// mips.cc -- mips target support for gold. // Copyright (C) 2011-2016 Free Software Foundation, Inc. // Written by Sasa Stankovic // and Aleksandar Simeonov . // This file contains borrowed and adapted code from bfd/elfxx-mips.c. // This file is part of gold. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #include "gold.h" #include #include #include #include "demangle.h" #include "elfcpp.h" #include "parameters.h" #include "reloc.h" #include "mips.h" #include "object.h" #include "symtab.h" #include "layout.h" #include "output.h" #include "copy-relocs.h" #include "target.h" #include "target-reloc.h" #include "target-select.h" #include "tls.h" #include "errors.h" #include "gc.h" #include "attributes.h" #include "nacl.h" namespace { using namespace gold; template class Mips_output_data_plt; template class Mips_output_data_got; template class Target_mips; template class Mips_output_section_reginfo; template class Mips_output_data_la25_stub; template class Mips_output_data_mips_stubs; template class Mips_symbol; template class Mips_got_info; template class Mips_relobj; class Mips16_stub_section_base; template class Mips16_stub_section; // The ABI says that every symbol used by dynamic relocations must have // a global GOT entry. Among other things, this provides the dynamic // linker with a free, directly-indexed cache. The GOT can therefore // contain symbols that are not referenced by GOT relocations themselves // (in other words, it may have symbols that are not referenced by things // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE). // GOT relocations are less likely to overflow if we put the associated // GOT entries towards the beginning. We therefore divide the global // GOT entries into two areas: "normal" and "reloc-only". Entries in // the first area can be used for both dynamic relocations and GP-relative // accesses, while those in the "reloc-only" area are for dynamic // relocations only. // These GGA_* ("Global GOT Area") values are organised so that lower // values are more general than higher values. Also, non-GGA_NONE // values are ordered by the position of the area in the GOT. enum Global_got_area { GGA_NORMAL = 0, GGA_RELOC_ONLY = 1, GGA_NONE = 2 }; // The types of GOT entries needed for this platform. // These values are exposed to the ABI in an incremental link. // Do not renumber existing values without changing the version // number of the .gnu_incremental_inputs section. enum Got_type { GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links. GOT_TYPE_STANDARD_MULTIGOT = 3, GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024, GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024 }; // TLS type of GOT entry. enum Got_tls_type { GOT_TLS_NONE = 0, GOT_TLS_GD = 1, GOT_TLS_LDM = 2, GOT_TLS_IE = 4 }; // Values found in the r_ssym field of a relocation entry. enum Special_relocation_symbol { RSS_UNDEF = 0, // None - value is zero. RSS_GP = 1, // Value of GP. RSS_GP0 = 2, // Value of GP in object being relocated. RSS_LOC = 3 // Address of location being relocated. }; // Whether the section is readonly. static inline bool is_readonly_section(Output_section* output_section) { elfcpp::Elf_Xword section_flags = output_section->flags(); elfcpp::Elf_Word section_type = output_section->type(); if (section_type == elfcpp::SHT_NOBITS) return false; if (section_flags & elfcpp::SHF_WRITE) return false; return true; } // Return TRUE if a relocation of type R_TYPE from OBJECT might // require an la25 stub. See also local_pic_function, which determines // whether the destination function ever requires a stub. template static inline bool relocation_needs_la25_stub(Mips_relobj* object, unsigned int r_type, bool target_is_16_bit_code) { // We specifically ignore branches and jumps from EF_PIC objects, // where the onus is on the compiler or programmer to perform any // necessary initialization of $25. Sometimes such initialization // is unnecessary; for example, -mno-shared functions do not use // the incoming value of $25, and may therefore be called directly. if (object->is_pic()) return false; switch (r_type) { case elfcpp::R_MIPS_26: case elfcpp::R_MIPS_PC16: case elfcpp::R_MICROMIPS_26_S1: case elfcpp::R_MICROMIPS_PC7_S1: case elfcpp::R_MICROMIPS_PC10_S1: case elfcpp::R_MICROMIPS_PC16_S1: case elfcpp::R_MICROMIPS_PC23_S2: return true; case elfcpp::R_MIPS16_26: return !target_is_16_bit_code; default: return false; } } // Return true if SYM is a locally-defined PIC function, in the sense // that it or its fn_stub might need $25 to be valid on entry. // Note that MIPS16 functions set up $gp using PC-relative instructions, // so they themselves never need $25 to be valid. Only non-MIPS16 // entry points are of interest here. template static inline bool local_pic_function(Mips_symbol* sym) { bool def_regular = (sym->source() == Symbol::FROM_OBJECT && !sym->object()->is_dynamic() && !sym->is_undefined()); if (sym->is_defined() && def_regular) { Mips_relobj* object = static_cast*>(sym->object()); if ((object->is_pic() || sym->is_pic()) && (!sym->is_mips16() || (sym->has_mips16_fn_stub() && sym->need_fn_stub()))) return true; } return false; } static inline bool hi16_reloc(int r_type) { return (r_type == elfcpp::R_MIPS_HI16 || r_type == elfcpp::R_MIPS16_HI16 || r_type == elfcpp::R_MICROMIPS_HI16); } static inline bool lo16_reloc(int r_type) { return (r_type == elfcpp::R_MIPS_LO16 || r_type == elfcpp::R_MIPS16_LO16 || r_type == elfcpp::R_MICROMIPS_LO16); } static inline bool got16_reloc(unsigned int r_type) { return (r_type == elfcpp::R_MIPS_GOT16 || r_type == elfcpp::R_MIPS16_GOT16 || r_type == elfcpp::R_MICROMIPS_GOT16); } static inline bool call_lo16_reloc(unsigned int r_type) { return (r_type == elfcpp::R_MIPS_CALL_LO16 || r_type == elfcpp::R_MICROMIPS_CALL_LO16); } static inline bool got_lo16_reloc(unsigned int r_type) { return (r_type == elfcpp::R_MIPS_GOT_LO16 || r_type == elfcpp::R_MICROMIPS_GOT_LO16); } static inline bool eh_reloc(unsigned int r_type) { return (r_type == elfcpp::R_MIPS_EH); } static inline bool got_disp_reloc(unsigned int r_type) { return (r_type == elfcpp::R_MIPS_GOT_DISP || r_type == elfcpp::R_MICROMIPS_GOT_DISP); } static inline bool got_page_reloc(unsigned int r_type) { return (r_type == elfcpp::R_MIPS_GOT_PAGE || r_type == elfcpp::R_MICROMIPS_GOT_PAGE); } static inline bool tls_gd_reloc(unsigned int r_type) { return (r_type == elfcpp::R_MIPS_TLS_GD || r_type == elfcpp::R_MIPS16_TLS_GD || r_type == elfcpp::R_MICROMIPS_TLS_GD); } static inline bool tls_gottprel_reloc(unsigned int r_type) { return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL); } static inline bool tls_ldm_reloc(unsigned int r_type) { return (r_type == elfcpp::R_MIPS_TLS_LDM || r_type == elfcpp::R_MIPS16_TLS_LDM || r_type == elfcpp::R_MICROMIPS_TLS_LDM); } static inline bool mips16_call_reloc(unsigned int r_type) { return (r_type == elfcpp::R_MIPS16_26 || r_type == elfcpp::R_MIPS16_CALL16); } static inline bool jal_reloc(unsigned int r_type) { return (r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS16_26 || r_type == elfcpp::R_MICROMIPS_26_S1); } static inline bool micromips_branch_reloc(unsigned int r_type) { return (r_type == elfcpp::R_MICROMIPS_26_S1 || r_type == elfcpp::R_MICROMIPS_PC16_S1 || r_type == elfcpp::R_MICROMIPS_PC10_S1 || r_type == elfcpp::R_MICROMIPS_PC7_S1); } // Check if R_TYPE is a MIPS16 reloc. static inline bool mips16_reloc(unsigned int r_type) { switch (r_type) { case elfcpp::R_MIPS16_26: case elfcpp::R_MIPS16_GPREL: case elfcpp::R_MIPS16_GOT16: case elfcpp::R_MIPS16_CALL16: case elfcpp::R_MIPS16_HI16: case elfcpp::R_MIPS16_LO16: case elfcpp::R_MIPS16_TLS_GD: case elfcpp::R_MIPS16_TLS_LDM: case elfcpp::R_MIPS16_TLS_DTPREL_HI16: case elfcpp::R_MIPS16_TLS_DTPREL_LO16: case elfcpp::R_MIPS16_TLS_GOTTPREL: case elfcpp::R_MIPS16_TLS_TPREL_HI16: case elfcpp::R_MIPS16_TLS_TPREL_LO16: return true; default: return false; } } // Check if R_TYPE is a microMIPS reloc. static inline bool micromips_reloc(unsigned int r_type) { switch (r_type) { case elfcpp::R_MICROMIPS_26_S1: case elfcpp::R_MICROMIPS_HI16: case elfcpp::R_MICROMIPS_LO16: case elfcpp::R_MICROMIPS_GPREL16: case elfcpp::R_MICROMIPS_LITERAL: case elfcpp::R_MICROMIPS_GOT16: case elfcpp::R_MICROMIPS_PC7_S1: case elfcpp::R_MICROMIPS_PC10_S1: case elfcpp::R_MICROMIPS_PC16_S1: case elfcpp::R_MICROMIPS_CALL16: case elfcpp::R_MICROMIPS_GOT_DISP: case elfcpp::R_MICROMIPS_GOT_PAGE: case elfcpp::R_MICROMIPS_GOT_OFST: case elfcpp::R_MICROMIPS_GOT_HI16: case elfcpp::R_MICROMIPS_GOT_LO16: case elfcpp::R_MICROMIPS_SUB: case elfcpp::R_MICROMIPS_HIGHER: case elfcpp::R_MICROMIPS_HIGHEST: case elfcpp::R_MICROMIPS_CALL_HI16: case elfcpp::R_MICROMIPS_CALL_LO16: case elfcpp::R_MICROMIPS_SCN_DISP: case elfcpp::R_MICROMIPS_JALR: case elfcpp::R_MICROMIPS_HI0_LO16: case elfcpp::R_MICROMIPS_TLS_GD: case elfcpp::R_MICROMIPS_TLS_LDM: case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16: case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16: case elfcpp::R_MICROMIPS_TLS_GOTTPREL: case elfcpp::R_MICROMIPS_TLS_TPREL_HI16: case elfcpp::R_MICROMIPS_TLS_TPREL_LO16: case elfcpp::R_MICROMIPS_GPREL7_S2: case elfcpp::R_MICROMIPS_PC23_S2: return true; default: return false; } } static inline bool is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc) { switch (high_reloc) { case elfcpp::R_MIPS_HI16: case elfcpp::R_MIPS_GOT16: return lo16_reloc == elfcpp::R_MIPS_LO16; case elfcpp::R_MIPS16_HI16: case elfcpp::R_MIPS16_GOT16: return lo16_reloc == elfcpp::R_MIPS16_LO16; case elfcpp::R_MICROMIPS_HI16: case elfcpp::R_MICROMIPS_GOT16: return lo16_reloc == elfcpp::R_MICROMIPS_LO16; default: return false; } } // This class is used to hold information about one GOT entry. // There are three types of entry: // // (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object // (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM) // (2) a SYMBOL address, where SYMBOL is not local to an input object // (sym != NULL, symndx == -1) // (3) a TLS LDM slot (there's only one of these per GOT.) // (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM) template class Mips_got_entry { typedef typename elfcpp::Elf_types::Elf_Addr Mips_address; public: Mips_got_entry(Mips_relobj* object, unsigned int symndx, Mips_address addend, unsigned char tls_type, unsigned int shndx, bool is_section_symbol) : addend_(addend), symndx_(symndx), tls_type_(tls_type), is_section_symbol_(is_section_symbol), shndx_(shndx) { this->d.object = object; } Mips_got_entry(Mips_symbol* sym, unsigned char tls_type) : addend_(0), symndx_(-1U), tls_type_(tls_type), is_section_symbol_(false), shndx_(-1U) { this->d.sym = sym; } // Return whether this entry is for a local symbol. bool is_for_local_symbol() const { return this->symndx_ != -1U; } // Return whether this entry is for a global symbol. bool is_for_global_symbol() const { return this->symndx_ == -1U; } // Return the hash of this entry. size_t hash() const { if (this->tls_type_ == GOT_TLS_LDM) return this->symndx_ + (1 << 18); size_t name_hash_value = gold::string_hash( (this->symndx_ != -1U) ? this->d.object->name().c_str() : this->d.sym->name()); size_t addend = this->addend_; return name_hash_value ^ this->symndx_ ^ addend; } // Return whether this entry is equal to OTHER. bool equals(Mips_got_entry* other) const { if (this->tls_type_ == GOT_TLS_LDM) return true; return ((this->tls_type_ == other->tls_type_) && (this->symndx_ == other->symndx_) && ((this->symndx_ != -1U) ? (this->d.object == other->d.object) : (this->d.sym == other->d.sym)) && (this->addend_ == other->addend_)); } // Return input object that needs this GOT entry. Mips_relobj* object() const { gold_assert(this->symndx_ != -1U); return this->d.object; } // Return local symbol index for local GOT entries. unsigned int symndx() const { gold_assert(this->symndx_ != -1U); return this->symndx_; } // Return the relocation addend for local GOT entries. Mips_address addend() const { return this->addend_; } // Return global symbol for global GOT entries. Mips_symbol* sym() const { gold_assert(this->symndx_ == -1U); return this->d.sym; } // Return whether this is a TLS GOT entry. bool is_tls_entry() const { return this->tls_type_ != GOT_TLS_NONE; } // Return TLS type of this GOT entry. unsigned char tls_type() const { return this->tls_type_; } // Return section index of the local symbol for local GOT entries. unsigned int shndx() const { return this->shndx_; } // Return whether this is a STT_SECTION symbol. bool is_section_symbol() const { return this->is_section_symbol_; } private: // The addend. Mips_address addend_; // The index of the symbol if we have a local symbol; -1 otherwise. unsigned int symndx_; union { // The input object for local symbols that needs the GOT entry. Mips_relobj* object; // If symndx == -1, the global symbol corresponding to this GOT entry. The // symbol's entry is in the local area if mips_sym->global_got_area is // GGA_NONE, otherwise it is in the global area. Mips_symbol* sym; } d; // The TLS type of this GOT entry. An LDM GOT entry will be a local // symbol entry with r_symndx == 0. unsigned char tls_type_; // Whether this is a STT_SECTION symbol. bool is_section_symbol_; // For local GOT entries, section index of the local symbol. unsigned int shndx_; }; // Hash for Mips_got_entry. template class Mips_got_entry_hash { public: size_t operator()(Mips_got_entry* entry) const { return entry->hash(); } }; // Equality for Mips_got_entry. template class Mips_got_entry_eq { public: bool operator()(Mips_got_entry* e1, Mips_got_entry* e2) const { return e1->equals(e2); } }; // Hash for Mips_symbol. template class Mips_symbol_hash { public: size_t operator()(Mips_symbol* sym) const { return sym->hash(); } }; // Got_page_range. This class describes a range of addends: [MIN_ADDEND, // MAX_ADDEND]. The instances form a non-overlapping list that is sorted by // increasing MIN_ADDEND. struct Got_page_range { Got_page_range() : next(NULL), min_addend(0), max_addend(0) { } Got_page_range* next; int min_addend; int max_addend; // Return the maximum number of GOT page entries required. int get_max_pages() { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; } }; // Got_page_entry. This class describes the range of addends that are applied // to page relocations against a given symbol. struct Got_page_entry { Got_page_entry() : object(NULL), symndx(-1U), ranges(NULL), num_pages(0) { } Got_page_entry(Object* object_, unsigned int symndx_) : object(object_), symndx(symndx_), ranges(NULL), num_pages(0) { } // The input object that needs the GOT page entry. Object* object; // The index of the symbol, as stored in the relocation r_info. unsigned int symndx; // The ranges for this page entry. Got_page_range* ranges; // The maximum number of page entries needed for RANGES. unsigned int num_pages; }; // Hash for Got_page_entry. struct Got_page_entry_hash { size_t operator()(Got_page_entry* entry) const { return reinterpret_cast(entry->object) + entry->symndx; } }; // Equality for Got_page_entry. struct Got_page_entry_eq { bool operator()(Got_page_entry* entry1, Got_page_entry* entry2) const { return entry1->object == entry2->object && entry1->symndx == entry2->symndx; } }; // This class is used to hold .got information when linking. template class Mips_got_info { typedef typename elfcpp::Elf_types::Elf_Addr Mips_address; typedef Output_data_reloc Reloc_section; typedef Unordered_map Got_page_offsets; // Unordered set of GOT entries. typedef Unordered_set*, Mips_got_entry_hash, Mips_got_entry_eq > Got_entry_set; // Unordered set of GOT page entries. typedef Unordered_set Got_page_entry_set; // Unordered set of global GOT entries. typedef Unordered_set*, Mips_symbol_hash > Global_got_entry_set; public: Mips_got_info() : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0), tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(), got_entries_(), got_page_entries_(), got_page_offset_start_(0), got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U), offset_(0) { } // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT. void record_local_got_symbol(Mips_relobj* object, unsigned int symndx, Mips_address addend, unsigned int r_type, unsigned int shndx, bool is_section_symbol); // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM, // in OBJECT. FOR_CALL is true if the caller is only interested in // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic // relocation. void record_global_got_symbol(Mips_symbol* mips_sym, Mips_relobj* object, unsigned int r_type, bool dyn_reloc, bool for_call); // Add ENTRY to master GOT and to OBJECT's GOT. void record_got_entry(Mips_got_entry* entry, Mips_relobj* object); // Record that OBJECT has a page relocation against symbol SYMNDX and // that ADDEND is the addend for that relocation. void record_got_page_entry(Mips_relobj* object, unsigned int symndx, int addend); // Create all entries that should be in the local part of the GOT. void add_local_entries(Target_mips* target, Layout* layout); // Create GOT page entries. void add_page_entries(Target_mips* target, Layout* layout); // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY. void add_global_entries(Target_mips* target, Layout* layout, unsigned int non_reloc_only_global_gotno); // Create global GOT entries that should be in the GGA_RELOC_ONLY area. void add_reloc_only_entries(Mips_output_data_got* got); // Create TLS GOT entries. void add_tls_entries(Target_mips* target, Layout* layout); // Decide whether the symbol needs an entry in the global part of the primary // GOT, setting global_got_area accordingly. Count the number of global // symbols that are in the primary GOT only because they have dynamic // relocations R_MIPS_REL32 against them (reloc_only_gotno). void count_got_symbols(Symbol_table* symtab); // Return the offset of GOT page entry for VALUE. unsigned int get_got_page_offset(Mips_address value, Mips_output_data_got* got); // Count the number of GOT entries required. void count_got_entries(); // Count the number of GOT entries required by ENTRY. Accumulate the result. void count_got_entry(Mips_got_entry* entry); // Add FROM's GOT entries. void add_got_entries(Mips_got_info* from); // Add FROM's GOT page entries. void add_got_page_entries(Mips_got_info* from); // Return GOT size. unsigned int got_size() const { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_ + this->tls_gotno_) * size/8); } // Return the number of local GOT entries. unsigned int local_gotno() const { return this->local_gotno_; } // Return the maximum number of page GOT entries needed. unsigned int page_gotno() const { return this->page_gotno_; } // Return the number of global GOT entries. unsigned int global_gotno() const { return this->global_gotno_; } // Set the number of global GOT entries. void set_global_gotno(unsigned int global_gotno) { this->global_gotno_ = global_gotno; } // Return the number of GGA_RELOC_ONLY global GOT entries. unsigned int reloc_only_gotno() const { return this->reloc_only_gotno_; } // Return the number of TLS GOT entries. unsigned int tls_gotno() const { return this->tls_gotno_; } // Return the GOT type for this GOT. Used for multi-GOT links only. unsigned int multigot_got_type(unsigned int got_type) const { switch (got_type) { case GOT_TYPE_STANDARD: return GOT_TYPE_STANDARD_MULTIGOT + this->index_; case GOT_TYPE_TLS_OFFSET: return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_; case GOT_TYPE_TLS_PAIR: return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_; default: gold_unreachable(); } } // Remove lazy-binding stubs for global symbols in this GOT. void remove_lazy_stubs(Target_mips* target); // Return offset of this GOT from the start of .got section. unsigned int offset() const { return this->offset_; } // Set offset of this GOT from the start of .got section. void set_offset(unsigned int offset) { this->offset_ = offset; } // Set index of this GOT in multi-GOT links. void set_index(unsigned int index) { this->index_ = index; } // Return next GOT in multi-GOT links. Mips_got_info* next() const { return this->next_; } // Set next GOT in multi-GOT links. void set_next(Mips_got_info* next) { this->next_ = next; } // Return the offset of TLS LDM entry for this GOT. unsigned int tls_ldm_offset() const { return this->tls_ldm_offset_; } // Set the offset of TLS LDM entry for this GOT. void set_tls_ldm_offset(unsigned int tls_ldm_offset) { this->tls_ldm_offset_ = tls_ldm_offset; } Global_got_entry_set& global_got_symbols() { return this->global_got_symbols_; } // Return the GOT_TLS_* type required by relocation type R_TYPE. static int mips_elf_reloc_tls_type(unsigned int r_type) { if (tls_gd_reloc(r_type)) return GOT_TLS_GD; if (tls_ldm_reloc(r_type)) return GOT_TLS_LDM; if (tls_gottprel_reloc(r_type)) return GOT_TLS_IE; return GOT_TLS_NONE; } // Return the number of GOT slots needed for GOT TLS type TYPE. static int mips_tls_got_entries(unsigned int type) { switch (type) { case GOT_TLS_GD: case GOT_TLS_LDM: return 