd->symbol_names = NULL; sd->symbol_names_size = 0; return; } // Get the symbol table section header. typename This::Shdr symtabshdr(pshdrs + this->symtab_shndx_ * This::shdr_size); gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); // We only need the external symbols. const int sym_size = This::sym_size; const unsigned int loccount = symtabshdr.get_sh_info(); this->local_symbol_count_ = loccount; off_t locsize = loccount * sym_size; off_t extoff = symtabshdr.get_sh_offset() + locsize; off_t extsize = symtabshdr.get_sh_size() - locsize; // Read the symbol table. File_view* fvsymtab = this->get_lasting_view(extoff, extsize, false); // Read the section header for the symbol names. unsigned int strtab_shndx = symtabshdr.get_sh_link(); if (strtab_shndx >= this->shnum()) { fprintf(stderr, _("%s: %s: invalid symbol table name index: %u\n"), program_name, this->name().c_str(), strtab_shndx); gold_exit(false); } typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size); if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) { fprintf(stderr, _("%s: %s: symbol table name section has wrong type: %u\n"), program_name, this->name().c_str(), static_cast(strtabshdr.get_sh_type())); gold_exit(false); } // Read the symbol names. File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(), strtabshdr.get_sh_size(), true); sd->symbols = fvsymtab; sd->symbols_size = extsize; sd->symbol_names = fvstrtab; sd->symbol_names_size = strtabshdr.get_sh_size(); } // Return whether to include a section group in the link. LAYOUT is // used to keep track of which section groups we have already seen. // INDEX is the index of the section group and SHDR is the section // header. If we do not want to include this group, we set bits in // OMIT for each section which should be discarded. template bool Sized_relobj::include_section_group( Layout* layout, unsigned int index, const elfcpp::Shdr& shdr, std::vector* omit) { // Read the section contents. const unsigned char* pcon = this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), false); const elfcpp::Elf_Word* pword = reinterpret_cast(pcon); // The first word contains flags. We only care about COMDAT section // groups. Other section groups are always included in the link // just like ordinary sections. elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword); if ((flags & elfcpp::GRP_COMDAT) == 0) return true; // Look up the group signature, which is the name of a symbol. This // is a lot of effort to go to to read a string. Why didn't they // just use the name of the SHT_GROUP section as the group // signature? // Get the appropriate symbol table header (this will normally be // the single SHT_SYMTAB section, but in principle it need not be). const unsigned int link = shdr.get_sh_link(); typename This::Shdr symshdr(this, this->elf_file_.section_header(link)); // Read the symbol table entry. if (shdr.get_sh_info() >= symshdr.get_sh_size() / This::sym_size) { fprintf(stderr, _("%s: %s: section group %u info %u out of range\n"), program_name, this->name().c_str(), index, shdr.get_sh_info()); gold_exit(false); } off_t symoff = symshdr.get_sh_offset() + shdr.get_sh_info() * This::sym_size; const unsigned char* psym = this->get_view(symoff, This::sym_size, true); elfcpp::Sym sym(psym); // Read the symbol table names. off_t symnamelen; const unsigned char* psymnamesu; psymnamesu = this->section_contents(symshdr.get_sh_link(), &symnamelen, true); const char* psymnames = reinterpret_cast(psymnamesu); // Get the section group signature. if (sym.get_st_name() >= symnamelen) { fprintf(stderr, _("%s: %s: symbol %u name offset %u out of range\n"), program_name, this->name().c_str(), shdr.get_sh_info(), sym.get_st_name()); gold_exit(false); } const char* signature = psymnames + sym.get_st_name(); // It seems that some versions of gas will create a section group // associated with a section symbol, and then fail to give a name to // the section symbol. In such a case, use the name of the section. // FIXME. std::string secname; if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION) { secname = this->section_name(sym.get_st_shndx()); signature = secname.c_str(); } // Record this section group, and see whether we've already seen one // with the same signature. if (layout->add_comdat(signature, true)) return true; // This is a duplicate. We want to discard the sections in this // group. size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word); for (size_t i = 1; i < count; ++i) { elfcpp::Elf_Word secnum = elfcpp::Swap<32, big_endian>::readval(pword + i); if (secnum >= this->shnum()) { fprintf(stderr, _("%s: %s: section %u in section group %u out of range"), program_name, this->name().c_str(), secnum, index); gold_exit(false); } (*omit)[secnum] = true; } return false; } // Whether to include a linkonce section in the link. NAME is the // name of the section and SHDR is the section header. // Linkonce sections are a GNU extension implemented in the original // GNU linker before section groups were defined. The semantics are // that we only include one linkonce section with a given name. The // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME, // where T is the type of section and SYMNAME is the name of a symbol. // In an attempt to make linkonce sections interact well with section // groups, we try to identify SYMNAME and use it like a section group // signature. We want to block section groups with that signature, // but not other linkonce sections with that signature. We also use // the full name of the linkonce section as a normal section group // signature. template bool Sized_relobj::include_linkonce_section( Layout* layout, const char* name, const elfcpp::Shdr&) { const char* symname = strrchr(name, '.') + 1; bool include1 = layout->add_comdat(symname, false); bool include2 = layout->add_comdat(name, true); return include1 && include2; } // Lay out the input sections. We walk through the sections and check // whether they should be included in the link. If they should, we // pass them to the Layout object, which will return an output section // and an offset. template void Sized_relobj::do_layout(Symbol_table* symtab, Layout* layout, Read_symbols_data* sd) { const unsigned int shnum = this->shnum(); if (shnum == 0) return; // Get the section headers. const unsigned char* pshdrs = sd->section_headers->data(); // Get the section names. const unsigned char* pnamesu = sd->section_names->data(); const char* pnames = reinterpret_cast(pnamesu); std::vector& map_sections(this->map_to_output()); map_sections.resize(shnum); // Keep track of which sections to omit. std::vector omit(shnum, false); // Skip the first, dummy, section. pshdrs += This::shdr_size; for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size) { typename This::Shdr shdr(pshdrs); if (shdr.get_sh_name() >= sd->section_names_size) { fprintf(stderr, _("%s: %s: bad section name offset for section %u: %lu\n"), program_name, this->name().c_str(), i, static_cast(shdr.get_sh_name())); gold_exit(false); } const char* name = pnames + shdr.get_sh_name(); if (this->handle_gnu_warning_section(name, i, symtab)) { if (!parameters->output_is_object()) omit[i] = true; } bool discard = omit[i]; if (!discard) { if (shdr.get_sh_type() == elfcpp::SHT_GROUP) { if (!this->include_section_group(layout, i, shdr, &omit)) discard = true; } else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0 && Layout::is_linkonce(name)) { if (!this->include_linkonce_section(layout, name, shdr)) discard = true; } } if (discard) { // Do not include this section in the link. map_sections[i].output_section = NULL; continue; } off_t offset; Output_section* os = layout->layout(this, i, name, shdr, &offset); map_sections[i].output_section = os; map_sections[i].offset = offset; } delete sd->section_headers; sd->section_headers = NULL; delete sd->section_names; sd->section_names = NULL; } // Add the symbols to the symbol table. template void Sized_relobj::do_add_symbols(Symbol_table* symtab, Read_symbols_data* sd) { if (sd->symbols == NULL) { gold_assert(sd->symbol_names == NULL); return; } const int sym_size = This::sym_size; size_t symcount = sd->symbols_size / sym_size; if (static_cast(symcount * sym_size) != sd->symbols_size) { fprintf(stderr, _("%s: %s: size of symbols is not multiple of symbol size\n"), program_name, this->name().c_str()); gold_exit(false); } this->symbols_ = new Symbol*[symcount]; const char* sym_names = reinterpret_cast(sd->symbol_names->data()); symtab->add_from_relobj(this, sd->symbols->data(), symcount, sym_names, sd->symbol_names_size, this->symbols_); delete