2; case GOT_TLS_IE: return 1; case GOT_TLS_NONE: return 0; default: gold_unreachable(); } } private: // The number of local GOT entries. unsigned int local_gotno_; // The maximum number of page GOT entries needed. unsigned int page_gotno_; // The number of global GOT entries. unsigned int global_gotno_; // The number of global GOT entries that are in the GGA_RELOC_ONLY area. unsigned int reloc_only_gotno_; // The number of TLS GOT entries. unsigned int tls_gotno_; // The offset of TLS LDM entry for this GOT. unsigned int tls_ldm_offset_; // All symbols that have global GOT entry. Global_got_entry_set global_got_symbols_; // A hash table holding GOT entries. Got_entry_set got_entries_; // A hash table of GOT page entries. Got_page_entry_set got_page_entries_; // The offset of first GOT page entry for this GOT. unsigned int got_page_offset_start_; // The offset of next available GOT page entry for this GOT. unsigned int got_page_offset_next_; // A hash table that maps GOT page entry value to the GOT offset where // the entry is located. Got_page_offsets got_page_offsets_; // In multi-GOT links, a pointer to the next GOT. Mips_got_info* next_; // Index of this GOT in multi-GOT links. unsigned int index_; // The offset of this GOT in multi-GOT links. unsigned int offset_; }; // This is a helper class used during relocation scan. It records GOT16 addend. template struct got16_addend { typedef typename elfcpp::Elf_types::Elf_Addr Mips_address; got16_addend(const Sized_relobj_file* _object, unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym, Mips_address _addend) : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym), addend(_addend) { } const Sized_relobj_file* object; unsigned int shndx; unsigned int r_type; unsigned int r_sym; Mips_address addend; }; // .MIPS.abiflags section content template struct Mips_abiflags { typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8; typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16; typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32; Mips_abiflags() : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0), cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0) { } // Version of flags structure. Valtype16 version; // The level of the ISA: 1-5, 32, 64. Valtype8 isa_level; // The revision of ISA: 0 for MIPS V and below, 1-n otherwise. Valtype8 isa_rev; // The size of general purpose registers. Valtype8 gpr_size; // The size of co-processor 1 registers. Valtype8 cpr1_size; // The size of co-processor 2 registers. Valtype8 cpr2_size; // The floating-point ABI. Valtype8 fp_abi; // Processor-specific extension. Valtype32 isa_ext; // Mask of ASEs used. Valtype32 ases; // Mask of general flags. Valtype32 flags1; Valtype32 flags2; }; // Mips_symbol class. Holds additional symbol information needed for Mips. template class Mips_symbol : public Sized_symbol { public: Mips_symbol() : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U), has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0), pointer_equality_needed_(false), global_got_area_(GGA_NONE), global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false), needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U), comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL), mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false) { } // Return whether this is a MIPS16 symbol. bool is_mips16() const { // (st_other & STO_MIPS16) == STO_MIPS16 return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2)) == elfcpp::STO_MIPS16 >> 2); } // Return whether this is a microMIPS symbol. bool is_micromips() const { // (st_other & STO_MIPS_ISA) == STO_MICROMIPS return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2)) == elfcpp::STO_MICROMIPS >> 2); } // Return whether the symbol needs MIPS16 fn_stub. bool need_fn_stub() const { return this->need_fn_stub_; } // Set that the symbol needs MIPS16 fn_stub. void set_need_fn_stub() { this->need_fn_stub_ = true; } // Return whether this symbol is referenced by branch relocations from // any non-PIC input file. bool has_nonpic_branches() const { return this->has_nonpic_branches_; } // Set that this symbol is referenced by branch relocations from // any non-PIC input file. void set_has_nonpic_branches() { this->has_nonpic_branches_ = true; } // Return the offset of the la25 stub for this symbol from the start of the // la25 stub section. unsigned int la25_stub_offset() const { return this->la25_stub_offset_; } // Set the offset of the la25 stub for this symbol from the start of the // la25 stub section. void set_la25_stub_offset(unsigned int offset) { this->la25_stub_offset_ = offset; } // Return whether the symbol has la25 stub. This is true if this symbol is // for a PIC function, and there are non-PIC branches and jumps to it. bool has_la25_stub() const { return this->la25_stub_offset_ != -1U; } // Return whether there is a relocation against this symbol that must be // resolved by the static linker (that is, the relocation cannot possibly // be made dynamic). bool has_static_relocs() const { return this->has_static_relocs_; } // Set that there is a relocation against this symbol that must be resolved // by the static linker (that is, the relocation cannot possibly be made // dynamic). void set_has_static_relocs() { this->has_static_relocs_ = true; } // Return whether we must not create a lazy-binding stub for this symbol. bool no_lazy_stub() const { return this->no_lazy_stub_; } // Set that we must not create a lazy-binding stub for this symbol. void set_no_lazy_stub() { this->no_lazy_stub_ = true; } // Return the offset of the lazy-binding stub for this symbol from the start // of .MIPS.stubs section. unsigned int lazy_stub_offset() const { return this->lazy_stub_offset_; } // Set the offset of the lazy-binding stub for this symbol from the start // of .MIPS.stubs section. void set_lazy_stub_offset(unsigned int offset) { this->lazy_stub_offset_ = offset; } // Return whether there are any relocations for this symbol where // pointer equality matters. bool pointer_equality_needed() const { return this->pointer_equality_needed_; } // Set that there are relocations for this symbol where pointer equality // matters. void set_pointer_equality_needed() { this->pointer_equality_needed_ = true; } // Return global GOT area where this symbol in located. Global_got_area global_got_area() const { return this->global_got_area_; } // Set global GOT area where this symbol in located. void set_global_got_area(Global_got_area global_got_area) { this->global_got_area_ = global_got_area; } // Return the global GOT offset for this symbol. For multi-GOT links, this // returns the offset from the start of .got section to the first GOT entry // for the symbol. Note that in multi-GOT links the symbol can have entry // in more than one GOT. unsigned int global_gotoffset() const { return this->global_gotoffset_; } // Set the global GOT offset for this symbol. Note that in multi-GOT links // the symbol can have entry in more than one GOT. This method will set // the offset only if it is less than current offset. void set_global_gotoffset(unsigned int offset) { if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_) this->global_gotoffset_ = offset; } // Return whether all GOT relocations for this symbol are for calls. bool got_only_for_calls() const { return this->got_only_for_calls_; } // Set that there is a GOT relocation for this symbol that is not for call. void set_got_not_only_for_calls() { this->got_only_for_calls_ = false; } // Return whether this is a PIC symbol. bool is_pic() const { // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2)) == (elfcpp::STO_MIPS_PIC >> 2)); } // Set the flag in st_other field that marks this symbol as PIC. void set_pic() { if (this->is_mips16()) // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC this->set_nonvis((this->nonvis() & ~((elfcpp::STO_MIPS16 >> 2) | (elfcpp::STO_MIPS_FLAGS >> 2))) | (elfcpp::STO_MIPS_PIC >> 2)); else // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2)) | (elfcpp::STO_MIPS_PIC >> 2)); } // Set the flag in st_other field that marks this symbol as PLT. void set_mips_plt() { if (this->is_mips16()) // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT this->set_nonvis((this->nonvis() & ((elfcpp::STO_MIPS16 >> 2) | ~(elfcpp::STO_MIPS_FLAGS >> 2))) | (elfcpp::STO_MIPS_PLT >> 2)); else // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2)) | (elfcpp::STO_MIPS_PLT >> 2)); } // Downcast a base pointer to a Mips_symbol pointer. static Mips_symbol* as_mips_sym(Symbol* sym) { return static_cast*>(sym); } // Downcast a base pointer to a Mips_symbol pointer. static const Mips_symbol* as_mips_sym(const Symbol* sym) { return static_cast*>(sym); } // Return whether the symbol has lazy-binding stub. bool has_lazy_stub() const { return this->has_lazy_stub_; } // Set whether the symbol has lazy-binding stub. void set_has_lazy_stub(bool has_lazy_stub) { this->has_lazy_stub_ = has_lazy_stub; } // Return whether the symbol needs a standard PLT entry. bool needs_mips_plt() const { return this->needs_mips_plt_; } // Set whether the symbol needs a standard PLT entry. void set_needs_mips_plt(bool needs_mips_plt) { this->needs_mips_plt_ = needs_mips_plt; } // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT // entry. bool needs_comp_plt() const { return this->needs_comp_plt_; } // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry. void set_needs_comp_plt(bool needs_comp_plt) { this->needs_comp_plt_ = needs_comp_plt; } // Return standard PLT entry offset, or -1 if none. unsigned int mips_plt_offset() const { return this->mips_plt_offset_; } // Set standard PLT entry offset. void set_mips_plt_offset(unsigned int mips_plt_offset) { this->mips_plt_offset_ = mips_plt_offset; } // Return whether the symbol has standard PLT entry. bool has_mips_plt_offset() const { return this->mips_plt_offset_ != -1U; } // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none. unsigned int comp_plt_offset() const { return this->comp_plt_offset_; } // Set compressed (MIPS16 or microMIPS) PLT entry offset. void set_comp_plt_offset(unsigned int comp_plt_offset) { this->comp_plt_offset_ = comp_plt_offset; } // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry. bool has_comp_plt_offset() const { return this->comp_plt_offset_ != -1U; } // Return MIPS16 fn stub for a symbol. template Mips16_stub_section* get_mips16_fn_stub() const { return static_cast*>(mips16_fn_stub_); } // Set MIPS16 fn stub for a symbol. void set_mips16_fn_stub(Mips16_stub_section_base* stub) { this->mips16_fn_stub_ = stub; } // Return whether symbol has MIPS16 fn stub. bool has_mips16_fn_stub() const { return this->mips16_fn_stub_ != NULL; } // Return MIPS16 call stub for a symbol. template Mips16_stub_section* get_mips16_call_stub() const { return static_cast*>( mips16_call_stub_); } // Set MIPS16 call stub for a symbol. void set_mips16_call_stub(Mips16_stub_section_base* stub) { this->mips16_call_stub_ = stub; } // Return whether symbol has MIPS16 call stub. bool has_mips16_call_stub() const { return this->mips16_call_stub_ != NULL; } // Return MIPS16 call_fp stub for a symbol. template Mips16_stub_section* get_mips16_call_fp_stub() const { return static_cast*>( mips16_call_fp_stub_); } // Set MIPS16 call_fp stub for a symbol. void set_mips16_call_fp_stub(Mips16_stub_section_base* stub) { this->mips16_call_fp_stub_ = stub; } // Return whether symbol has MIPS16 call_fp stub. bool has_mips16_call_fp_stub() const { return this->mips16_call_fp_stub_ != NULL; } bool get_applied_secondary_got_fixup() const { return applied_secondary_got_fixup_; } void set_applied_secondary_got_fixup() { this->applied_secondary_got_fixup_ = true; } // Return the hash of this symbol. size_t hash() const { return gold::string_hash(this->name()); } private: // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol // appears in any relocs other than a 16 bit call. bool need_fn_stub_; // True if this symbol is referenced by branch relocations from // any non-PIC input file. This is used to determine whether an // la25 stub is required. bool has_nonpic_branches_; // The offset of the la25 stub for this symbol from the start of the // la25 stub section. unsigned int la25_stub_offset_; // True if there is a relocation against this symbol that must be // resolved by the static linker (that is, the relocation cannot // possibly be made dynamic). bool has_static_relocs_; // Whether we must not create a lazy-binding stub for this symbol. // This is true if the symbol has relocations related to taking the // function's address. bool no_lazy_stub_; // The offset of the lazy-binding stub for this symbol from the start of // .MIPS.stubs section. unsigned int lazy_stub_offset_; // True if there are any relocations for this symbol where pointer equality // matters. bool pointer_equality_needed_; // Global GOT area where this symbol in located, or GGA_NONE if symbol is not // in the global part of the GOT. Global_got_area global_got_area_; // The global GOT offset for this symbol. For multi-GOT links, this is offset // from the start of .got section to the first GOT entry for the symbol. // Note that in multi-GOT links the symbol can have entry in more than one GOT. unsigned int global_gotoffset_; // Whether all GOT relocations for this symbol are for calls. bool got_only_for_calls_; // Whether the symbol has lazy-binding stub. bool has_lazy_stub_; // Whether the symbol needs a standard PLT entry. bool needs_mips_plt_; // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry. bool needs_comp_plt_; // Standard PLT entry offset, or -1 if none. unsigned int mips_plt_offset_; // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none. unsigned int comp_plt_offset_; // MIPS16 fn stub for a symbol. Mips16_stub_section_base* mips16_fn_stub_; // MIPS16 call stub for a symbol. Mips16_stub_section_base* mips16_call_stub_; // MIPS16 call_fp stub for a symbol. Mips16_stub_section_base* mips16_call_fp_stub_; bool applied_secondary_got_fixup_; }; // Mips16_stub_section class. // The mips16 compiler uses a couple of special sections to handle // floating point arguments. // Section names that look like .mips16.fn.FNNAME contain stubs that // copy floating point arguments from the fp regs to the gp regs and // then jump to FNNAME. If any 32 bit function calls FNNAME, the // call should be redirected to the stub instead. If no 32 bit // function calls FNNAME, the stub should be discarded. We need to // consider any reference to the function, not just a call, because // if the address of the function is taken we will need the stub, // since the address might be passed to a 32 bit function. // Section names that look like .mips16.call.FNNAME contain stubs // that copy floating point arguments from the gp regs to the fp // regs and then jump to FNNAME. If FNNAME is a 32 bit function, // then any 16 bit function that calls FNNAME should be redirected // to the stub instead. If FNNAME is not a 32 bit function, the // stub should be discarded. // .mips16.call.fp.FNNAME sections are similar, but contain stubs // which call FNNAME and then copy the return value from the fp regs // to the gp regs. These stubs store the return address in $18 while // calling FNNAME; any function which might call one of these stubs // must arrange to save $18 around the call. (This case is not // needed for 32 bit functions that call 16 bit functions, because // 16 bit functions always return floating point values in both // $f0/$f1 and $2/$3.) // Note that in all cases FNNAME might be defined statically. // Therefore, FNNAME is not used literally. Instead, the relocation // information will indicate which symbol the section is for. // We record any stubs that we find in the symbol table. // TODO(sasa): All mips16 stub sections should be emitted in the .text section. class Mips16_stub_section_base { }; template class Mips16_stub_section : public Mips16_stub_section_base { typedef typename elfcpp::Elf_types::Elf_Addr Mips_address; public: Mips16_stub_section(Mips_relobj* object, unsigned int shndx) : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL), found_r_mips_none_(false) { gold_assert(object->is_mips16_fn_stub_section(shndx) || object->is_mips16_call_stub_section(shndx) || object->is_mips16_call_fp_stub_section(shndx)); } // Return the object of this stub section. Mips_relobj* object() const { return this->object_; } // Return the size of a section. uint64_t section_size() const { return this->object_->section_size(this->shndx_); } // Return section index of this stub section. unsigned int shndx() const { return this->shndx_; } // Return symbol index, if stub is for a local function. unsigned int r_sym() const { return this->r_sym_; } // Return symbol, if stub is for a global function. Mips_symbol* gsym() const { return this->gsym_; } // Return whether stub is for a local function. bool is_for_local_function() const { return this->gsym_ == NULL; } // This method is called when a new relocation R_TYPE for local symbol R_SYM // is found in the stub section. Try to find stub target. void new_local_reloc_found(unsigned int r_type, unsigned int r_sym) { // To find target symbol for this stub, trust the first R_MIPS_NONE // relocation, if any. Otherwise trust the first relocation, whatever // its kind. if (this->found_r_mips_none_) return; if (r_type == elfcpp::R_MIPS_NONE) { this->r_sym_ = r_sym; this->gsym_ = NULL; this->found_r_mips_none_ = true; } else if (!is_target_found()) this->r_sym_ = r_sym; } // This method is called when a new relocation R_TYPE for global symbol GSYM // is found in the stub section. Try to find stub target. void new_global_reloc_found(unsigned int r_type, Mips_symbol* gsym) { // To find target symbol for this stub, trust the first R_MIPS_NONE // relocation, if any. Otherwise trust the first relocation, whatever // its kind. if (this->found_r_mips_none_) return; if (r_type == elfcpp::R_MIPS_NONE) { this->gsym_ = gsym; this->r_sym_ = 0; this->found_r_mips_none_ = true; } else if (!is_target_found()) this->gsym_ = gsym; } // Return whether we found the stub target. bool is_target_found() const { return this->r_sym_ != 0 || this->gsym_ != NULL; } // Return whether this is a fn stub. bool is_fn_stub() const { return this->object_->is_mips16_fn_stub_section(this->shndx_); } // Return whether this is a call stub. bool is_call_stub() const { return this->object_->is_mips16_call_stub_section(this->shndx_); } // Return whether this is a call_fp stub. bool is_call_fp_stub() const { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); } // Return the output address. Mips_address output_address() const { return (this->object_->output_section(this->shndx_)->address() + this->object_->output_section_offset(this->shndx_)); } private: // The object of this stub section. Mips_relobj* object_; // The section index of this stub section. unsigned int shndx_; // The symbol index, if stub is for a local function. unsigned int r_sym_; // The symbol, if stub is for a global function. Mips_symbol* gsym_; // True if we found R_MIPS_NONE relocation in this stub. bool found_r_mips_none_; }; // Mips_relobj class. template class Mips_relobj : public Sized_relobj_file { typedef typename elfcpp::Elf_types::Elf_Addr Mips_address; typedef std::map*> Mips16_stubs_int_map; typedef typename elfcpp::Swap::Valtype Valtype; public: Mips_relobj(const std::string& name, Input_file* input_file, off_t offset, const typename elfcpp::Ehdr& ehdr) : Sized_relobj_file(name, input_file, offset, ehdr), processor_specific_flags_(0), local_symbol_is_mips16_(), local_symbol_is_micromips_(), mips16_stub_sections_(), local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(), local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false), got_info_(NULL), section_is_mips16_fn_stub_(), section_is_mips16_call_stub_(), section_is_mips16_call_fp_stub_(), pdr_shndx_(-1U), attributes_section_data_(NULL), abiflags_(NULL), gprmask_(0), cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0) { this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0; this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags()); } ~Mips_relobj() { delete this->attributes_section_data_; } // Downcast a base pointer to a Mips_relobj pointer. This is // not type-safe but we only use Mips_relobj not the base class. static Mips_relobj* as_mips_relobj(Relobj* relobj) { return static_cast*>(relobj); } // Downcast a base pointer to a Mips_relobj pointer. This is // not type-safe but we only use Mips_relobj not the base class. static const Mips_relobj* as_mips_relobj(const Relobj* relobj) { return static_cast*>(relobj); } // Processor-specific flags in ELF file header. This is valid only after // reading symbols. elfcpp::Elf_Word processor_specific_flags() const { return this->processor_specific_flags_; } // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table // index. This is only valid after do_count_local_symbol is called. bool local_symbol_is_mips16(unsigned int r_sym) const { gold_assert(r_sym < this->local_symbol_is_mips16_.size()); return this->local_symbol_is_mips16_[r_sym]; } // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table // index. This is only valid after do_count_local_symbol is called. bool local_symbol_is_micromips(unsigned int r_sym) const { gold_assert(r_sym < this->local_symbol_is_micromips_.size()); return this->local_symbol_is_micromips_[r_sym]; } // Get or create MIPS16 stub section. Mips16_stub_section* get_mips16_stub_section(unsigned int shndx) { typename Mips16_stubs_int_map::const_iterator it = this->mips16_stub_sections_.find(shndx); if (it != this->mips16_stub_sections_.end()) return (*it).second; Mips16_stub_section* stub_section = new Mips16_stub_section(this, shndx); this->mips16_stub_sections_.insert( std::pair*>( stub_section->shndx(), stub_section)); return stub_section; } // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this // object doesn't have fn stub for R_SYM. Mips16_stub_section* get_local_mips16_fn_stub(unsigned int r_sym) const { typename Mips16_stubs_int_map::const_iterator it = this->local_mips16_fn_stubs_.find(r_sym); if (it != this->local_mips16_fn_stubs_.end()) return (*it).second; return NULL; } // Record that this object has MIPS16 fn stub for local symbol. This method // is only called if we decided not to discard the stub. void add_local_mips16_fn_stub(Mips16_stub_section* stub) { gold_assert(stub->is_for_local_function()); unsigned int r_sym = stub->r_sym(); this->local_mips16_fn_stubs_.insert( std::pair*>( r_sym, stub)); } // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this // object doesn't have call stub for R_SYM. Mips16_stub_section* get_local_mips16_call_stub(unsigned int r_sym) const { typename Mips16_stubs_int_map::const_iterator it = this->local_mips16_call_stubs_.find(r_sym); if (it != this->local_mips16_call_stubs_.end()) return (*it).second; return NULL; } // Record that this object has MIPS16 call stub for local symbol. This method // is only called if we decided not to discard the stub. void add_local_mips16_call_stub(Mips16_stub_section* stub) { gold_assert(stub->is_for_local_function()); unsigned int r_sym = stub->r_sym(); this->local_mips16_call_stubs_.insert( std::pair*>( r_sym, stub)); } // Record that we found "non 16-bit" call relocation against local symbol // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there // is one. void add_local_non_16bit_call(unsigned int symndx) { this->local_non_16bit_calls_.insert(symndx); } // Return true if there is any "non 16-bit" call relocation against local // symbol SYMNDX in this object. bool has_local_non_16bit_call_relocs(unsigned int symndx) { return (this->local_non_16bit_calls_.find(symndx) != this->local_non_16bit_calls_.end()); } // Record that we found 16-bit call relocation R_MIPS16_26 against local // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed // if there is some R_MIPS16_26 relocation that refers to the stub symbol. void add_local_16bit_call(unsigned int symndx) { this->local_16bit_calls_.insert(symndx); } // Return true if there is any 16-bit call relocation R_MIPS16_26 against local // symbol SYMNDX in this object. bool has_local_16bit_call_relocs(unsigned int symndx) { return (this->local_16bit_calls_.find(symndx) != this->local_16bit_calls_.end()); } // Get gp value that was used to create this object. Mips_address gp_value() const { return this->gp_; } // Return whether the object is a PIC object. bool is_pic() const { return this->is_pic_; } // Return whether the object uses N32 ABI. bool is_n32() const { return this->is_n32_; } // Return whether the object uses N64 ABI. bool is_n64() const { return size == 64; } // Return whether the object uses NewABI conventions. bool is_newabi() const { return this->is_n32() || this->is_n64(); } // Return Mips_got_info for this object. Mips_got_info* get_got_info() const { return this->got_info_; } // Return Mips_got_info for this object. Create new info if it doesn't exist. Mips_got_info* get_or_create_got_info() { if (!this->got_info_) this->got_info_ = new Mips_got_info(); return this->got_info_; } // Set Mips_got_info for this object. void set_got_info(Mips_got_info* got_info) { this->got_info_ = got_info; } // Whether a section SHDNX is a MIPS16 stub section. This is only valid // after do_read_symbols is called. bool is_mips16_stub_section(unsigned int shndx) { return (is_mips16_fn_stub_section(shndx) || is_mips16_call_stub_section(shndx) || is_mips16_call_fp_stub_section(shndx)); } // Return TRUE if relocations in section SHNDX can refer directly to a // MIPS16 function rather than to a hard-float stub. This is only valid // after do_read_symbols is called. bool section_allows_mips16_refs(unsigned int shndx) { return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_); } // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid // after do_read_symbols is called. bool is_mips16_fn_stub_section(unsigned int shndx) { gold_assert(shndx < this->section_is_mips16_fn_stub_.size()); return this->section_is_mips16_fn_stub_[shndx]; } // Whether a section SHDNX is a MIPS16 call stub section. This is only valid // after do_read_symbols is called. bool is_mips16_call_stub_section(unsigned int shndx) { gold_assert(shndx < this->section_is_mips16_call_stub_.size()); return this->section_is_mips16_call_stub_[shndx]; } // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only // valid after do_read_symbols is called. bool is_mips16_call_fp_stub_section(unsigned int shndx) { gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size()); return this->section_is_mips16_call_fp_stub_[shndx]; } // Discard MIPS16 stub secions that are not needed. void discard_mips16_stub_sections(Symbol_table* symtab); // Return whether there is a .reginfo section. bool has_reginfo_section() const { return this->has_reginfo_section_; } // Return gprmask from the .reginfo section of this object. Valtype gprmask() const { return this->gprmask_; } // Return cprmask1 from the .reginfo section of this object. Valtype cprmask1() const { return this->cprmask1_; } // Return cprmask2 from the .reginfo section of this object. Valtype cprmask2() const { return this->cprmask2_; } // Return cprmask3 from the .reginfo section of this object. Valtype cprmask3() const { return this->cprmask3_; } // Return cprmask4 from the .reginfo section of this object. Valtype cprmask4() const { return this->cprmask4_; } // This is the contents of the .MIPS.abiflags section if there is one. Mips_abiflags* abiflags() { return this->abiflags_; } // This is the contents of the .gnu.attribute section if there is one. const Attributes_section_data* attributes_section_data() const { return this->attributes_section_data_; } protected: // Count the local symbols. void do_count_local_symbols(Stringpool_template*, Stringpool_template*); // Read the symbol information. void do_read_symbols(Read_symbols_data* sd); private: // The name of the options section. const char* mips_elf_options_section_name() { return this->is_newabi() ? ".MIPS.options" : ".options"; } // processor-specific flags in ELF file header. elfcpp::Elf_Word processor_specific_flags_; // Bit vector to tell if a local symbol is a MIPS16 symbol or not. // This is only valid after do_count_local_symbol is called. std::vector local_symbol_is_mips16_; // Bit vector to tell if a local symbol is a microMIPS symbol or not. // This is only valid after do_count_local_symbol is called. std::vector local_symbol_is_micromips_; // Map from section index to the MIPS16 stub for that section. This contains // all stubs found in this object. Mips16_stubs_int_map mips16_stub_sections_; // Local symbols that have "non 16-bit" call relocation. This relocation // would need to refer to a MIPS16 fn stub, if there is one. std::set local_non_16bit_calls_; // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16 // call or call_fp stubs will only be needed if there is some R_MIPS16_26 // relocation that refers to the stub symbol. std::set local_16bit_calls_; // Map from local symbol index to the MIPS16 fn stub for that symbol. // This contains only the stubs that we decided not to discard. Mips16_stubs_int_map local_mips16_fn_stubs_; // Map from local symbol index to the MIPS16 call stub for that symbol. // This contains only the stubs that we decided not to discard. Mips16_stubs_int_map local_mips16_call_stubs_; // gp value that was used to create this object. Mips_address gp_; // Whether the object is a PIC object. bool is_pic_ : 1; // Whether the object uses N32 ABI. bool is_n32_ : 1; // Whether the object contains a .reginfo section. bool has_reginfo_section_ : 1; // The Mips_got_info for this object. Mips_got_info* got_info_; // Bit vector to tell if a section is a MIPS16 fn stub section or not. // This is only valid after do_read_symbols is called. std::vector section_is_mips16_fn_stub_; // Bit vector to tell if a section is a MIPS16 call stub section or not. // This is only valid after do_read_symbols is called. std::vector section_is_mips16_call_stub_; // Bit vector to tell if a section is a MIPS16 call_fp stub section or not. // This is only valid after do_read_symbols is called. std::vector section_is_mips16_call_fp_stub_; // .pdr section index. unsigned int pdr_shndx_; // Object attributes if there is a .gnu.attributes section or NULL. Attributes_section_data* attributes_section_data_; // Object abiflags if there is a .MIPS.abiflags section or NULL. Mips_abiflags* abiflags_; // gprmask from the .reginfo section of this object. Valtype gprmask_; // cprmask1 from the .reginfo section of this object. Valtype cprmask1_; // cprmask2 from the .reginfo section of this object. Valtype cprmask2_; // cprmask3 from the .reginfo section of this object. Valtype cprmask3_; // cprmask4 from the .reginfo section of this object. Valtype cprmask4_; }; // Mips_output_data_got class. template class Mips_output_data_got : public Output_data_got { typedef typename elfcpp::Elf_types::Elf_Addr Mips_address; typedef Output_data_reloc Reloc_section; typedef typename elfcpp::Swap::Valtype Valtype; public: Mips_output_data_got(Target_mips* target, Symbol_table* symtab, Layout* layout) : Output_data_got(), target_(target), symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL), first_global_got_dynsym_index_(-1U), primary_got_(NULL), secondary_got_relocs_() { this->master_got_info_ = new Mips_got_info(); this->set_addralign(16); } // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT. void record_local_got_symbol(Mips_relobj* object, unsigned int symndx, Mips_address addend, unsigned int r_type, unsigned int shndx, bool is_section_symbol) { this->master_got_info_->record_local_got_symbol(object, symndx, addend, r_type, shndx, is_section_symbol); } // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM, // in OBJECT. FOR_CALL is true if the caller is only interested in // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic // relocation. void record_global_got_symbol(Mips_symbol* mips_sym, Mips_relobj* object, unsigned int r_type, bool dyn_reloc, bool for_call) { this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type, dyn_reloc, for_call); } // Record that OBJECT has a page relocation against symbol SYMNDX and // that ADDEND is the addend for that relocation. void record_got_page_entry(Mips_relobj* object, unsigned int symndx, int addend) { this->master_got_info_->record_got_page_entry(object, symndx, addend); } // Add a static entry for the GOT entry at OFFSET. GSYM is a global // symbol and R_TYPE is the code of a dynamic relocation that needs to be // applied in a static link. void add_static_reloc(unsigned int got_offset, unsigned int r_type, Mips_symbol* gsym) { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); } // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object // defining a local symbol with INDEX. R_TYPE is the code of a dynamic // relocation that needs to be applied in a static link. void add_static_reloc(unsigned int got_offset, unsigned int r_type, Sized_relobj_file* relobj, unsigned int index) { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj, index)); } // Record that global symbol GSYM has R_TYPE dynamic relocation in the // secondary GOT at OFFSET. void add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type, Mips_symbol* gsym) { this->secondary_got_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); } // Update GOT entry at OFFSET with VALUE. void update_got_entry(unsigned int offset, Mips_address value) { elfcpp::Swap::writeval(this->got_view_ + offset, value); } // Return the number of entries in local part of the GOT. This includes // local entries, page entries and 2 reserved entries. unsigned int get_local_gotno() const { if (!this->multi_got()) { return (2 + this->master_got_info_->local_gotno() + this->master_got_info_->page_gotno()); } else return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno(); } // Return dynamic symbol table index of the first symbol with global GOT // entry. unsigned int first_global_got_dynsym_index() const { return this->first_global_got_dynsym_index_; } // Set dynamic symbol table index of the first symbol with global GOT entry. void set_first_global_got_dynsym_index(unsigned int index) { this->first_global_got_dynsym_index_ = index; } // Lay out the GOT. Add local, global and TLS entries. If GOT is // larger than 64K, create multi-GOT. void lay_out_got(Layout* layout, Symbol_table* symtab, const Input_objects* input_objects); // Create multi-GOT. For every GOT, add local, global and TLS entries. void lay_out_multi_got(Layout* layout, const Input_objects* input_objects); // Attempt to merge GOTs of different input objects. void merge_gots(const Input_objects* input_objects); // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if // this would lead to overflow, true if they were merged successfully. bool merge_got_with(Mips_got_info* from, Mips_relobj* object, Mips_got_info* to); // Return the offset of GOT page entry for VALUE. For multi-GOT links, // use OBJECT's GOT. unsigned int get_got_page_offset(Mips_address value, const Mips_relobj* object) { Mips_got_info* g = (!this->multi_got() ? this->master_got_info_ : object->get_got_info()); gold_assert(g != NULL); return g->get_got_page_offset(value, this); } // Return the GOT offset of type GOT_TYPE of the global symbol // GSYM. For multi-GOT links, use OBJECT's GOT. unsigned int got_offset(const Symbol* gsym, unsigned int got_type, Mips_relobj* object) const { if (!this->multi_got()) return gsym->got_offset(got_type); else { Mips_got_info* g = object->get_got_info(); gold_assert(g != NULL); return gsym->got_offset(g->multigot_got_type(got_type)); } } // Return the GOT offset of type GOT_TYPE of the local symbol // SYMNDX. unsigned int got_offset(unsigned int symndx, unsigned int got_type, Sized_relobj_file* object, uint64_t addend) const { return object->local_got_offset(symndx, got_type, addend); } // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT. unsigned int tls_ldm_offset(Mips_relobj* object) const { Mips_got_info* g = (!this->multi_got() ? this->master_got_info_ : object->get_got_info()); gold_assert(g != NULL); return g->tls_ldm_offset(); } // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT. void set_tls_ldm_offset(unsigned int tls_ldm_offset, Mips_relobj* object) { Mips_got_info* g = (!this->multi_got() ? this->master_got_info_ : object->get_got_info()); gold_assert(g != NULL); g->set_tls_ldm_offset(tls_ldm_offset); } // Return true for multi-GOT links. bool multi_got() const { return this->primary_got_ != NULL; } // Return the offset of OBJECT's GOT from the start of .got section. unsigned int get_got_offset(const Mips_relobj* object) { if (!this->multi_got()) return 0; else { Mips_got_info* g = object->get_got_info(); return g != NULL ? g->offset() : 0; } } // Create global GOT entries that should be in the GGA_RELOC_ONLY area. void add_reloc_only_entries() { this->master_got_info_->add_reloc_only_entries(this); } // Return offset of the primary GOT's entry for global symbol. unsigned int get_primary_got_offset(const Mips_symbol* sym) const { gold_assert(sym->global_got_area() != GGA_NONE); return (this->get_local_gotno() + sym->dynsym_index() - this->first_global_got_dynsym_index()) * size/8; } // For the entry at offset GOT_OFFSET, return its offset from the gp. // Input argument GOT_OFFSET is always global offset from the start of // .got section, for both single and multi-GOT links. // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT // links, the return value is object_got_offset - 0x7FF0, where // object_got_offset is offset in the OBJECT's GOT. int gp_offset(unsigned int got_offset, const Mips_relobj* object) const { return (this->address() + got_offset - this->target_->adjusted_gp_value(object)); } protected: // Write out the GOT table. void do_write(Output_file*); private: // This class represent dynamic relocations that need to be applied by // gold because we are using TLS relocations in a static link. class Static_reloc { public: Static_reloc(unsigned int got_offset, unsigned int r_type, Mips_symbol* gsym) : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true) { this->u_.global.symbol = gsym; } Static_reloc(unsigned int got_offset, unsigned int r_type, Sized_relobj_file* relobj, unsigned int index) : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false) { this->u_.local.relobj = relobj; this->u_.local.index = index; } // Return the GOT offset. unsigned int got_offset() const { return this->got_offset_; } // Relocation type. unsigned int r_type() const { return this->r_type_; } // Whether the symbol is global or not. bool symbol_is_global() const { return this->symbol_is_global_; } // For a relocation against a global symbol, the global symbol. Mips_symbol* symbol() const { gold_assert(this->symbol_is_global_); return this->u_.global.symbol; } // For a relocation against a local symbol, the defining object. Sized_relobj_file* relobj() const { gold_assert(!this->symbol_is_global_); return this->u_.local.relobj; } // For a relocation against a local symbol, the local symbol index. unsigned int index() const { gold_assert(!this->symbol_is_global_); return this->u_.local.index; } private: // GOT offset of the entry to which this relocation is applied. unsigned int got_offset_; // Type of relocation. unsigned int r_type_; // Whether this relocation is against a global symbol. bool symbol_is_global_; // A global or local symbol. union { struct { // For a global symbol, the symbol itself. Mips_symbol* symbol; } global; struct { // For a local symbol, the object defining object. Sized_relobj_file* relobj; // For a local symbol, the symbol index. unsigned int index; } local; } u_; }; // The target. Target_mips* target_; // The symbol table. Symbol_table* symbol_table_; // The layout. Layout* layout_; // Static relocs to be applied to the GOT. std::vector static_relocs_; // .got section view. unsigned char* got_view_; // The dynamic symbol table index of the first symbol with global GOT entry. unsigned int first_global_got_dynsym_index_; // The master GOT information. Mips_got_info* master_got_info_; // The primary GOT information. Mips_got_info* primary_got_; // Secondary GOT fixups. std::vector secondary_got_relocs_; }; // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are // two ways of creating these interfaces. The first is to add: // // lui $25,%hi(func) // j func // addiu $25,$25,%lo(func) // // to a separate trampoline section. The second is to add: // // lui $25,%hi(func) // addiu $25,$25,%lo(func) // // immediately before a PIC function "func", but only if a function is at the // beginning of the section, and the section is not too heavily aligned (i.e we // would need to add no more than 2 nops before the stub.) // // We only create stubs of the first type. template class Mips_output_data_la25_stub : public Output_section_data { typedef typename elfcpp::Elf_types::Elf_Addr Mips_address; public: Mips_output_data_la25_stub() : Output_section_data(size == 32 ? 