sd->symbols; sd->symbols = NULL; delete sd->symbol_names; sd->symbol_names = NULL; } // Finalize the local symbols. Here we record the file offset at // which they should be output, we add their names to *POOL, and we // add their values to THIS->LOCAL_VALUES_. Return the symbol index. // This function is always called from the main thread. The actual // output of the local symbols will occur in a separate task. template unsigned int Sized_relobj::do_finalize_local_symbols(unsigned int index, off_t off, Stringpool* pool) { gold_assert(this->symtab_shndx_ != -1U); if (this->symtab_shndx_ == 0) { // This object has no symbols. Weird but legal. return index; } gold_assert(off == static_cast(align_address(off, size >> 3))); this->local_symbol_offset_ = off; // Read the symbol table section header. const unsigned int symtab_shndx = this->symtab_shndx_; typename This::Shdr symtabshdr(this, this->elf_file_.section_header(symtab_shndx)); gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); // Read the local symbols. const int sym_size = This::sym_size; const unsigned int loccount = this->local_symbol_count_; gold_assert(loccount == symtabshdr.get_sh_info()); off_t locsize = loccount * sym_size; const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), locsize, true); this->local_values_.resize(loccount); // Read the symbol names. const unsigned int strtab_shndx = symtabshdr.get_sh_link(); off_t strtab_size; const unsigned char* pnamesu = this->section_contents(strtab_shndx, &strtab_size, true); const char* pnames = reinterpret_cast(pnamesu); // Loop over the local symbols. const std::vector& mo(this->map_to_output()); unsigned int shnum = this->shnum(); unsigned int count = 0; // Skip the first, dummy, symbol. psyms += sym_size; for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) { elfcpp::Sym sym(psyms); Symbol_value& lv(this->local_values_[i]); unsigned int shndx = sym.get_st_shndx(); lv.set_input_shndx(shndx); if (sym.get_st_type() == elfcpp::STT_SECTION) lv.set_is_section_symbol(); if (shndx >= elfcpp::SHN_LORESERVE) { if (shndx == elfcpp::SHN_ABS) lv.set_output_value(sym.get_st_value()); else { // FIXME: Handle SHN_XINDEX. fprintf(stderr, _("%s: %s: unknown section index %u " "for local symbol %u\n"), program_name, this->name().c_str(), shndx, i); gold_exit(false); } } else { if (shndx >= shnum) { fprintf(stderr, _("%s: %s: local symbol %u section index %u " "out of range\n"), program_name, this->name().c_str(), i, shndx); gold_exit(false); } Output_section* os = mo[shndx].output_section; if (os == NULL) { lv.set_output_value(0); lv.set_no_output_symtab_entry(); continue; } if (mo[shndx].offset == -1) lv.set_input_value(sym.get_st_value()); else lv.set_output_value(mo[shndx].output_section->address() + mo[shndx].offset + sym.get_st_value()); } // Decide whether this symbol should go into the output file. if (sym.get_st_type() == elfcpp::STT_SECTION) { lv.set_no_output_symtab_entry(); continue; } if (sym.get_st_name() >= strtab_size) { fprintf(stderr, _("%s: %s: local symbol %u section name " "out of range: %u >= %u\n"), program_name, this->name().c_str(), i, sym.get_st_name(), static_cast(strtab_size)); gold_exit(false); } const char* name = pnames + sym.get_st_name(); pool->add(name, NULL); lv.set_output_symtab_index(index); ++index; ++count; } this->output_local_symbol_count_ = count; return index; } // Return the value of a local symbol defined in input section SHNDX, // with value VALUE, adding addend ADDEND. IS_SECTION_SYMBOL // indicates whether the symbol is a section symbol. This handles // SHF_MERGE sections. template typename elfcpp::Elf_types::Elf_Addr Sized_relobj::local_value(unsigned int shndx, Address value, bool is_section_symbol, Address addend) const { const std::vector& mo(this->map_to_output()); Output_section* os = mo[shndx].output_section; if (os == NULL) return addend; gold_assert(mo[shndx].offset == -1); // Do the mapping required by the output section. If this is not a // section symbol, then we want to map the symbol value, and then // include the addend. If this is a section symbol, then we need to // include the addend to figure out where in the section we are, // before we do the mapping. This will do the right