4 : 8), symbols_() { } // Create LA25 stub for a symbol. void create_la25_stub(Symbol_table* symtab, Target_mips* target, Mips_symbol* gsym); // Return output address of a stub. Mips_address stub_address(const Mips_symbol* sym) const { gold_assert(sym->has_la25_stub()); return this->address() + sym->la25_stub_offset(); } protected: void do_adjust_output_section(Output_section* os) { os->set_entsize(0); } private: // Template for standard LA25 stub. static const uint32_t la25_stub_entry[]; // Template for microMIPS LA25 stub. static const uint32_t la25_stub_micromips_entry[]; // Set the final size. void set_final_data_size() { this->set_data_size(this->symbols_.size() * 16); } // Create a symbol for SYM stub's value and size, to help make the // disassembly easier to read. void create_stub_symbol(Mips_symbol* sym, Symbol_table* symtab, Target_mips* target, uint64_t symsize); // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, _(".LA25.stubs")); } // Write out the LA25 stub section. void do_write(Output_file*); // Symbols that have LA25 stubs. std::vector*> symbols_; }; // MIPS-specific relocation writer. template struct Mips_output_reloc_writer; template struct Mips_output_reloc_writer { typedef Output_reloc Output_reloc_type; typedef std::vector Relocs; static void write(typename Relocs::const_iterator p, unsigned char* pov) { p->write(pov); } }; template struct Mips_output_reloc_writer { typedef Output_reloc Output_reloc_type; typedef std::vector Relocs; static void write(typename Relocs::const_iterator p, unsigned char* pov) { elfcpp::Mips64_rel_write orel(pov); orel.put_r_offset(p->get_address()); orel.put_r_sym(p->get_symbol_index()); orel.put_r_ssym(RSS_UNDEF); orel.put_r_type(p->type()); if (p->type() == elfcpp::R_MIPS_REL32) orel.put_r_type2(elfcpp::R_MIPS_64); else orel.put_r_type2(elfcpp::R_MIPS_NONE); orel.put_r_type3(elfcpp::R_MIPS_NONE); } }; template class Mips_output_data_reloc : public Output_data_reloc { public: Mips_output_data_reloc(bool sort_relocs) : Output_data_reloc(sort_relocs) { } protected: // Write out the data. void do_write(Output_file* of) { typedef Mips_output_reloc_writer Writer; this->template do_write_generic(of); } }; // A class to handle the PLT data. template class Mips_output_data_plt : public Output_section_data { typedef typename elfcpp::Elf_types::Elf_Addr Mips_address; typedef Mips_output_data_reloc Reloc_section; public: // Create the PLT section. The ordinary .got section is an argument, // since we need to refer to the start. Mips_output_data_plt(Layout* layout, Output_data_space* got_plt, Target_mips* target) : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(), plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0), target_(target) { this->rel_ = new Reloc_section(false); layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL, elfcpp::SHF_ALLOC, this->rel_, ORDER_DYNAMIC_PLT_RELOCS, false); } // Add an entry to the PLT for a symbol referenced by r_type relocation. void add_entry(Mips_symbol* gsym, unsigned int r_type); // Return the .rel.plt section data. const Reloc_section* rel_plt() const { return this->rel_; } // Return the number of PLT entries. unsigned int entry_count() const { return this->symbols_.size(); } // Return the offset of the first non-reserved PLT entry. unsigned int first_plt_entry_offset() const { return sizeof(plt0_entry_o32); } // Return the size of a PLT entry. unsigned int plt_entry_size() const { return sizeof(plt_entry); } // Set final PLT offsets. For each symbol, determine whether standard or // compressed (MIPS16 or microMIPS) PLT entry is used. void set_plt_offsets(); // Return the offset of the first standard PLT entry. unsigned int first_mips_plt_offset() const { return this->plt_header_size_; } // Return the offset of the first compressed PLT entry. unsigned int first_comp_plt_offset() const { return this->plt_header_size_ + this->plt_mips_offset_; } // Return whether there are any standard PLT entries. bool has_standard_entries() const { return this->plt_mips_offset_ > 0; } // Return the output address of standard PLT entry. Mips_address mips_entry_address(const Mips_symbol* sym) const { gold_assert (sym->has_mips_plt_offset()); return (this->address() + this->first_mips_plt_offset() + sym->mips_plt_offset()); } // Return the output address of compressed (MIPS16 or microMIPS) PLT entry. Mips_address comp_entry_address(const Mips_symbol* sym) const { gold_assert (sym->has_comp_plt_offset()); return (this->address() + this->first_comp_plt_offset() + sym->comp_plt_offset()); } protected: void do_adjust_output_section(Output_section* os) { os->set_entsize(0); } // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, _(".plt")); } private: // Template for the first PLT entry. static const uint32_t plt0_entry_o32[]; static const uint32_t plt0_entry_n32[]; static const uint32_t plt0_entry_n64[]; static const uint32_t plt0_entry_micromips_o32[]; static const uint32_t plt0_entry_micromips32_o32[]; // Template for subsequent PLT entries. static const uint32_t plt_entry[]; static const uint32_t plt_entry_mips16_o32[]; static const uint32_t plt_entry_micromips_o32[]; static const uint32_t plt_entry_micromips32_o32[]; // Set the final size. void set_final_data_size() { this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_ + this->plt_comp_offset_); } // Write out the PLT data. void do_write(Output_file*); // Return whether the plt header contains microMIPS code. For the sake of // cache alignment always use a standard header whenever any standard entries // are present even if microMIPS entries are present as well. This also lets // the microMIPS header rely on the value of $v0 only set by microMIPS // entries, for a small size reduction. bool is_plt_header_compressed() const { gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0); return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0; } // Return the size of the PLT header. unsigned int get_plt_header_size() const { if (this->target_->is_output_n64()) return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]); else if (this->target_->is_output_n32()) return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]); else if (!this->is_plt_header_compressed()) return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]); else if (this->target_->use_32bit_micromips_instructions()) return (2 * sizeof(plt0_entry_micromips32_o32) / sizeof(plt0_entry_micromips32_o32[0])); else return (2 * sizeof(plt0_entry_micromips_o32) / sizeof(plt0_entry_micromips_o32[0])); } // Return the PLT header entry. const uint32_t* get_plt_header_entry() const { if (this->target_->is_output_n64()) return plt0_entry_n64; else if (this->target_->is_output_n32()) return plt0_entry_n32; else if (!this->is_plt_header_compressed()) return plt0_entry_o32; else if (this->target_->use_32bit_micromips_instructions()) return plt0_entry_micromips32_o32; else return plt0_entry_micromips_o32; } // Return the size of the standard PLT entry. unsigned int standard_plt_entry_size() const { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); } // Return the size of the compressed PLT entry. unsigned int compressed_plt_entry_size() const { gold_assert(!this->target_->is_output_newabi()); if (!this->target_->is_output_micromips()) return (2 * sizeof(plt_entry_mips16_o32) / sizeof(plt_entry_mips16_o32[0])); else if (this->target_->use_32bit_micromips_instructions()) return (2 * sizeof(plt_entry_micromips32_o32) / sizeof(plt_entry_micromips32_o32[0])); else return (2 * sizeof(plt_entry_micromips_o32) / sizeof(plt_entry_micromips_o32[0])); } // The reloc section. Reloc_section* rel_; // The .got.plt section. Output_data_space* got_plt_; // Symbols that have PLT entry. std::vector*> symbols_; // The offset of the next standard PLT entry to create. unsigned int plt_mips_offset_; // The offset of the next compressed PLT entry to create. unsigned int plt_comp_offset_; // The size of the PLT header in bytes. unsigned int plt_header_size_; // The target. Target_mips* target_; }; // A class to handle the .MIPS.stubs data. template class Mips_output_data_mips_stubs : public Output_section_data { typedef typename elfcpp::Elf_types::Elf_Addr Mips_address; // Unordered set of .MIPS.stubs entries. typedef Unordered_set*, Mips_symbol_hash > Mips_stubs_entry_set; public: Mips_output_data_mips_stubs(Target_mips* target) : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U), stub_offsets_are_set_(false), target_(target) { } // Create entry for a symbol. void make_entry(Mips_symbol*); // Remove entry for a symbol. void remove_entry(Mips_symbol* gsym); // Set stub offsets for symbols. This method expects that the number of // entries in dynamic symbol table is set. void set_lazy_stub_offsets(); void set_needs_dynsym_value(); // Set the number of entries in dynamic symbol table. void set_dynsym_count(unsigned int dynsym_count) { this->dynsym_count_ = dynsym_count; } // Return maximum size of the stub, ie. the stub size if the dynamic symbol // count is greater than 0x10000. If the dynamic symbol count is less than // 0x10000, the stub will be 4 bytes smaller. // There's no disadvantage from using microMIPS code here, so for the sake of // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in // output produced at all. This has a benefit of stubs being shorter by // 4 bytes each too, unless in the insn32 mode. unsigned int stub_max_size() const { if (!this->target_->is_output_micromips() || this->target_->use_32bit_micromips_instructions()) return 20; else return 16; } // Return the size of the stub. This method expects that the final dynsym // count is set. unsigned int stub_size() const { gold_assert(this->dynsym_count_ != -1U); if (this->dynsym_count_ > 0x10000) return this->stub_max_size(); else return this->stub_max_size() - 4; } // Return output address of a stub. Mips_address stub_address(const Mips_symbol* sym) const { gold_assert(sym->has_lazy_stub()); return this->address() + sym->lazy_stub_offset(); } protected: void do_adjust_output_section(Output_section* os) { os->set_entsize(0); } // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, _(".MIPS.stubs")); } private: static const uint32_t lazy_stub_normal_1[]; static const uint32_t lazy_stub_normal_1_n64[]; static const uint32_t lazy_stub_normal_2[]; static const uint32_t lazy_stub_normal_2_n64[]; static const uint32_t lazy_stub_big[]; static const uint32_t lazy_stub_big_n64[]; static const uint32_t lazy_stub_micromips_normal_1[]; static const uint32_t lazy_stub_micromips_normal_1_n64[]; static const uint32_t lazy_stub_micromips_normal_2[]; static const uint32_t lazy_stub_micromips_normal_2_n64[]; static const uint32_t lazy_stub_micromips_big[]; static const uint32_t lazy_stub_micromips_big_n64[]; static const uint32_t lazy_stub_micromips32_normal_1[]; static const uint32_t lazy_stub_micromips32_normal_1_n64[]; static const uint32_t lazy_stub_micromips32_normal_2[]; static const uint32_t lazy_stub_micromips32_normal_2_n64[]; static const uint32_t lazy_stub_micromips32_big[]; static const uint32_t lazy_stub_micromips32_big_n64[]; // Set the final size. void set_final_data_size() { this->set_data_size(this->symbols_.size() * this->stub_max_size()); } // Write out the .MIPS.stubs data. void do_write(Output_file*); // .MIPS.stubs symbols Mips_stubs_entry_set symbols_; // Number of entries in dynamic symbol table. unsigned int dynsym_count_; // Whether the stub offsets are set. bool stub_offsets_are_set_; // The target. Target_mips* target_; }; // This class handles Mips .reginfo output section. template class Mips_output_section_reginfo : public Output_section_data { typedef typename elfcpp::Swap::Valtype Valtype; public: Mips_output_section_reginfo(Target_mips* target, Valtype gprmask, Valtype cprmask1, Valtype cprmask2, Valtype cprmask3, Valtype cprmask4) : Output_section_data(24, 4, true), target_(target), gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2), cprmask3_(cprmask3), cprmask4_(cprmask4) { } protected: // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, _(".reginfo")); } // Write out reginfo section. void do_write(Output_file* of); private: Target_mips* target_; // gprmask of the output .reginfo section. Valtype gprmask_; // cprmask1 of the output .reginfo section. Valtype cprmask1_; // cprmask2 of the output .reginfo section. Valtype cprmask2_; // cprmask3 of the output .reginfo section. Valtype cprmask3_; // cprmask4 of the output .reginfo section. Valtype cprmask4_; }; // This class handles .MIPS.abiflags output section. template class Mips_output_section_abiflags : public Output_section_data { public: Mips_output_section_abiflags(const Mips_abiflags& abiflags) : Output_section_data(24, 8, true), abiflags_(abiflags) { } protected: // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, _(".MIPS.abiflags")); } void do_write(Output_file* of); private: const Mips_abiflags& abiflags_; }; // The MIPS target has relocation types which default handling of relocatable // relocation cannot process. So we have to extend the default code. template class Mips_scan_relocatable_relocs : public Default_scan_relocatable_relocs { public: // Return the strategy to use for a local symbol which is a section // symbol, given the relocation type. inline Relocatable_relocs::Reloc_strategy local_section_strategy(unsigned int r_type, Relobj* object) { if (Classify_reloc::sh_type == elfcpp::SHT_RELA) return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA; else { switch (r_type) { case elfcpp::R_MIPS_26: return Relocatable_relocs::RELOC_SPECIAL; default: return Default_scan_relocatable_relocs:: local_section_strategy(r_type, object); } } } }; // Mips_copy_relocs class. The only difference from the base class is the // method emit_mips, which should be called instead of Copy_reloc_entry::emit. // Mips cannot convert all relocation types to dynamic relocs. If a reloc // cannot be made dynamic, a COPY reloc is emitted. template class Mips_copy_relocs : public Copy_relocs { public: Mips_copy_relocs() : Copy_relocs(elfcpp::R_MIPS_COPY) { } // Emit any saved relocations which turn out to be needed. This is // called after all the relocs have been scanned. void emit_mips(Output_data_reloc*, Symbol_table*, Layout*, Target_mips*); private: typedef typename Copy_relocs::Copy_reloc_entry Copy_reloc_entry; // Emit this reloc if appropriate. This is called after we have // scanned all the relocations, so we know whether we emitted a // COPY relocation for SYM_. void emit_entry(Copy_reloc_entry& entry, Output_data_reloc* reloc_section, Symbol_table* symtab, Layout* layout, Target_mips* target); }; // Return true if the symbol SYM should be considered to resolve local // to the current module, and false otherwise. The logic is taken from // GNU ld's method _bfd_elf_symbol_refs_local_p. static bool symbol_refs_local(const Symbol* sym, bool has_dynsym_entry, bool local_protected) { // If it's a local sym, of course we resolve locally. if (sym == NULL) return true; // STV_HIDDEN or STV_INTERNAL ones must be local. if (sym->visibility() == elfcpp::STV_HIDDEN || sym->visibility() == elfcpp::STV_INTERNAL) return true; // If we don't have a definition in a regular file, then we can't // resolve locally. The sym is either undefined or dynamic. if (sym->source() != Symbol::FROM_OBJECT || sym->object()->is_dynamic() || sym->is_undefined()) return false; // Forced local symbols resolve locally. if (sym->is_forced_local()) return true; // As do non-dynamic symbols. if (!has_dynsym_entry) return true; // At this point, we know the symbol is defined and dynamic. In an // executable it must resolve locally, likewise when building symbolic // shared libraries. if (parameters->options().output_is_executable() || parameters->options().Bsymbolic()) return true; // Now deal with defined dynamic symbols in shared libraries. Ones // with default visibility might not resolve locally. if (sym->visibility() == elfcpp::STV_DEFAULT) return false; // STV_PROTECTED non-function symbols are local. if (sym->type() != elfcpp::STT_FUNC) return true; // Function pointer equality tests may require that STV_PROTECTED // symbols be treated as dynamic symbols. If the address of a // function not defined in an executable is set to that function's // plt entry in the executable, then the address of the function in // a shared library must also be the plt entry in the executable. return local_protected; } // Return TRUE if references to this symbol always reference the symbol in this // object. static bool symbol_references_local(const Symbol* sym, bool has_dynsym_entry) { return symbol_refs_local(sym, has_dynsym_entry, false); } // Return TRUE if calls to this symbol always call the version in this object. static bool symbol_calls_local(const Symbol* sym, bool has_dynsym_entry) { return symbol_refs_local(sym, has_dynsym_entry, true); } // Compare GOT offsets of two symbols. template static bool got_offset_compare(Symbol* sym1, Symbol* sym2) { Mips_symbol* mips_sym1 = Mips_symbol::as_mips_sym(sym1); Mips_symbol* mips_sym2 = Mips_symbol::as_mips_sym(sym2); unsigned int area1 = mips_sym1->global_got_area(); unsigned int area2 = mips_sym2->global_got_area(); gold_assert(area1 != GGA_NONE && area1 != GGA_NONE); // GGA_NORMAL entries always come before GGA_RELOC_ONLY. if (area1 != area2) return area1 < area2; return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset(); } // This method divides dynamic symbols into symbols that have GOT entry, and // symbols that don't have GOT entry. It also sorts symbols with the GOT entry. // Mips ABI requires that symbols with the GOT entry must be at the end of // dynamic symbol table, and the order in dynamic symbol table must match the // order in GOT. template static void reorder_dyn_symbols(std::vector* dyn_symbols, std::vector* non_got_symbols, std::vector* got_symbols) { for (std::vector::iterator p = dyn_symbols->begin(); p != dyn_symbols->end(); ++p) { Mips_symbol* mips_sym = Mips_symbol::as_mips_sym(*p); if (mips_sym->global_got_area() == GGA_NORMAL || mips_sym->global_got_area() == GGA_RELOC_ONLY) got_symbols->push_back(mips_sym); else non_got_symbols->push_back(mips_sym); } std::sort(got_symbols->begin(), got_symbols->end(), got_offset_compare); } // Functor class for processing the global symbol table. template class Symbol_visitor_check_symbols { public: Symbol_visitor_check_symbols(Target_mips* target, Layout* layout, Symbol_table* symtab) : target_(target), layout_(layout), symtab_(symtab) { } void operator()(Sized_symbol* sym) { Mips_symbol* mips_sym = Mips_symbol::as_mips_sym(sym); if (local_pic_function(mips_sym)) { // SYM is a function that might need $25 to be valid on entry. // If we're creating a non-PIC relocatable object, mark SYM as // being PIC. If we're creating a non-relocatable object with // non-PIC branches and jumps to SYM, make sure that SYM has an la25 // stub. if (parameters->options().relocatable()) { if (!parameters->options().output_is_position_independent()) mips_sym->set_pic(); } else if (mips_sym->has_nonpic_branches()) { this->target_->la25_stub_section(layout_) ->create_la25_stub(this->symtab_, this->target_, mips_sym); } } } private: Target_mips* target_; Layout* layout_; Symbol_table* symtab_; }; // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size, // and endianness. The relocation format for MIPS-64 is non-standard. template struct Mips_reloc_types; template struct Mips_reloc_types { typedef typename elfcpp::Rel<32, big_endian> Reloc; typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write; static typename elfcpp::Elf_types<32>::Elf_Swxword get_r_addend(const Reloc*) { return 0; } static inline void set_reloc_addend(Reloc_write*, typename elfcpp::Elf_types<32>::Elf_Swxword) { gold_unreachable(); } }; template struct Mips_reloc_types { typedef typename elfcpp::Rela<32, big_endian> Reloc; typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write; static typename elfcpp::Elf_types<32>::Elf_Swxword get_r_addend(const Reloc* reloc) { return reloc->get_r_addend(); } static inline void set_reloc_addend(Reloc_write* p, typename elfcpp::Elf_types<32>::Elf_Swxword val) { p->put_r_addend(val); } }; template struct Mips_reloc_types { typedef typename elfcpp::Mips64_rel Reloc; typedef typename elfcpp::Mips64_rel_write Reloc_write; static typename elfcpp::Elf_types<64>::Elf_Swxword get_r_addend(const Reloc*) { return 0; } static inline void set_reloc_addend(Reloc_write*, typename elfcpp::Elf_types<64>::Elf_Swxword) { gold_unreachable(); } }; template struct Mips_reloc_types { typedef typename elfcpp::Mips64_rela Reloc; typedef typename elfcpp::Mips64_rela_write Reloc_write; static typename elfcpp::Elf_types<64>::Elf_Swxword get_r_addend(const Reloc* reloc) { return reloc->get_r_addend(); } static inline void set_reloc_addend(Reloc_write* p, typename elfcpp::Elf_types<64>::Elf_Swxword val) { p->put_r_addend(val); } }; // Forward declaration. static unsigned int mips_get_size_for_reloc(unsigned int, Relobj*); // A class for inquiring about properties of a relocation, // used while scanning relocs during a relocatable link and // garbage collection. template class Mips_classify_reloc; template class Mips_classify_reloc : public gold::Default_classify_reloc { public: typedef typename Mips_reloc_types::Reloc Reltype; typedef typename Mips_reloc_types::Reloc_write Reltype_write; // Return the symbol referred to by the relocation. static inline unsigned int get_r_sym(const Reltype* reloc) { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); } // Return the type of the relocation. static inline unsigned int get_r_type(const Reltype* reloc) { return elfcpp::elf_r_type<32>(reloc->get_r_info()); } static inline unsigned int get_r_type2(const Reltype*) { return 0; } static inline unsigned int get_r_type3(const Reltype*) { return 0; } static inline unsigned int get_r_ssym(const Reltype*) { return 0; } // Return the