thing provided // the assembler is careful to only convert a relocation in a merged // section to a section symbol if there is a zero addend. If the // assembler does not do this, then in general we can't know what to // do, because we can't distinguish the addend for the instruction // format from the addend for the section offset. if (is_section_symbol) return os->output_address(this, shndx, value + addend); else return addend + os->output_address(this, shndx, value); } // Write out the local symbols. template void Sized_relobj::write_local_symbols(Output_file* of, const Stringpool* sympool) { gold_assert(this->symtab_shndx_ != -1U); if (this->symtab_shndx_ == 0) { // This object has no symbols. Weird but legal. return; } // Read the symbol table section header. const unsigned int symtab_shndx = this->symtab_shndx_; typename This::Shdr symtabshdr(this, this->elf_file_.section_header(symtab_shndx)); gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); const unsigned int loccount = this->local_symbol_count_; gold_assert(loccount == symtabshdr.get_sh_info()); // Read the local symbols. const int sym_size = This::sym_size; off_t locsize = loccount * sym_size; const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), locsize, false); // Read the symbol names. const unsigned int strtab_shndx = symtabshdr.get_sh_link(); off_t strtab_size; const unsigned char* pnamesu = this->section_contents(strtab_shndx, &strtab_size, true); const char* pnames = reinterpret_cast(pnamesu); // Get a view into the output file. off_t output_size = this->output_local_symbol_count_ * sym_size; unsigned char* oview = of->get_output_view(this->local_symbol_offset_, output_size); const std::vector& mo(this->map_to_output()); gold_assert(this->local_values_.size() == loccount); unsigned char* ov = oview; psyms += sym_size; for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) { elfcpp::Sym isym(psyms); if (!this->local_values_[i].needs_output_symtab_entry()) continue; unsigned int st_shndx = isym.get_st_shndx(); if (st_shndx < elfcpp::SHN_LORESERVE) { gold_assert(st_shndx < mo.size()); if (mo[st_shndx].output_section == NULL) continue; st_shndx = mo[st_shndx].output_section->out_shndx(); } elfcpp::Sym_write osym(ov); gold_assert(isym.get_st_name() < strtab_size); const char* name = pnames + isym.get_st_name(); osym.put_st_name(sympool->get_offset(name)); osym.put_st_value(this->local_values_[i].value(this, 0)); osym.put_st_size(isym.get_st_size()); osym.put_st_info(isym.get_st_info()); osym.put_st_other(isym.get_st_other()); osym.put_st_shndx(st_shndx); ov += sym_size; } gold_assert(ov - oview == output_size); of->write_output_view(this->local_symbol_offset_, output_size, oview); } // Input_objects methods. // Add a regular relocatable object to the list. Return false if this // object should be ignored. bool Input_objects::add_object(Object* obj) { if (!obj->is_dynamic()) this->relobj_list_.push_back(static_cast(obj)); else { // See if this is a duplicate SONAME. Dynobj* dynobj = static_cast(obj); std::pair::iterator, bool> ins = this->sonames_.insert(dynobj->soname()); if (!ins.second) { // We have already seen a dynamic object with this soname. return false; } this->dynobj_list_.push_back(dynobj); } Target* target = obj->target(); if (this->target_ == NULL) this->target_ = target; else if (this->target_ != target) { fprintf(stderr, "%s: %s: incompatible target\n", program_name, obj->name().c_str()); gold_exit(false); } set_parameters_size_and_endianness(target->get_size(), target->is_big_endian()); return true; } // Relocate_info methods. // Return a string describing the location of a relocation. This is // only used in error messages. template std::string Relocate_info::location(size_t relnum, off_t) const { std::string ret(this->object->name()); ret += ": reloc "; char buf[100]; snprintf(buf, sizeof buf, "%zu", relnum); ret += buf; ret += " in reloc section "; snprintf(buf, sizeof buf, "%u", this->reloc_shndx); ret += buf; ret += " (" + this->object->section_name(this->reloc_shndx); ret += ") for section "; snprintf(buf, sizeof buf, "%u", this->data_shndx); ret += buf; ret += " (" + this->object->section_name(this->data_shndx) + ")"; return ret; } } // End namespace gold. namespace { using namespace gold; // Read an ELF file with the header and return the appropriate // instance of Object. template Object* make_elf_sized_object(const std::string& name, Input_file* input_file, off_t offset, const elfcpp::Ehdr& ehdr) { int et = ehdr.get_e_type(); if (et == elfcpp::ET_REL) { Sized_relobj* obj = new Sized_relobj(name, input_file, offset, ehdr); obj->setup(ehdr); return obj; } else if (et == elfcpp::ET_DYN) { Sized_dynobj* obj = new Sized_dynobj(name, input_file, offset, ehdr); obj->setup(ehdr); return obj; } else { fprintf(stderr, _("%s: %s: unsupported ELF file type %d\n"), program_name, name.c_str(), et); gold_exit(false); } } } // End anonymous namespace. namespace gold { // Read an ELF file and return the appropriate instance of Object. Object* make_elf_object(const std::string& name, Input_file* input_file, off_t offset, const unsigned char* p, off_t bytes) { if (bytes < elfcpp::EI_NIDENT) { fprintf(stderr, _("%s: %s: ELF file too short\n"), program_name, name.c_str()); gold_exit(false); } int v = p[elfcpp::EI_VERSION]; if (v != elfcpp::EV_CURRENT) { if (v == elfcpp::EV_NONE) fprintf(stderr, _("%s: %s: invalid ELF version 0\n"), program_name, name.c_str()); else fprintf(stderr, _("%s: %s: unsupported ELF version %d\n"), program_name, name.c_str(), v); gold_exit(false); } int c = p[elfcpp::EI_CLASS]; if (c == elfcpp::ELFCLASSNONE) { fprintf(stderr, _("%s: %s: invalid ELF class 0\n"), program_name, name.c_str()); gold_exit(false); } else if (c != elfcpp::ELFCLASS32 && c != elfcpp::ELFCLASS64) { fprintf(stderr, _("%s: %s: unsupported ELF class %d\n"), program_name, name.c_str(), c); gold_exit(false); } int d = p[elfcpp::EI_DATA]; if (d == elfcpp::ELFDATANONE) { fprintf(stderr, _("%s: %s: invalid ELF data encoding\n"), program_name, name.c_str()); gold_exit(false); } else if (d != elfcpp::ELFDATA2LSB && d != elfcpp::ELFDATA2MSB) { fprintf(stderr, _("%s: %s: unsupported ELF data encoding %d\n"), program_name, name.c_str(), d); gold_exit(false); } bool big_endian = d == elfcpp::ELFDATA2MSB; if (c == elfcpp::ELFCLASS32) { if (bytes < elfcpp::Elf_sizes<32>::ehdr_size) { fprintf(stderr, _("%s: %s: ELF file too short\n"), program_name, name.c_str()); gold_exit(false); } if (big_endian) { #ifdef HAVE_TARGET_32_BIG elfcpp::Ehdr<32, true> ehdr(p); return make_elf_sized_object<32, true>(name, input_file, offset, ehdr); #else fprintf(stderr, _("%s: %s: not configured to support 32-bit big-endian object\n"), program_name, name.c_str()); gold_exit(false); #endif } else { #ifdef HAVE_TARGET_32_LITTLE elfcpp::Ehdr<32, false> ehdr(p); return make_elf_sized_object<32, false>(name, input_file, offset, ehdr); #else fprintf(stderr, _("%s: %s: not configured to support 32-bit little-endian object\n"), program_name, name.c_str()); gold_exit(false); #endif } } else { if (bytes < elfcpp::Elf_sizes<32>::ehdr_size) { fprintf(stderr, _("%s: %s: ELF file too short\n"), program_name, name.c_str()); gold_exit(false); } if (big_endian) { #ifdef HAVE_TARGET_64_BIG elfcpp::Ehdr<64, true> ehdr(p); return make_elf_sized_object<64, true>(name, input_file, offset, ehdr); #else fprintf(stderr, _("%s: %s: not configured to support 64-bit big-endian object\n"), program_name, name.c_str()); gold_exit(false); #endif } else { #ifdef HAVE_TARGET_64_LITTLE elfcpp::Ehdr<64, false> ehdr(p); return make_elf_sized_object<64, false>(name, input_file, offset, ehdr); #else fprintf(stderr, _("%s: %s: not configured to support 64-bit little-endian object\n"), program_name, name.c_str()); gold_exit(false); #endif } } } // Instantiate the templates we need. We could use the configure // script to restrict this to only the ones for implemented targets. #ifdef HAVE_TARGET_32_LITTLE template class Sized_relobj<32, false>; #endif #ifdef HAVE_TARGET_32_BIG template class Sized_relobj<32, true>; #endif #ifdef HAVE_TARGET_64_LITTLE template class Sized_relobj<64, false>; #endif #ifdef HAVE_TARGET_64_BIG template class Sized_relobj<64, true>; #endif #ifdef HAVE_TARGET_32_LITTLE template struct Relocate_info<32, false>; #endif #ifdef HAVE_TARGET_32_BIG template struct Relocate_info<32, true>; #endif #ifdef HAVE_TARGET_64_LITTLE template struct Relocate_info<64, false>; #endif #ifdef HAVE_TARGET_64_BIG template struct Relocate_info<64, true>; #endif } // End namespace gold.