explicit addend of the relocation (return 0 for SHT_REL). static inline unsigned int get_r_addend(const Reltype* reloc) { if (sh_type_ == elfcpp::SHT_REL) return 0; return Mips_reloc_types::get_r_addend(reloc); } // Write the r_info field to a new reloc, using the r_info field from // the original reloc, replacing the r_sym field with R_SYM. static inline void put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym) { unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info()); new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type)); } // Write the r_addend field to a new reloc. static inline void put_r_addend(Reltype_write* to, typename elfcpp::Elf_types<32>::Elf_Swxword addend) { Mips_reloc_types::set_reloc_addend(to, addend); } // Return the size of the addend of the relocation (only used for SHT_REL). static unsigned int get_size_for_reloc(unsigned int r_type, Relobj* obj) { return mips_get_size_for_reloc(r_type, obj); } }; template class Mips_classify_reloc : public gold::Default_classify_reloc { public: typedef typename Mips_reloc_types::Reloc Reltype; typedef typename Mips_reloc_types::Reloc_write Reltype_write; // Return the symbol referred to by the relocation. static inline unsigned int get_r_sym(const Reltype* reloc) { return reloc->get_r_sym(); } // Return the r_type of the relocation. static inline unsigned int get_r_type(const Reltype* reloc) { return reloc->get_r_type(); } // Return the r_type2 of the relocation. static inline unsigned int get_r_type2(const Reltype* reloc) { return reloc->get_r_type2(); } // Return the r_type3 of the relocation. static inline unsigned int get_r_type3(const Reltype* reloc) { return reloc->get_r_type3(); } // Return the special symbol of the relocation. static inline unsigned int get_r_ssym(const Reltype* reloc) { return reloc->get_r_ssym(); } // Return the explicit addend of the relocation (return 0 for SHT_REL). static inline typename elfcpp::Elf_types<64>::Elf_Swxword get_r_addend(const Reltype* reloc) { if (sh_type_ == elfcpp::SHT_REL) return 0; return Mips_reloc_types::get_r_addend(reloc); } // Write the r_info field to a new reloc, using the r_info field from // the original reloc, replacing the r_sym field with R_SYM. static inline void put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym) { new_reloc->put_r_sym(r_sym); new_reloc->put_r_ssym(reloc->get_r_ssym()); new_reloc->put_r_type3(reloc->get_r_type3()); new_reloc->put_r_type2(reloc->get_r_type2()); new_reloc->put_r_type(reloc->get_r_type()); } // Write the r_addend field to a new reloc. static inline void put_r_addend(Reltype_write* to, typename elfcpp::Elf_types<64>::Elf_Swxword addend) { Mips_reloc_types::set_reloc_addend(to, addend); } // Return the size of the addend of the relocation (only used for SHT_REL). static unsigned int get_size_for_reloc(unsigned int r_type, Relobj* obj) { return mips_get_size_for_reloc(r_type, obj); } }; template class Target_mips : public Sized_target { typedef typename elfcpp::Elf_types::Elf_Addr Mips_address; typedef Mips_output_data_reloc Reloc_section; typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32; typedef typename elfcpp::Swap::Valtype Valtype; typedef typename Mips_reloc_types::Reloc Reltype; typedef typename Mips_reloc_types::Reloc Relatype; public: Target_mips(const Target::Target_info* info = &mips_info) : Sized_target(info), got_(NULL), gp_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL), copy_relocs_(), dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(), mips_stubs_(NULL), attributes_section_data_(NULL), abiflags_(NULL), mach_(0), layout_(NULL), got16_addends_(), has_abiflags_section_(false), entry_symbol_is_compressed_(false), insn32_(false) { this->add_machine_extensions(); } // The offset of $gp from the beginning of the .got section. static const unsigned int MIPS_GP_OFFSET = 0x7ff0; // The maximum size of the GOT for it to be addressable using 16-bit // offsets from $gp. static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff; // Make a new symbol table entry for the Mips target. Sized_symbol* make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t) { return new Mips_symbol(); } // Process the relocations to determine unreferenced sections for // garbage collection. void gc_process_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols); // Scan the relocations to look for symbol adjustments. void scan_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols); // Finalize the sections. void do_finalize_sections(Layout*, const Input_objects*, Symbol_table*); // Relocate a section. void relocate_section(const Relocate_info*, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, unsigned char* view, Mips_address view_address, section_size_type view_size, const Reloc_symbol_changes*); // Scan the relocs during a relocatable link. void scan_relocatable_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols, Relocatable_relocs*); // Scan the relocs for --emit-relocs. void emit_relocs_scan(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_syms, Relocatable_relocs* rr); // Emit relocations for a section. void relocate_relocs(const Relocate_info*, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, typename elfcpp::Elf_types::Elf_Off offset_in_output_section, unsigned char* view, Mips_address view_address, section_size_type view_size, unsigned char* reloc_view, section_size_type reloc_view_size); // Perform target-specific processing in a relocatable link. This is // only used if we use the relocation strategy RELOC_SPECIAL. void relocate_special_relocatable(const Relocate_info* relinfo, unsigned int sh_type, const unsigned char* preloc_in, size_t relnum, Output_section* output_section, typename elfcpp::Elf_types::Elf_Off offset_in_output_section, unsigned char* view, Mips_address view_address, section_size_type view_size, unsigned char* preloc_out); // Return whether SYM is defined by the ABI. bool do_is_defined_by_abi(const Symbol* sym) const { return ((strcmp(sym->name(), "__gnu_local_gp") == 0) || (strcmp(sym->name(), "_gp_disp") == 0) || (strcmp(sym->name(), "___tls_get_addr") == 0)); } // Return the number of entries in the GOT. unsigned int got_entry_count() const { if (!this->has_got_section()) return 0; return this->got_size() / (size/8); } // Return the number of entries in the PLT. unsigned int plt_entry_count() const { if (this->plt_ == NULL) return 0; return this->plt_->entry_count(); } // Return the offset of the first non-reserved PLT entry. unsigned int first_plt_entry_offset() const { return this->plt_->first_plt_entry_offset(); } // Return the size of each PLT entry. unsigned int plt_entry_size() const { return this->plt_->plt_entry_size(); } // Get the GOT section, creating it if necessary. Mips_output_data_got* got_section(Symbol_table*, Layout*); // Get the GOT section. Mips_output_data_got* got_section() const { gold_assert(this->got_ != NULL); return this->got_; } // Get the .MIPS.stubs section, creating it if necessary. Mips_output_data_mips_stubs* mips_stubs_section(Layout* layout); // Get the .MIPS.stubs section. Mips_output_data_mips_stubs* mips_stubs_section() const { gold_assert(this->mips_stubs_ != NULL); return this->mips_stubs_; } // Get the LA25 stub section, creating it if necessary. Mips_output_data_la25_stub* la25_stub_section(Layout*); // Get the LA25 stub section. Mips_output_data_la25_stub* la25_stub_section() { gold_assert(this->la25_stub_ != NULL); return this->la25_stub_; } // Get gp value. It has the value of .got + 0x7FF0. Mips_address gp_value() const { if (this->gp_ != NULL) return this->gp_->value(); return 0; } // Get gp value. It has the value of .got + 0x7FF0. Adjust it for // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned. Mips_address adjusted_gp_value(const Mips_relobj* object) { if (this->gp_ == NULL) return 0; bool multi_got = false; if (this->has_got_section()) multi_got = this->got_section()->multi_got(); if (!multi_got) return this->gp_->value(); else return this->gp_->value() + this->got_section()->get_got_offset(object); } // Get the dynamic reloc section, creating it if necessary. Reloc_section* rel_dyn_section(Layout*); bool do_has_custom_set_dynsym_indexes() const { return true; } // Don't emit input .reginfo/.MIPS.abiflags sections to // output .reginfo/.MIPS.abiflags. bool do_should_include_section(elfcpp::Elf_Word sh_type) const { return ((sh_type != elfcpp::SHT_MIPS_REGINFO) && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS)); } // Set the dynamic symbol indexes. INDEX is the index of the first // global dynamic symbol. Pointers to the symbols are stored into the // vector SYMS. The names are added to DYNPOOL. This returns an // updated dynamic symbol index. unsigned int do_set_dynsym_indexes(std::vector* dyn_symbols, unsigned int index, std::vector* syms, Stringpool* dynpool, Versions* versions, Symbol_table* symtab) const; // Remove .MIPS.stubs entry for a symbol. void remove_lazy_stub_entry(Mips_symbol* sym) { if (this->mips_stubs_ != NULL) this->mips_stubs_->remove_entry(sym); } // The value to write into got[1] for SVR4 targets, to identify it is // a GNU object. The dynamic linker can then use got[1] to store the // module pointer. uint64_t mips_elf_gnu_got1_mask() { if (this->is_output_n64()) return (uint64_t)1 << 63; else return 1 << 31; } // Whether the output has microMIPS code. This is valid only after // merge_obj_e_flags() is called. bool is_output_micromips() const { gold_assert(this->are_processor_specific_flags_set()); return elfcpp::is_micromips(this->processor_specific_flags()); } // Whether the output uses N32 ABI. This is valid only after // merge_obj_e_flags() is called. bool is_output_n32() const { gold_assert(this->are_processor_specific_flags_set()); return elfcpp::abi_n32(this->processor_specific_flags()); } // Whether the output uses N64 ABI. bool is_output_n64() const { return size == 64; } // Whether the output uses NEWABI. This is valid only after // merge_obj_e_flags() is called. bool is_output_newabi() const { return this->is_output_n32() || this->is_output_n64(); } // Whether we can only use 32-bit microMIPS instructions. bool use_32bit_micromips_instructions() const { return this->insn32_; } // Return the r_sym field from a relocation. unsigned int get_r_sym(const unsigned char* preloc) const { // Since REL and RELA relocs share the same structure through // the r_info field, we can just use REL here. Reltype rel(preloc); return Mips_classify_reloc:: get_r_sym(&rel); } protected: // Return the value to use for a dynamic symbol which requires special // treatment. This is how we support equality comparisons of function // pointers across shared library boundaries, as described in the // processor specific ABI supplement. uint64_t do_dynsym_value(const Symbol* gsym) const; // Make an ELF object. Object* do_make_elf_object(const std::string&, Input_file*, off_t, const elfcpp::Ehdr& ehdr); Object* do_make_elf_object(const std::string&, Input_file*, off_t, const elfcpp::Ehdr&) { gold_unreachable(); } // Adjust ELF file header. void do_adjust_elf_header(unsigned char* view, int len); // Get the custom dynamic tag value. unsigned int do_dynamic_tag_custom_value(elfcpp::DT) const; // Adjust the value written to the dynamic symbol table. virtual void do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const { elfcpp::Sym isym(view); elfcpp::Sym_write osym(view); const Mips_symbol* mips_sym = Mips_symbol::as_mips_sym(sym); // Keep dynamic compressed symbols odd. This allows the dynamic linker // to treat compressed symbols like any other. Mips_address value = isym.get_st_value(); if (mips_sym->is_mips16() && value != 0) { if (!mips_sym->has_mips16_fn_stub()) value |= 1; else { // If we have a MIPS16 function with a stub, the dynamic symbol // must refer to the stub, since only the stub uses the standard // calling conventions. Stub contains MIPS32 code, so don't add +1 // in this case. // There is a code which does this in the method // Target_mips::do_dynsym_value, but that code will only be // executed if the symbol is from dynobj. // TODO(sasa): GNU ld also changes the value in non-dynamic symbol // table. Mips16_stub_section* fn_stub = mips_sym->template get_mips16_fn_stub(); value = fn_stub->output_address(); osym.put_st_size(fn_stub->section_size()); } osym.put_st_value(value); osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2))); } else if ((mips_sym->is_micromips() // Stubs are always microMIPS if there is any microMIPS code in // the output. || (this->is_output_micromips() && mips_sym->has_lazy_stub())) && value != 0) { osym.put_st_value(value | 1); osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2))); } } private: // The class which scans relocations. class Scan { public: Scan() { } static inline int get_reference_flags(unsigned int r_type); inline void local(Symbol_table* symtab, Layout* layout, Target_mips* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const Reltype& reloc, unsigned int r_type, const elfcpp::Sym& lsym, bool is_discarded); inline void local(Symbol_table* symtab, Layout* layout, Target_mips* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const Relatype& reloc, unsigned int r_type, const elfcpp::Sym& lsym, bool is_discarded); inline void local(Symbol_table* symtab, Layout* layout, Target_mips* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const Relatype* rela, const Reltype* rel, unsigned int rel_type, unsigned int r_type, const elfcpp::Sym& lsym, bool is_discarded); inline void global(Symbol_table* symtab, Layout* layout, Target_mips* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const Reltype& reloc, unsigned int r_type, Symbol* gsym); inline void global(Symbol_table* symtab, Layout* layout, Target_mips* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const Relatype& reloc, unsigned int r_type, Symbol* gsym); inline void global(Symbol_table* symtab, Layout* layout, Target_mips* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const Relatype* rela, const Reltype* rel, unsigned int rel_type, unsigned int r_type, Symbol* gsym); inline bool local_reloc_may_be_function_pointer(Symbol_table* , Layout*, Target_mips*, Sized_relobj_file*, unsigned int, Output_section*, const Reltype&, unsigned int, const elfcpp::Sym&) { return false; } inline bool global_reloc_may_be_function_pointer(Symbol_table*, Layout*, Target_mips*, Sized_relobj_file*, unsigned int, Output_section*, const Reltype&, unsigned int, Symbol*) { return false; } inline bool local_reloc_may_be_function_pointer(Symbol_table*, Layout*, Target_mips*, Sized_relobj_file*, unsigned int, Output_section*, const Relatype&, unsigned int, const elfcpp::Sym&) { return false; } inline bool global_reloc_may_be_function_pointer(Symbol_table*, Layout*, Target_mips*, Sized_relobj_file*, unsigned int, Output_section*, const Relatype&, unsigned int, Symbol*) { return false; } private: static void unsupported_reloc_local(Sized_relobj_file*, unsigned int r_type); static void unsupported_reloc_global(Sized_relobj_file*, unsigned int r_type, Symbol*); }; // The class which implements relocation. class Relocate { public: Relocate() { } ~Relocate() { } // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied. inline bool should_apply_static_reloc(const Mips_symbol* gsym, unsigned int r_type, Output_section* output_section, Target_mips* target); // Do a relocation. Return false if the caller should not issue // any warnings about this relocation. inline bool relocate(const Relocate_info*, unsigned int, Target_mips*, Output_section*, size_t, const unsigned char*, const Sized_symbol*, const Symbol_value*, unsigned char*, Mips_address, section_size_type); }; // This POD class holds the dynamic relocations that should be emitted instead // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these // relocations if it turns out that the symbol does not have static // relocations. class Dyn_reloc { public: Dyn_reloc(Mips_symbol* sym, unsigned int r_type, Mips_relobj* relobj, unsigned int shndx, Output_section* output_section, Mips_address r_offset) : sym_(sym), r_type_(r_type), relobj_(relobj), shndx_(shndx), output_section_(output_section), r_offset_(r_offset) { } // Emit this reloc if appropriate. This is called after we have // scanned all the relocations, so we know whether the symbol has // static relocations. void emit(Reloc_section* rel_dyn, Mips_output_data_got* got, Symbol_table* symtab) { if (!this->sym_->has_static_relocs()) { got->record_global_got_symbol(this->sym_, this->relobj_, this->r_type_, true, false); if (!symbol_references_local(this->sym_, this->sym_->should_add_dynsym_entry(symtab))) rel_dyn->add_global(this->sym_, this->r_type_, this->output_section_, this->relobj_, this->shndx_, this->r_offset_); else rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_, this->output_section_, this->relobj_, this->shndx_, this->r_offset_); } } private: Mips_symbol* sym_; unsigned int r_type_; Mips_relobj* relobj_; unsigned int shndx_; Output_section* output_section_; Mips_address r_offset_; }; // Adjust TLS relocation type based on the options and whether this // is a local symbol. static tls::Tls_optimization optimize_tls_reloc(bool is_final, int r_type); // Return whether there is a GOT section. bool has_got_section() const { return this->got_ != NULL; } // Check whether the given ELF header flags describe a 32-bit binary. bool mips_32bit_flags(elfcpp::Elf_Word); enum Mips_mach { mach_mips3000 = 3000, mach_mips3900 = 3900, mach_mips4000 = 4000, mach_mips4010 = 4010, mach_mips4100 = 4100, mach_mips4111 = 4111, mach_mips4120 = 4120, mach_mips4300 = 4300, mach_mips4400 = 4400, mach_mips4600 = 4600, mach_mips4650 = 4650, mach_mips5000 = 5000, mach_mips5400 = 5400, mach_mips5500 = 5500, mach_mips5900 = 5900, mach_mips6000 = 6000, mach_mips7000 = 7000, mach_mips8000 = 8000, mach_mips9000 = 9000, mach_mips10000 = 10000, mach_mips12000 = 12000, mach_mips14000 = 14000, mach_mips16000 = 16000, mach_mips16 = 16, mach_mips5 = 5, mach_mips_loongson_2e = 3001, mach_mips_loongson_2f = 3002, mach_mips_loongson_3a = 3003, mach_mips_sb1 = 12310201, // octal 'SB', 01 mach_mips_octeon = 6501, mach_mips_octeonp = 6601, mach_mips_octeon2 = 6502, mach_mips_octeon3 = 6503, mach_mips_xlr = 887682, // decimal 'XLR' mach_mipsisa32 = 32, mach_mipsisa32r2 = 33, mach_mipsisa32r3 = 34, mach_mipsisa32r5 = 36, mach_mipsisa64 = 64, mach_mipsisa64r2 = 65, mach_mipsisa64r3 = 66, mach_mipsisa64r5 = 68, mach_mips_micromips = 96 }; // Return the MACH for a MIPS e_flags value. unsigned int elf_mips_mach(elfcpp::Elf_Word); // Return the MACH for each .MIPS.abiflags ISA Extension. unsigned int mips_isa_ext_mach(unsigned int); // Return the .MIPS.abiflags value representing each ISA Extension. unsigned int mips_isa_ext(unsigned int); // Update the isa_level, isa_rev, isa_ext fields of abiflags. void update_abiflags_isa(const std::string&, elfcpp::Elf_Word, Mips_abiflags*); // Infer the content of the ABI flags based on the elf header. void infer_abiflags(Mips_relobj*, Mips_abiflags*); // Create abiflags from elf header or from .MIPS.abiflags section. void create_abiflags(Mips_relobj*, Mips_abiflags*); // Return the meaning of fp_abi, or "unknown" if not known. const char* fp_abi_string(int); // Select fp_abi. int select_fp_abi(const std::string&, int, int); // Merge attributes from input object. void merge_obj_attributes(const std::string&, const Attributes_section_data*); // Merge abiflags from input object. void merge_obj_abiflags(const std::string&, Mips_abiflags*); // Check whether machine EXTENSION is an extension of machine BASE. bool mips_mach_extends(unsigned int, unsigned int); // Merge file header flags from input object. void merge_obj_e_flags(const std::string&, elfcpp::Elf_Word); // Encode ISA level and revision as a single value. int level_rev(unsigned char isa_level, unsigned char isa_rev) const { return (isa_level << 3) | isa_rev; } // True if we are linking for CPUs that are faster if JAL is converted to BAL. static inline bool jal_to_bal() { return false; } // True if we are linking for CPUs that are faster if JALR is converted to // BAL. This should be safe for all architectures. We enable this predicate // for all CPUs. static inline bool jalr_to_bal() { return true; } // True if we are linking for CPUs that are faster if JR is converted to B. // This should be safe for all architectures. We enable this predicate for // all CPUs. static inline bool jr_to_b() { return true; } // Return the size of the GOT section. section_size_type got_size() const { gold_assert(this->got_ != NULL); return this->got_->data_size(); } // Create a PLT entry for a global symbol referenced by r_type relocation. void make_plt_entry(Symbol_table*, Layout*, Mips_symbol*, unsigned int r_type); // Get the PLT section. Mips_output_data_plt* plt_section() const { gold_assert(this->plt_ != NULL); return this->plt_; } // Get the GOT PLT section. const Mips_output_data_plt* got_plt_section() const { gold_assert(this->got_plt_ != NULL); return this->got_plt_; } // Copy a relocation against a global symbol. void copy_reloc(Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int shndx, Output_section* output_section, Symbol* sym, unsigned int r_type, Mips_address r_offset) { this->copy_relocs_.copy_reloc(symtab, layout, symtab->get_sized_symbol(sym), object, shndx, output_section, r_type, r_offset, 0, this->rel_dyn_section(layout)); } void dynamic_reloc(Mips_symbol* sym, unsigned int r_type, Mips_relobj* relobj, unsigned int shndx, Output_section* output_section, Mips_address r_offset) { this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx, output_section, r_offset)); } // Calculate value of _gp symbol. void set_gp(Layout*, Symbol_table*); const char* elf_mips_abi_name(elfcpp::Elf_Word e_flags); const char* elf_mips_mach_name(elfcpp::Elf_Word e_flags); // Adds entries that describe how machines relate to one another. The entries // are ordered topologically with MIPS I extensions listed last. First // element is extension, second element is base. void add_machine_extensions() { // MIPS64r2 extensions. this->add_extension(mach_mips_octeon3, mach_mips_octeon2); this->add_extension(mach_mips_octeon2, mach_mips_octeonp); this->add_extension(mach_mips_octeonp, mach_mips_octeon); this->add_extension(mach_mips_octeon, mach_mipsisa64r2); this->add_extension(mach_mips_loongson_3a, mach_mipsisa64r2); // MIPS64 extensions. this->add_extension(mach_mipsisa64r2, mach_mipsisa64); this->add_extension(mach_mips_sb1, mach_mipsisa64); this->add_extension(mach_mips_xlr, mach_mipsisa64); // MIPS V extensions. this->add_extension(mach_mipsisa64, mach_mips5); // R10000 extensions. this->add_extension(mach_mips12000, mach_mips10000); this->add_extension(mach_mips14000, mach_mips10000); this->add_extension(mach_mips16000, mach_mips10000); // R5000 extensions. Note: the vr5500 ISA is an extension of the core // vr5400 ISA, but doesn't include the multimedia stuff. It seems // better to allow vr5400 and vr5500 code to be merged anyway, since // many libraries will just use the core ISA. Perhaps we could add // some sort of ASE flag if this ever proves a problem. this->add_extension(mach_mips5500, mach_mips5400); this->add_extension(mach_mips5400, mach_mips5000); // MIPS IV extensions. this->add_extension(mach_mips5, mach_mips8000); this->add_extension(mach_mips10000, mach_mips8000); this->add_extension(mach_mips5000, mach_mips8000); this->add_extension(mach_mips7000, mach_mips8000); this->add_extension(mach_mips9000, mach_mips8000); // VR4100 extensions. this->add_extension(mach_mips4120, mach_mips4100); this->add_extension(mach_mips4111, mach_mips4100); // MIPS III extensions. this->add_extension(mach_mips_loongson_2e, mach_mips4000); this->add_extension(mach_mips_loongson_2f, mach_mips4000); this->add_extension(mach_mips8000, mach_mips4000); this->add_extension(mach_mips4650, mach_mips4000); this->add_extension(mach_mips4600, mach_mips4000); this->add_extension(mach_mips4400, mach_mips4000); this->add_extension(mach_mips4300, mach_mips4000); this->add_extension(mach_mips4100, mach_mips4000); this->add_extension(mach_mips4010, mach_mips4000); this->add_extension(mach_mips5900, mach_mips4000); // MIPS32 extensions. this->add_extension(mach_mipsisa32r2, mach_mipsisa32); // MIPS II extensions. this->add_extension(mach_mips4000, mach_mips6000); this->add_extension(mach_mipsisa32, mach_mips6000); // MIPS I extensions. this->add_extension(mach_mips6000, mach_mips3000); this->add_extension(mach_mips3900, mach_mips3000); } // Add value to MIPS extenstions. void add_extension(unsigned int base, unsigned int extension) { std::pair ext(base, extension); this->mips_mach_extensions_.push_back(ext); } // Return the number of entries in the .dynsym section. unsigned int get_dt_mips_symtabno() const { return ((unsigned int)(this->layout_->dynsym_section()->data_size() / elfcpp::Elf_sizes::sym_size)); // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE. } // Information about this specific target which we pass to the // general Target structure. static const Target::Target_info mips_info; // The GOT section. Mips_output_data_got* got_; // gp symbol. It has the value of .got + 0x7FF0. Sized_symbol* gp_; // The PLT section. Mips_output_data_plt* plt_; // The GOT PLT section. Output_data_space* got_plt_; // The dynamic reloc section. Reloc_section* rel_dyn_; // Relocs saved to avoid a COPY reloc. Mips_copy_relocs copy_relocs_; // A list of dyn relocs to be saved. std::vector dyn_relocs_; // The LA25 stub section. Mips_output_data_la25_stub* la25_stub_; // Architecture extensions. std::vector > mips_mach_extensions_; // .MIPS.stubs Mips_output_data_mips_stubs* mips_stubs_; // Attributes section data in output. Attributes_section_data* attributes_section_data_; // .MIPS.abiflags section data in output. Mips_abiflags* abiflags_; unsigned int mach_; Layout* layout_; typename std::list > got16_addends_; // Whether there is an input .MIPS.abiflags section. bool has_abiflags_section_; // Whether the entry symbol is mips16 or micromips. bool entry_symbol_is_compressed_; // Whether we can use only 32-bit microMIPS instructions. // TODO(sasa): This should be a linker option. bool insn32_; }; // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations. // It records high part of the relocation pair. template struct reloc_high { typedef typename elfcpp::Elf_types::Elf_Addr Mips_address; reloc_high(unsigned char* _view, const Mips_relobj* _object, const Symbol_value* _psymval, Mips_address _addend, unsigned int _r_type, unsigned int _r_sym, bool _extract_addend, Mips_address _address = 0, bool _gp_disp = false) : view(_view), object(_object), psymval(_psymval), addend(_addend), r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend), address(_address), gp_disp(_gp_disp) { } unsigned char* view; const Mips_relobj* object; const Symbol_value* psymval; Mips_address addend; unsigned int r_type; unsigned int r_sym; bool extract_addend; Mips_address address; bool gp_disp; }; template class Mips_relocate_functions : public Relocate_functions { typedef typename elfcpp::Elf_types::Elf_Addr Mips_address; typedef typename elfcpp::Swap::Valtype Valtype; typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16; typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32; typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64; public: typedef enum { STATUS_OKAY, // No error during relocation. STATUS_OVERFLOW, // Relocation overflow. STATUS_BAD_RELOC // Relocation cannot be applied. } Status; private: typedef Relocate_functions Base; typedef Mips_relocate_functions This; static typename std::list > hi16_relocs; static typename std::list > got16_relocs; template static inline typename This::Status check_overflow(Valtype value) { if (size == 32) return (Bits::has_overflow32(value) ? This::STATUS_OVERFLOW : This::STATUS_OKAY); return (Bits::has_overflow(value) ? This::STATUS_OVERFLOW : This::STATUS_OKAY); } static inline bool should_shuffle_micromips_reloc(unsigned int r_type) { return (micromips_reloc(r_type) && r_type != elfcpp::R_MICROMIPS_PC7_S1 && r_type != elfcpp::R_MICROMIPS_PC10_S1); } public: // R_MIPS16_26 is used for the mips16 jal and jalx instructions. // Most mips16 instructions are 16 bits, but these instructions // are 32 bits. // // The format of these instructions is: // // +--------------+--------------------------------+ // | JALX | X| Imm 20:16 | Imm 25:21 | // +--------------+--------------------------------+ // | Immediate 15:0 | // +-----------------------------------------------+ // // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. // Note that the immediate value in the first word is swapped. // // When producing a relocatable object file, R_MIPS16_26 is // handled mostly like R_MIPS_26. In particular, the addend is // stored as a straight 26-bit value in a 32-bit instruction. // (gas makes life simpler for itself by never adjusting a // R_MIPS16_26 reloc to be against a section, so the addend is // always zero). However, the 32 bit instruction is stored as 2 // 16-bit values, rather than a single 32-bit value. In a // big-endian file, the result is the same; in a little-endian // file, the two 16-bit halves of the 32 bit value are swapped. // This is so that a disassembler can recognize the jal // instruction. // // When doing a final link, R_MIPS16_26 is treated as a 32 bit // instruction stored as two 16-bit values. The addend A is the // contents of the targ26 field. The calculation is the same as // R_MIPS_26. When storing the calculated value, reorder the // immediate value as shown above, and don't forget to store the // value as two 16-bit values. // // To put it in MIPS ABI terms, the relocation field is T-targ26-16, // defined as // // big-endian: // +--------+----------------------+ // | | | // | | targ26-16 | // |31 26|25 0| // +--------+----------------------+ // // little-endian: // +----------+------+-------------+ // | | | | // | sub1 | | sub2 | // |0 9|10 15|16 31| // +----------+--------------------+ // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is // ((sub1 << 16) | sub2)). // // When producing a relocatable object file, the calculation is // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) // When producing a fully linked file, the calculation is // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) // // The table below lists the other MIPS16 instruction relocations. // Each one is calculated in the same way as the non-MIPS16 relocation // given on the right, but using the extended MIPS16 layout of 16-bit // immediate fields: // // R_MIPS16_GPREL R_MIPS_GPREL16 // R_MIPS16_GOT16 R_MIPS_GOT16 // R_MIPS16_CALL16 R_MIPS_CALL16 // R_MIPS16_HI16 R_MIPS_HI16 // R_MIPS16_LO16 R_MIPS_LO16 // // A typical instruction will have a format like this: // // +--------------+--------------------------------+ // | EXTEND | Imm 10:5 | Imm 15:11 | // +--------------+--------------------------------+ // | Major | rx | ry | Imm 4:0 | // +--------------+--------------------------------+ // // EXTEND is the five bit value 11110. Major is the instruction // opcode. // // All we need to do here is shuffle the bits appropriately. // As above, the two 16-bit halves must be swapped on a // little-endian system. // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1 // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. static void mips_reloc_unshuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle) { if (!mips16_reloc(r_type) && !should_shuffle_micromips_reloc(r_type)) return; // Pick up the first and second halfwords of the instruction. Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view); Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2); Valtype32 val; if (micromips_reloc(r_type) || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle)) val = first << 16 | second; else if (r_type != elfcpp::R_MIPS16_26) val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11) | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f)); else val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11) | ((first & 0x1f) << 21) | second); elfcpp::Swap<32, big_endian>::writeval(view, val); } static void mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle) { if (!mips16_reloc(r_type) && !should_shuffle_micromips_reloc(r_type)) return; Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view); Valtype16 first, second; if (micromips_reloc(r_type) || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle)) { second = val & 0xffff; first = val >> 16; } else if (r_type != elfcpp::R_MIPS16_26) { second = ((val >> 11) & 0xffe0) | (val & 0x1f); first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); } else { second = val & 0xffff; first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) | ((val >> 21) & 0x1f); } elfcpp::Swap<16, big_endian>::writeval(view + 2, second); elfcpp::Swap<16, big_endian>::writeval(view, first); } // R_MIPS_16: S + sign-extend(A) static inline typename This::Status rel16(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address addend_a, bool extract_addend, bool calculate_only, Valtype* calculated_value) { Valtype16* wv = reinterpret_cast(view); Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv); Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val) : addend_a); Valtype x = psymval->value(object, addend); val = Bits<16>::bit_select32(val, x, 0xffffU); if (calculate_only) { *calculated_value = x; return This::STATUS_OKAY; } else elfcpp::Swap<16, big_endian>::writeval(wv, val); return check_overflow<16>(x); } // R_MIPS_32: S + A static inline typename This::Status rel32(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address addend_a, bool extract_addend, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype addend = (extract_addend ? elfcpp::Swap<32, big_endian>::readval(wv) : addend_a); Valtype x = psymval->value(object, addend); if (calculate_only) *calculated_value = x; else elfcpp::Swap<32, big_endian>::writeval(wv, x); return This::STATUS_OKAY; } // R_MIPS_JALR, R_MICROMIPS_JALR static inline typename This::Status reljalr(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address address, Mips_address addend_a, bool extract_addend, bool cross_mode_jump, unsigned int r_type, bool jalr_to_bal, bool jr_to_b, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype addend = extract_addend ? 0 : addend_a; Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); // Try converting J(AL)R to B(AL), if the target is in range. if (!parameters->options().relocatable() && r_type == elfcpp::R_MIPS_JALR && !cross_mode_jump && ((jalr_to_bal && val == 0x0320f809) // jalr t9 || (jr_to_b && val == 0x03200008))) // jr t9 { int offset = psymval->value(object, addend) - (address + 4); if (!Bits<18>::has_overflow32(offset)) { if (val == 0x03200008) // jr t9 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr else val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr } } if (calculate_only) *calculated_value = val; else elfcpp::Swap<32, big_endian>::writeval(wv, val); return This::STATUS_OKAY; } // R_MIPS_PC32: S + A - P static inline typename This::Status relpc32(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address address, Mips_address addend_a, bool extract_addend, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype addend = (extract_addend ? elfcpp::Swap<32, big_endian>::readval(wv) : addend_a); Valtype x = psymval->value(object, addend) - address; if (calculate_only) *calculated_value = x; else elfcpp::Swap<32, big_endian>::writeval(wv, x); return This::STATUS_OKAY; } // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1 static inline typename This::Status rel26(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address address, bool local, Mips_address addend_a, bool extract_addend, const Symbol* gsym, bool cross_mode_jump, unsigned int r_type, bool jal_to_bal, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); Valtype addend; if (extract_addend) { if (r_type == elfcpp::R_MICROMIPS_26_S1) addend = (val & 0x03ffffff) << 1; else addend = (val & 0x03ffffff) << 2; } else addend = addend_a; // Make sure the target of JALX is word-aligned. Bit 0 must be // the correct ISA mode selector and bit 1 must be 0. if (!calculate_only && cross_mode_jump && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26)) { gold_warning(_("JALX to a non-word-aligned address")); return This::STATUS_BAD_RELOC; } // Shift is 2, unusually, for microMIPS JALX. unsigned int shift = (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2; Valtype x; if (local) x = addend | ((address + 4) & (0xfc000000 << shift)); else { if (shift == 1) x = Bits<27>::sign_extend32(addend); else x = Bits<28>::sign_extend32(addend); } x = psymval->value(object, x) >> shift; if (!calculate_only && !local && !gsym->is_weak_undefined()) { if ((x >> 26) != ((address + 4) >> (26 + shift))) { gold_error(_("relocation truncated to fit: %u against '%s'"), r_type, gsym->name()); return This::STATUS_OVERFLOW; } } val = Bits<32>::bit_select32(val, x, 0x03ffffff); // If required, turn JAL into JALX. if (cross_mode_jump) { bool ok; Valtype32 opcode = val >> 26; Valtype32 jalx_opcode; // Check to see if the opcode is already JAL or JALX. if (r_type == elfcpp::R_MIPS16_26) { ok = (opcode == 0x6) || (opcode == 0x7); jalx_opcode = 0x7; } else if (r_type == elfcpp::R_MICROMIPS_26_S1) { ok = (opcode == 0x3d) || (opcode == 0x3c); jalx_opcode = 0x3c; } else { ok = (opcode == 0x3) || (opcode == 0x1d); jalx_opcode = 0x1d; } // If the opcode is not JAL or JALX, there's a problem. We cannot // convert J or JALS to JALX. if (!calculate_only && !ok) { gold_error(_("Unsupported jump between ISA modes; consider " "recompiling with interlinking enabled.")); return This::STATUS_BAD_RELOC; } // Make this the JALX opcode. val = (val & ~(0x3f << 26)) | (jalx_opcode << 26); } // Try converting JAL to BAL, if the target is in range. if (!parameters->options().relocatable() && !cross_mode_jump && ((jal_to_bal && r_type == elfcpp::R_MIPS_26 && (val >> 26) == 0x3))) // jal addr { Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28); int offset = dest - (address + 4); if (!Bits<18>::has_overflow32(offset)) { if (val == 0x03200008) // jr t9 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr else val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr } } if (calculate_only) *calculated_value = val; else elfcpp::Swap<32, big_endian>::writeval(wv, val); return This::STATUS_OKAY; } // R_MIPS_PC16 static inline typename This::Status relpc16(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address address, Mips_address addend_a, bool extract_addend, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); Valtype addend = (extract_addend ? Bits<18>::sign_extend32((val & 0xffff) << 2) : addend_a); Valtype x = psymval->value(object, addend) - address; val = Bits<16>::bit_select32(val, x >> 2, 0xffff); if (calculate_only) { *calculated_value = x >> 2; return This::STATUS_OKAY; } else elfcpp::Swap<32, big_endian>::writeval(wv, val); return check_overflow<18>(x); } // R_MICROMIPS_PC7_S1 static inline typename This::Status relmicromips_pc7_s1(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address address, Mips_address addend_a, bool extract_addend, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1) : addend_a; Valtype x = psymval->value(object, addend) - address; val = Bits<16>::bit_select32(val, x >> 1, 0x7f); if (calculate_only) { *calculated_value = x >> 1; return This::STATUS_OKAY; } else elfcpp::Swap<32, big_endian>::writeval(wv, val); return check_overflow<8>(x); } // R_MICROMIPS_PC10_S1 static inline typename This::Status relmicromips_pc10_s1(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address address, Mips_address addend_a, bool extract_addend, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); Valtype addend = (extract_addend ? Bits<11>::sign_extend32((val & 0x3ff) << 1) : addend_a); Valtype x = psymval->value(object, addend) - address; val = Bits<16>::bit_select32(val, x >> 1, 0x3ff); if (calculate_only) { *calculated_value = x >> 1; return This::STATUS_OKAY; } else elfcpp::Swap<32, big_endian>::writeval(wv, val); return check_overflow<11>(x); } // R_MICROMIPS_PC16_S1 static inline typename This::Status relmicromips_pc16_s1(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address address, Mips_address addend_a, bool extract_addend, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); Valtype addend = (extract_addend ? Bits<17>::sign_extend32((val & 0xffff) << 1) : addend_a); Valtype x = psymval->value(object, addend) - address; val = Bits<16>::bit_select32(val, x >> 1, 0xffff); if (calculate_only) { *calculated_value = x >> 1; return This::STATUS_OKAY; } else elfcpp::Swap<32, big_endian>::writeval(wv, val); return check_overflow<17>(x); } // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16, static inline typename This::Status relhi16(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address addend, Mips_address address, bool gp_disp, unsigned int r_type, unsigned int r_sym, bool extract_addend) { // Record the relocation. It will be resolved when we find lo16 part. hi16_relocs.push_back(reloc_high(view, object, psymval, addend, r_type, r_sym, extract_addend, address, gp_disp)); return This::STATUS_OKAY; } // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16, static inline typename This::Status do_relhi16(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address addend_hi, Mips_address address, bool is_gp_disp, unsigned int r_type, bool extract_addend, Valtype32 addend_lo, Target_mips* target, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo : addend_hi); Valtype32 value; if (!is_gp_disp) value = psymval->value(object, addend); else { // For MIPS16 ABI code we generate this sequence // 0: li $v0,%hi(_gp_disp) // 4: addiupc $v1,%lo(_gp_disp) // 8: sll $v0,16 // 12: addu $v0,$v1 // 14: move $gp,$v0 // So the offsets of hi and lo relocs are the same, but the // base $pc is that used by the ADDIUPC instruction at $t9 + 4. // ADDIUPC clears the low two bits of the instruction address, // so the base is ($t9 + 4) & ~3. Valtype32 gp_disp; if (r_type == elfcpp::R_MIPS16_HI16) gp_disp = (target->adjusted_gp_value(object) - ((address + 4) & ~0x3)); // The microMIPS .cpload sequence uses the same assembly // instructions as the traditional psABI version, but the // incoming $t9 has the low bit set. else if (r_type == elfcpp::R_MICROMIPS_HI16) gp_disp = target->adjusted_gp_value(object) - address - 1; else gp_disp = target->adjusted_gp_value(object) - address; value = gp_disp + addend; } Valtype x = ((value + 0x8000) >> 16) & 0xffff; val = Bits<32>::bit_select32(val, x, 0xffff); if (calculate_only) { *calculated_value = x; return This::STATUS_OKAY; } else elfcpp::Swap<32, big_endian>::writeval(wv, val); return (is_gp_disp ? check_overflow<16>(x) : This::STATUS_OKAY); } // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16 static inline typename This::Status relgot16_local(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address addend_a, bool extract_addend, unsigned int r_type, unsigned int r_sym) { // Record the relocation. It will be resolved when we find lo16 part. got16_relocs.push_back(reloc_high(view, object, psymval, addend_a, r_type, r_sym, extract_addend)); return This::STATUS_OKAY; } // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16 static inline typename This::Status do_relgot16_local(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address addend_hi, bool extract_addend, Valtype32 addend_lo, Target_mips* target, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo : addend_hi); // Find GOT page entry. Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16) & 0xffff; value <<= 16; unsigned int got_offset = target->got_section()->get_got_page_offset(value, object); // Resolve the relocation. Valtype x = target->got_section()->gp_offset(got_offset, object); val = Bits<32>::bit_select32(val, x, 0xffff); if (calculate_only) { *calculated_value = x; return This::STATUS_OKAY; } else elfcpp::Swap<32, big_endian>::writeval(wv, val); return check_overflow<16>(x); } // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16 static inline typename This::Status rello16(Target_mips* target, unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address addend_a, bool extract_addend, Mips_address address, bool is_gp_disp, unsigned int r_type, unsigned int r_sym, unsigned int rel_type, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff) : addend_a); if (rel_type == elfcpp::SHT_REL) { typename This::Status reloc_status = This::STATUS_OKAY; // Resolve pending R_MIPS_HI16 relocations. typename std::list >::iterator it = hi16_relocs.begin(); while (it != hi16_relocs.end()) { reloc_high hi16 = *it; if (hi16.r_sym == r_sym && is_matching_lo16_reloc(hi16.r_type, r_type)) { mips_reloc_unshuffle(hi16.view, hi16.r_type, false); reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval, hi16.addend, hi16.address, hi16.gp_disp, hi16.r_type, hi16.extract_addend, addend, target, calculate_only, calculated_value); mips_reloc_shuffle(hi16.view, hi16.r_type, false); if (reloc_status == This::STATUS_OVERFLOW) return This::STATUS_OVERFLOW; it = hi16_relocs.erase(it); } else ++it; } // Resolve pending local R_MIPS_GOT16 relocations. typename std::list >::iterator it2 = got16_relocs.begin(); while (it2 != got16_relocs.end()) { reloc_high got16 = *it2; if (got16.r_sym == r_sym && is_matching_lo16_reloc(got16.r_type, r_type)) { mips_reloc_unshuffle(got16.view, got16.r_type, false); reloc_status = do_relgot16_local(got16.view, got16.object, got16.psymval, got16.addend, got16.extract_addend, addend, target, calculate_only, calculated_value); mips_reloc_shuffle(got16.view, got16.r_type, false); if (reloc_status == This::STATUS_OVERFLOW) return This::STATUS_OVERFLOW; it2 = got16_relocs.erase(it2); } else ++it2; } } // Resolve R_MIPS_LO16 relocation. Valtype x; if (!is_gp_disp) x = psymval->value(object, addend); else { // See the comment for R_MIPS16_HI16 above for the reason // for this conditional. Valtype32 gp_disp; if (r_type == elfcpp::R_MIPS16_LO16) gp_disp = target->adjusted_gp_value(object) - (address & ~0x3); else if (r_type == elfcpp::R_MICROMIPS_LO16 || r_type == elfcpp::R_MICROMIPS_HI0_LO16) gp_disp = target->adjusted_gp_value(object) - address + 3; else gp_disp = target->adjusted_gp_value(object) - address + 4; // The MIPS ABI requires checking the R_MIPS_LO16 relocation // for overflow. Relocations against _gp_disp are normally // generated from the .cpload pseudo-op. It generates code // that normally looks like this: // lui $gp,%hi(_gp_disp) // addiu $gp,$gp,%lo(_gp_disp) // addu $gp,$gp,$t9 // Here $t9 holds the address of the function being called, // as required by the MIPS ELF ABI. The R_MIPS_LO16 // relocation can easily overflow in this situation, but the // R_MIPS_HI16 relocation will handle the overflow. // Therefore, we consider this a bug in the MIPS ABI, and do // not check for overflow here. x = gp_disp + addend; } val = Bits<32>::bit_select32(val, x, 0xffff); if (calculate_only) *calculated_value = x; else elfcpp::Swap<32, big_endian>::writeval(wv, val); return This::STATUS_OKAY; } // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP static inline typename This::Status relgot(unsigned char* view, int gp_offset, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); Valtype x = gp_offset; val = Bits<32>::bit_select32(val, x, 0xffff); if (calculate_only) { *calculated_value = x; return This::STATUS_OKAY; } else elfcpp::Swap<32, big_endian>::writeval(wv, val); return check_overflow<16>(x); } // R_MIPS_EH static inline typename This::Status releh(unsigned char* view, int gp_offset, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype x = gp_offset; if (calculate_only) { *calculated_value = x; return This::STATUS_OKAY; } else elfcpp::Swap<32, big_endian>::writeval(wv, x); return check_overflow<32>(x); } // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE static inline typename This::Status relgotpage(Target_mips* target, unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address addend_a, bool extract_addend, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view); Valtype addend = extract_addend ? val & 0xffff : addend_a; // Find a GOT page entry that points to within 32KB of symbol + addend. Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff; unsigned int got_offset = target->got_section()->get_got_page_offset(value, object); Valtype x = target->got_section()->gp_offset(got_offset, object); val = Bits<32>::bit_select32(val, x, 0xffff); if (calculate_only) { *calculated_value = x; return This::STATUS_OKAY; } else elfcpp::Swap<32, big_endian>::writeval(wv, val); return check_overflow<16>(x); } // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST static inline typename This::Status relgotofst(Target_mips* target, unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address addend_a, bool extract_addend, bool local, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view); Valtype addend = extract_addend ? val & 0xffff : addend_a; // For a local symbol, find a GOT page entry that points to within 32KB of // symbol + addend. Relocation value is the offset of the GOT page entry's // value from symbol + addend. // For a global symbol, relocation value is addend. Valtype x; if (local) { // Find GOT page entry. Mips_address value = ((psymval->value(object, addend) + 0x8000) & ~0xffff); target->got_section()->get_got_page_offset(value, object); x = psymval->value(object, addend) - value; } else x = addend; val = Bits<32>::bit_select32(val, x, 0xffff); if (calculate_only) { *calculated_value = x; return This::STATUS_OKAY; } else elfcpp::Swap<32, big_endian>::writeval(wv, val); return check_overflow<16>(x); } // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16, // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16 static inline typename This::Status relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); Valtype x = gp_offset; x = ((x + 0x8000) >> 16) & 0xffff; val = Bits<32>::bit_select32(val, x, 0xffff); if (calculate_only) *calculated_value = x; else elfcpp::Swap<32, big_endian>::writeval(wv, val); return This::STATUS_OKAY; } // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16, // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16 static inline typename This::Status relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); Valtype x = gp_offset; val = Bits<32>::bit_select32(val, x, 0xffff); if (calculate_only) *calculated_value = x; else elfcpp::Swap<32, big_endian>::writeval(wv, val); return This::STATUS_OKAY; } // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16 static inline typename This::Status relgprel(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address gp, Mips_address addend_a, bool extract_addend, bool local, unsigned int r_type, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); Valtype addend; if (extract_addend) { if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2) addend = (val & 0x7f) << 2; else addend = val & 0xffff; // Only sign-extend the addend if it was extracted from the // instruction. If the addend was separate, leave it alone, // otherwise we may lose significant bits. addend = Bits<16>::sign_extend32(addend); } else addend = addend_a; Valtype x = psymval->value(object, addend) - gp; // If the symbol was local, any earlier relocatable links will // have adjusted its addend with the gp offset, so compensate // for that now. Don't do it for symbols forced local in this // link, though, since they won't have had the gp offset applied // to them before. if (local) x += object->gp_value(); if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2) val = Bits<32>::bit_select32(val, x, 0x7f); else val = Bits<32>::bit_select32(val, x, 0xffff); if (calculate_only) { *calculated_value = x; return This::STATUS_OKAY; } else elfcpp::Swap<32, big_endian>::writeval(wv, val); if (check_overflow<16>(x) == This::STATUS_OVERFLOW) { gold_error(_("small-data section exceeds 64KB; lower small-data size " "limit (see option -G)")); return This::STATUS_OVERFLOW; } return This::STATUS_OKAY; } // R_MIPS_GPREL32 static inline typename This::Status relgprel32(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address gp, Mips_address addend_a, bool extract_addend, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); Valtype addend = extract_addend ? val : addend_a; // R_MIPS_GPREL32 relocations are defined for local symbols only. Valtype x = psymval->value(object, addend) + object->gp_value() - gp; if (calculate_only) *calculated_value = x; else elfcpp::Swap<32, big_endian>::writeval(wv, x); return This::STATUS_OKAY; } // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16, // R_MICROMIPS_TLS_DTPREL_HI16 static inline typename This::Status tlsrelhi16(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Valtype32 tp_offset, Mips_address addend_a, bool extract_addend, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); Valtype addend = extract_addend ? val & 0xffff : addend_a; // tls symbol values are relative to tls_segment()->vaddr() Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16; val = Bits<32>::bit_select32(val, x, 0xffff); if (calculate_only) *calculated_value = x; else elfcpp::Swap<32, big_endian>::writeval(wv, val); return This::STATUS_OKAY; } // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16, // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16, // R_MICROMIPS_TLS_DTPREL_LO16, static inline typename This::Status tlsrello16(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Valtype32 tp_offset, Mips_address addend_a, bool extract_addend, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); Valtype addend = extract_addend ? val & 0xffff : addend_a; // tls symbol values are relative to tls_segment()->vaddr() Valtype x = psymval->value(object, addend) - tp_offset; val = Bits<32>::bit_select32(val, x, 0xffff); if (calculate_only) *calculated_value = x; else elfcpp::Swap<32, big_endian>::writeval(wv, val); return This::STATUS_OKAY; } // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64, // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64 static inline typename This::Status tlsrel32(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Valtype32 tp_offset, Mips_address addend_a, bool extract_addend, bool calculate_only, Valtype* calculated_value) { Valtype32* wv = reinterpret_cast(view); Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); Valtype addend = extract_addend ? val : addend_a; // tls symbol values are relative to tls_segment()->vaddr() Valtype x = psymval->value(object, addend) - tp_offset; if (calculate_only) *calculated_value = x; else elfcpp::Swap<32, big_endian>::writeval(wv, x); return This::STATUS_OKAY; } // R_MIPS_SUB, R_MICROMIPS_SUB static inline typename This::Status relsub(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address addend_a, bool extract_addend, bool calculate_only, Valtype* calculated_value) { Valtype64* wv = reinterpret_cast(view); Valtype64 addend = (extract_addend ? elfcpp::Swap<64, big_endian>::readval(wv) : addend_a); Valtype64 x = psymval->value(object, -addend); if (calculate_only) *calculated_value = x; else elfcpp::Swap<64, big_endian>::writeval(wv, x); return This::STATUS_OKAY; } // R_MIPS_64: S + A static inline typename This::Status rel64(unsigned char* view, const Mips_relobj* object, const Symbol_value* psymval, Mips_address addend_a, bool extract_addend, bool calculate_only, Valtype* calculated_value, bool apply_addend_only) { Valtype64* wv = reinterpret_cast(view); Valtype64 addend = (extract_addend ? elfcpp::Swap<64, big_endian>::readval(wv) : addend_a); Valtype64 x = psymval->value(object, addend); if (calculate_only) *calculated_value = x; else { if (apply_addend_only) x = addend; elfcpp::Swap<64, big_endian>::writeval(wv, x); } return This::STATUS_OKAY; } }; template typename std::list > Mips_relocate_functions::hi16_relocs; template typename std::list > Mips_relocate_functions::got16_relocs; // Mips_got_info methods. // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT. template void Mips_got_info::record_local_got_symbol( Mips_relobj* object, unsigned int symndx, Mips_address addend, unsigned int r_type, unsigned int shndx, bool is_section_symbol) { Mips_got_entry* entry = new Mips_got_entry(object, symndx, addend, mips_elf_reloc_tls_type(r_type), shndx, is_section_symbol); this->record_got_entry(entry, object); } // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM, // in OBJECT. FOR_CALL is true if the caller is only interested in // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic // relocation. template void Mips_got_info::record_global_got_symbol( Mips_symbol* mips_sym, Mips_relobj* object, unsigned int r_type, bool dyn_reloc, bool for_call) { if (!for_call) mips_sym->set_got_not_only_for_calls(); // A global symbol in the GOT must also be in the dynamic symbol table. if (!mips_sym->needs_dynsym_entry()) { switch (mips_sym->visibility()) { case elfcpp::STV_INTERNAL: case elfcpp::STV_HIDDEN: mips_sym->set_is_forced_local(); break; default: mips_sym->set_needs_dynsym_entry(); break; } } unsigned char tls_type = mips_elf_reloc_tls_type(r_type); if (tls_type == GOT_TLS_NONE) this->global_got_symbols_.insert(mips_sym); if (dyn_reloc) { if (mips_sym->global_got_area() == GGA_NONE) mips_sym->set_global_got_area(GGA_RELOC_ONLY); return; } Mips_got_entry* entry = new Mips_got_entry(mips_sym, tls_type); this->record_got_entry(entry, object); } // Add ENTRY to master GOT and to OBJECT's GOT. template void Mips_got_info::record_got_entry( Mips_got_entry* entry, Mips_relobj* object) { this->got_entries_.insert(entry); // Create the GOT entry for the OBJECT's GOT. Mips_got_info* g = object->get_or_create_got_info(); Mips_got_entry* entry2 = new Mips_got_entry(*entry); g->got_entries_.insert(entry2); } // Record that OBJECT has a page relocation against symbol SYMNDX and // that ADDEND is the addend for that relocation. // This function creates an upper bound on the number of GOT slots // required; no attempt is made to combine references to non-overridable // global symbols across multiple input files. template void Mips_got_info::record_got_page_entry( Mips_relobj* object, unsigned int symndx, int addend) { struct Got_page_range **range_ptr, *range; int old_pages, new_pages; // Find the Got_page_entry for this symbol. Got_page_entry* entry = new Got_page_entry(object, symndx); typename Got_page_entry_set::iterator it = this->got_page_entries_.find(entry); if (it != this->got_page_entries_.end()) entry = *it; else this->got_page_entries_.insert(entry); // Add the same entry to the OBJECT's GOT. Got_page_entry* entry2 = NULL; Mips_got_info* g2 = object->get_or_create_got_info(); if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end()) { entry2 = new Got_page_entry(*entry); g2->got_page_entries_.insert(entry2); } // Skip over ranges whose maximum extent cannot share a page entry // with ADDEND. range_ptr = &entry->ranges; while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff) range_ptr = &(*range_ptr)->next; // If we scanned to the end of the list, or found a range whose // minimum extent cannot share a page entry with ADDEND, create // a new singleton range. range = *range_ptr; if (!range || addend < range->min_addend - 0xffff) { range = new Got_page_range(); range->next = *range_ptr; range->min_addend = addend; range->max_addend = addend; *range_ptr = range; ++entry->num_pages; if (entry2 != NULL) ++entry2->num_pages; ++this->page_gotno_; ++g2->page_gotno_; return; } // Remember how many pages the old range contributed. old_pages = range->get_max_pages(); // Update the ranges. if (addend < range->min_addend) range->min_addend = addend; else if (addend > range->max_addend) { if (range->next && addend >= range->next->min_addend - 0xffff) { old_pages += range->next->get_max_pages(); range->max_addend = range->next->max_addend; range->next = range->next->next; } else range->max_addend = addend; } // Record any change in the total estimate. new_pages = range->get_max_pages(); if (old_pages != new_pages) { entry->num_pages += new_pages - old_pages; if (entry2 != NULL) entry2->num_pages += new_pages - old_pages; this->page_gotno_ += new_pages - old_pages; g2->page_gotno_ += new_pages - old_pages; } } // Create all entries that should be in the local part of the GOT. template void Mips_got_info::add_local_entries( Target_mips* target, Layout* layout) { Mips_output_data_got* got = target->got_section(); // First two GOT entries are reserved. The first entry will be filled at // runtime. The second entry will be used by some runtime loaders. got->add_constant(0); got->add_constant(target->mips_elf_gnu_got1_mask()); for (typename Got_entry_set::iterator p = this->got_entries_.begin(); p != this->got_entries_.end(); ++p) { Mips_got_entry* entry = *p; if (entry->is_for_local_symbol() && !entry->is_tls_entry()) { got->add_local(entry->object(), entry->symndx(), GOT_TYPE_STANDARD, entry->addend()); unsigned int got_offset = entry->object()->local_got_offset( entry->symndx(), GOT_TYPE_STANDARD, entry->addend()); if (got->multi_got() && this->index_ > 0 && parameters->options().output_is_position_independent()) { if (!entry->is_section_symbol()) target->rel_dyn_section(layout)->add_local(entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset); else target->rel_dyn_section(layout)->add_symbolless_local_addend( entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset); } } } this->add_page_entries(target, layout); // Add global entries that should be in the local area. for (typename Got_entry_set::iterator p = this->got_entries_.begin(); p != this->got_entries_.end(); ++p) { Mips_got_entry* entry = *p; if (!entry->is_for_global_symbol()) continue; Mips_symbol* mips_sym = entry->sym(); if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry()) { unsigned int got_type; if (!got->multi_got()) got_type = GOT_TYPE_STANDARD; else got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_; if (got->add_global(mips_sym, got_type)) { mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type)); if (got->multi_got() && this->index_ > 0 && parameters->options().output_is_position_independent()) target->rel_dyn_section(layout)->add_symbolless_global_addend( mips_sym, elfcpp::R_MIPS_REL32, got, mips_sym->got_offset(got_type)); } } } } // Create GOT page entries. template void Mips_got_info::add_page_entries( Target_mips* target, Layout* layout) { if (this->page_gotno_ == 0) return; Mips_output_data_got* got = target->got_section(); this->got_page_offset_start_ = got->add_constant(0); if (got->multi_got() && this->index_ > 0 && parameters->options().output_is_position_independent()) target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got, this->got_page_offset_start_); int num_entries = this->page_gotno_; unsigned int prev_offset = this->got_page_offset_start_; while (--num_entries > 0) { unsigned int next_offset = got->add_constant(0); if (got->multi_got() && this->index_ > 0 && parameters->options().output_is_position_independent()) target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got, next_offset); gold_assert(next_offset == prev_offset + size/8); prev_offset = next_offset; } this->got_page_offset_next_ = this->got_page_offset_start_; } // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY. template void Mips_got_info::add_global_entries( Target_mips* target, Layout* layout, unsigned int non_reloc_only_global_gotno) { Mips_output_data_got* got = target->got_section(); // Add GGA_NORMAL entries. unsigned int count = 0; for (typename Got_entry_set::iterator p = this->got_entries_.begin(); p != this->got_entries_.end(); ++p) { Mips_got_entry* entry = *p; if (!entry->is_for_global_symbol()) continue; Mips_symbol* mips_sym = entry->sym(); if (mips_sym->global_got_area() != GGA_NORMAL) continue; unsigned int got_type; if (!got->multi_got()) got_type = GOT_TYPE_STANDARD; else // In multi-GOT links, global symbol can be in both primary and // secondary GOT(s). By creating custom GOT type // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol // is added to secondary GOT(s). got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_; if (!got->add_global(mips_sym, got_type)) continue; mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type)); if (got->multi_got() && this->index_ == 0) count++; if (got->multi_got() && this->index_ > 0) { if (parameters->options().output_is_position_independent() || (!parameters->doing_static_link() && mips_sym->is_from_dynobj() && !mips_sym->is_undefined())) { target->rel_dyn_section(layout)->add_global( mips_sym, elfcpp::R_MIPS_REL32, got, mips_sym->got_offset(got_type)); got->add_secondary_got_reloc(mips_sym->got_offset(got_type), elfcpp::R_MIPS_REL32, mips_sym); } } } if (!got->multi_got() || this->index_ == 0) { if (got->multi_got()) { // We need to allocate space in the primary GOT for GGA_NORMAL entries // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY // entries correspond to dynamic symbol indexes. while (count < non_reloc_only_global_gotno) { got->add_constant(0); ++count; } } // Add GGA_RELOC_ONLY entries. got->add_reloc_only_entries(); } } // Create global GOT entries that should be in the GGA_RELOC_ONLY area. template void Mips_got_info::add_reloc_only_entries( Mips_output_data_got* got) { for (typename Global_got_entry_set::iterator p = this->global_got_symbols_.begin(); p != this->global_got_symbols_.end(); ++p) { Mips_symbol* mips_sym = *p; if (mips_sym->global_got_area() == GGA_RELOC_ONLY) { unsigned int got_type; if (!got->multi_got()) got_type = GOT_TYPE_STANDARD; else got_type = GOT_TYPE_STANDARD_MULTIGOT; if (got->add_global(mips_sym, got_type)) mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type)); } } } // Create TLS GOT entries. template void Mips_got_info::add_tls_entries( Target_mips* target, Layout* layout) { Mips_output_data_got* got = target->got_section(); // Add local tls entries. for (typename Got_entry_set::iterator p = this->got_entries_.begin(); p != this->got_entries_.end(); ++p) { Mips_got_entry* entry = *p; if (!entry->is_tls_entry() || !entry->is_for_local_symbol()) continue; if (entry->tls_type() == GOT_TLS_GD) { unsigned int got_type = GOT_TYPE_TLS_PAIR; unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32 : elfcpp::R_MIPS_TLS_DTPMOD64); unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32 : elfcpp::R_MIPS_TLS_DTPREL64); if (!parameters->doing_static_link()) { got->add_local_pair_with_rel(entry->object(), entry->symndx(), entry->shndx(), got_type, target->rel_dyn_section(layout), r_type1, entry->addend()); unsigned int got_offset = entry->object()->local_got_offset(entry->symndx(), got_type, entry->addend()); got->add_static_reloc(got_offset + size/8, r_type2, entry->object(), entry->symndx()); } else { // We are doing a static link. Mark it as belong to module 1, // the executable. unsigned int got_offset = got->add_constant(1); entry->object()->set_local_got_offset(entry->symndx(), got_type, got_offset, entry->addend()); got->add_constant(0); got->add_static_reloc(got_offset + size/8, r_type2, entry->object(), entry->symndx()); } } else if (entry->tls_type() == GOT_TLS_IE) { unsigned int got_type = GOT_TYPE_TLS_OFFSET; unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32 : elfcpp::R_MIPS_TLS_TPREL64); if (!parameters->doing_static_link()) got->add_local_with_rel(entry->object(), entry->symndx(), got_type, target->rel_dyn_section(layout), r_type, entry->addend()); else { got->add_local(entry->object(), entry->symndx(), got_type, entry->addend()); unsigned int got_offset = entry->object()->local_got_offset(entry->symndx(), got_type, entry->addend()); got->add_static_reloc(got_offset, r_type, entry->object(), entry->symndx()); } } else if (entry->tls_type() == GOT_TLS_LDM) { unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32 : elfcpp::R_MIPS_TLS_DTPMOD64); unsigned int got_offset; if (!parameters->doing_static_link()) { got_offset = got->add_constant(0); target->rel_dyn_section(layout)->add_local( entry->object(), 0, r_type, got, got_offset); } else // We are doing a static link. Just mark it as belong to module 1, // the executable. got_offset = got->add_constant(1); got->add_constant(0); got->set_tls_ldm_offset(got_offset, entry->object()); } else gold_unreachable(); } // Add global tls entries. for (typename Got_entry_set::iterator p = this->got_entries_.begin(); p != this->got_entries_.end(); ++p) { Mips_got_entry* entry = *p; if (!entry->is_tls_entry() || !entry->is_for_global_symbol()) continue; Mips_symbol* mips_sym = entry->sym(); if (entry->tls_type() == GOT_TLS_GD) { unsigned int got_type; if (!got->multi_got()) got_type = GOT_TYPE_TLS_PAIR; else got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_; unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32 : elfcpp::R_MIPS_TLS_DTPMOD64); unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32 : elfcpp::R_MIPS_TLS_DTPREL64); if (!parameters->doing_static_link()) got->add_global_pair_with_rel(mips_sym, got_type, target->rel_dyn_section(layout), r_type1, r_type2); else { // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of // GOT entries. The first one is initialized to be 1, which is the // module index for the main executable and the second one 0. A // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for // the second GOT entry and will be applied by gold. unsigned int got_offset = got->add_constant(1); mips_sym->set_got_offset(got_type, got_offset); got->add_constant(0); got->add_static_reloc(got_offset + size/8, r_type2, mips_sym); } } else if (entry->tls_type() == GOT_TLS_IE) { unsigned int got_type; if (!got->multi_got()) got_type = GOT_TYPE_TLS_OFFSET; else got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_; unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32 : elfcpp::R_MIPS_TLS_TPREL64); if (!parameters->doing_static_link()) got->add_global_with_rel(mips_sym, got_type, target->rel_dyn_section(layout), r_type); else { got->add_global(mips_sym, got_type); unsigned int got_offset = mips_sym->got_offset(got_type); got->add_static_reloc(got_offset, r_type, mips_sym); } } else gold_unreachable(); } } // Decide whether the symbol needs an entry in the global part of the primary // GOT, setting global_got_area accordingly. Count the number of global // symbols that are in the primary GOT only because they have dynamic // relocations R_MIPS_REL32 against them (reloc_only_gotno). template void Mips_got_info::count_got_symbols(Symbol_table* symtab) { for (typename Global_got_entry_set::iterator p = this->global_got_symbols_.begin(); p != this->global_got_symbols_.end(); ++p) { Mips_symbol* sym = *p; // Make a final decision about whether the symbol belongs in the // local or global GOT. Symbols that bind locally can (and in the // case of forced-local symbols, must) live in the local GOT. // Those that are aren't in the dynamic symbol table must also // live in the local GOT. if (!sym->should_add_dynsym_entry(symtab) || (sym->got_only_for_calls() ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab)) : symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))) // The symbol belongs in the local GOT. We no longer need this // entry if it was only used for relocations; those relocations // will be against the null or section symbol instead. sym->set_global_got_area(GGA_NONE); else if (sym->global_got_area() == GGA_RELOC_ONLY) { ++this->reloc_only_gotno_; ++this->global_gotno_ ; } } } // Return the offset of GOT page entry for VALUE. Initialize the entry with // VALUE if it is not initialized. template unsigned int Mips_got_info::get_got_page_offset(Mips_address value, Mips_output_data_got* got) { typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value); if (it != this->got_page_offsets_.end()) return it->second; gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_ + (size/8) * this->page_gotno_); unsigned int got_offset = this->got_page_offset_next_; this->got_page_offsets_[value] = got_offset; this->got_page_offset_next_ += size/8; got->update_got_entry(got_offset, value); return got_offset; } // Remove lazy-binding stubs for global symbols in this GOT. template void Mips_got_info::remove_lazy_stubs( Target_mips* target) { for (typename Got_entry_set::iterator p = this->got_entries_.begin(); p != this->got_entries_.end(); ++p) { Mips_got_entry* entry = *p; if (entry->is_for_global_symbol()) target->remove_lazy_stub_entry(entry->sym()); } } // Count the number of GOT entries required. template void Mips_got_info::count_got_entries() { for (typename Got_entry_set::iterator p = this->got_entries_.begin(); p != this->got_entries_.end(); ++p) { this->count_got_entry(*p); } } // Count the number of GOT entries required by ENTRY. Accumulate the result. template void Mips_got_info::count_got_entry( Mips_got_entry* entry) { if (entry->is_tls_entry()) this->tls_gotno_ += mips_tls_got_entries(entry->tls_type()); else if (entry->is_for_local_symbol() || entry->sym()->global_got_area() == GGA_NONE) ++this->local_gotno_; else ++this->global_gotno_; } // Add FROM's GOT entries. template void Mips_got_info::add_got_entries( Mips_got_info* from) { for (typename Got_entry_set::iterator p = from->got_entries_.begin(); p != from->got_entries_.end(); ++p) { Mips_got_entry* entry = *p; if (this->got_entries_.find(entry) == this->got_entries_.end()) { Mips_got_entry* entry2 = new Mips_got_entry(*entry); this->got_entries_.insert(entry2); this->count_got_entry(entry); } } } // Add FROM's GOT page entries. template void Mips_got_info::add_got_page_entries( Mips_got_info* from) { for (typename Got_page_entry_set::iterator p = from->got_page_entries_.begin(); p != from->got_page_entries_.end(); ++p) { Got_page_entry* entry = *p; if (this->got_page_entries_.find(entry) == this->got_page_entries_.end()) { Got_page_entry* entry2 = new Got_page_entry(*entry); this->got_page_entries_.insert(entry2); this->page_gotno_ += entry->num_pages; } } } // Mips_output_data_got methods. // Lay out the GOT. Add local, global and TLS entries. If GOT is // larger than 64K, create multi-GOT. template void Mips_output_data_got::lay_out_got(Layout* layout, Symbol_table* symtab, const Input_objects* input_objects) { // Decide which symbols need to go in the global part of the GOT and // count the number of reloc-only GOT symbols. this->master_got_info_->count_got_symbols(symtab); // Count the number of GOT entries. this->master_got_info_->count_got_entries(); unsigned int got_size = this->master_got_info_->got_size(); if (got_size > Target_mips::MIPS_GOT_MAX_SIZE) this->lay_out_multi_got(layout, input_objects); else { // Record that all objects use single GOT. for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); p != input_objects->relobj_end(); ++p) { Mips_relobj* object = Mips_relobj::as_mips_relobj(*p); if (object->get_got_info() != NULL) object->set_got_info(this->master_got_info_); } this->master_got_info_->add_local_entries(this->target_, layout); this->master_got_info_->add_global_entries(this->target_, layout, /*not used*/-1U); this->master_got_info_->add_tls_entries(this->target_, layout); } } // Create multi-GOT. For every GOT, add local, global and TLS entries. template void Mips_output_data_got::lay_out_multi_got(Layout* layout, const Input_objects* input_objects) { // Try to merge the GOTs of input objects together, as long as they // don't seem to exceed the maximum GOT size, choosing one of them // to be the primary GOT. this->merge_gots(input_objects); // Every symbol that is referenced in a dynamic relocation must be // present in the primary GOT. this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno()); // Add GOT entries. unsigned int i = 0; unsigned int offset = 0; Mips_got_info* g = this->primary_got_; do { g->set_index(i); g->set_offset(offset); g->add_local_entries(this->target_, layout); if (i == 0) g->add_global_entries(this->target_, layout, (this->master_got_info_->global_gotno() - this->master_got_info_->reloc_only_gotno())); else g->add_global_entries(this->target_, layout, /*not used*/-1U); g->add_tls_entries(this->target_, layout); // Forbid global symbols in every non-primary GOT from having // lazy-binding stubs. if (i > 0) g->remove_lazy_stubs(this->target_); ++i; offset += g->got_size(); g = g->next(); } while (g); } // Attempt to merge GOTs of different input objects. Try to use as much as // possible of the primary GOT, since it doesn't require explicit dynamic // relocations, but don't use objects that would reference global symbols // out of the addressable range. Failing the primary GOT, attempt to merge // with the current GOT, or finish the current GOT and then make make the new // GOT current. template void Mips_output_data_got::merge_gots( const Input_objects* input_objects) { gold_assert(this->primary_got_ == NULL); Mips_got_info* current = NULL; for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); p != input_objects->relobj_end(); ++p) { Mips_relobj* object = Mips_relobj::as_mips_relobj(*p); Mips_got_info* g = object->get_got_info(); if (g == NULL) continue; g->count_got_entries(); // Work out the number of page, local and TLS entries. unsigned int estimate = this->master_got_info_->page_gotno(); if (estimate > g->page_gotno()) estimate = g->page_gotno(); estimate += g->local_gotno() + g->tls_gotno(); // We place TLS GOT entries after both locals and globals. The globals // for the primary GOT may overflow the normal GOT size limit, so be // sure not to merge a GOT which requires TLS with the primary GOT in that // case. This doesn't affect non-primary GOTs. estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno() : g->global_gotno()); unsigned int max_count = Target_mips::MIPS_GOT_MAX_SIZE / (size/8) - 2; if (estimate <= max_count) { // If we don't have a primary GOT, use it as // a starting point for the primary GOT. if (!this->primary_got_) { this->primary_got_ = g; continue; } // Try merging with the primary GOT. if (this->merge_got_with(g, object, this->primary_got_)) continue; } // If we can merge with the last-created GOT, do it. if (current && this->merge_got_with(g, object, current)) continue; // Well, we couldn't merge, so create a new GOT. Don't check if it // fits; if it turns out that it doesn't, we'll get relocation // overflows anyway. g->set_next(current); current = g; } // If we do not find any suitable primary GOT, create an empty one. if (this->primary_got_ == NULL) this->primary_got_ = new Mips_got_info(); // Link primary GOT with secondary GOTs. this->primary_got_->set_next(current); } // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if // this would lead to overflow, true if they were merged successfully. template bool Mips_output_data_got::merge_got_with( Mips_got_info* from, Mips_relobj* object, Mips_got_info* to) { // Work out how many page entries we would need for the combined GOT. unsigned int estimate = this->master_got_info_->page_gotno(); if (estimate >= from->page_gotno() + to->page_gotno()) estimate = from->page_gotno() + to->page_gotno(); // Conservatively estimate how many local and TLS entries would be needed. estimate += from->local_gotno() + to->local_gotno(); estimate += from->tls_gotno() + to->tls_gotno(); // If we're merging with the primary got, any TLS relocations will // come after the full set of global entries. Otherwise estimate those // conservatively as well. if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0) estimate += this->master_got_info_->global_gotno(); else estimate += from->global_gotno() + to->global_gotno(); // Bail out if the combined GOT might be too big. unsigned int max_count = Target_mips::MIPS_GOT_MAX_SIZE / (size/8) - 2; if (estimate > max_count) return false; // Transfer the object's GOT information from FROM to TO. to->add_got_entries(from); to->add_got_page_entries(from); // Record that OBJECT should use output GOT TO. object->set_got_info(to); return true; } // Write out the GOT. template void Mips_output_data_got::do_write(Output_file* of) { typedef Unordered_set*, Mips_symbol_hash > Mips_stubs_entry_set; // Call parent to write out GOT. Output_data_got::do_write(of); const off_t offset = this->offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(offset, oview_size); // Needed for fixing values of .got section. this->got_view_ = oview; // Write lazy stub addresses. for (typename Mips_stubs_entry_set::iterator p = this->master_got_info_->global_got_symbols().begin(); p != this->master_got_info_->global_got_symbols().end(); ++p) { Mips_symbol* mips_sym = *p; if (mips_sym->has_lazy_stub()) { Valtype* wv = reinterpret_cast( oview + this->get_primary_got_offset(mips_sym)); Valtype value = this->target_->mips_stubs_section()->stub_address(mips_sym); elfcpp::Swap::writeval(wv, value); } } // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries. for (typename Mips_stubs_entry_set::iterator p = this->master_got_info_->global_got_symbols().begin(); p != this->master_got_info_->global_got_symbols().end(); ++p) { Mips_symbol* mips_sym = *p; if (!this->multi_got() && (mips_sym->is_mips16() || mips_sym->is_micromips()) && mips_sym->global_got_area() == GGA_NONE && mips_sym->has_got_offset(GOT_TYPE_STANDARD)) { Valtype* wv = reinterpret_cast( oview + mips_sym->got_offset(GOT_TYPE_STANDARD)); Valtype value = elfcpp::Swap::readval(wv); if (value != 0) { value |= 1; elfcpp::Swap::writeval(wv, value); } } } if (!this->secondary_got_relocs_.empty()) { // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global // secondary GOT entries with non-zero initial value copy the value // to the corresponding primary GOT entry, and set the secondary GOT // entry to zero. // TODO(sasa): This is workaround. It needs to be investigated further. for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i) { Static_reloc& reloc(this->secondary_got_relocs_[i]); if (reloc.symbol_is_global()) { Mips_symbol* gsym = reloc.symbol(); gold_assert(gsym != NULL); unsigned got_offset = reloc.got_offset(); gold_assert(got_offset < oview_size); // Find primary GOT entry. Valtype* wv_prim = reinterpret_cast( oview + this->get_primary_got_offset(gsym)); // Find secondary GOT entry. Valtype* wv_sec = reinterpret_cast(oview + got_offset); Valtype value = elfcpp::Swap::readval(wv_sec); if (value != 0) { elfcpp::Swap::writeval(wv_prim, value); elfcpp::Swap::writeval(wv_sec, 0); gsym->set_applied_secondary_got_fixup(); } } } of->write_output_view(offset, oview_size, oview); } // We are done if there is no fix up. if (this->static_relocs_.empty()) return; Output_segment* tls_segment = this->layout_->tls_segment(); gold_assert(tls_segment != NULL); for (size_t i = 0; i < this->static_relocs_.size(); ++i) { Static_reloc& reloc(this->static_relocs_[i]); Mips_address value; if (!reloc.symbol_is_global()) { Sized_relobj_file* object = reloc.relobj(); const Symbol_value* psymval = object->local_symbol(reloc.index()); // We are doing static linking. Issue an error and skip this // relocation if the symbol is undefined or in a discarded_section. bool is_ordinary; unsigned int shndx = psymval->input_shndx(&is_ordinary); if ((shndx == elfcpp::SHN_UNDEF) || (is_ordinary && shndx != elfcpp::SHN_UNDEF && !object->is_section_included(shndx) && !this->symbol_table_->is_section_folded(object, shndx))) { gold_error(_("undefined or discarded local symbol %u from " " object %s in GOT"), reloc.index(), reloc.relobj()->name().c_str()); continue; } value = psymval->value(object, 0); } else { const Mips_symbol* gsym = reloc.symbol(); gold_assert(gsym != NULL); // We are doing static linking. Issue an error and skip this // relocation if the symbol is undefined or in a discarded_section // unless it is a weakly_undefined symbol. if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined()) && !gsym->is_weak_undefined()) { gold_error(_("undefined or discarded symbol %s in GOT"), gsym->name()); continue; } if (!gsym->is_weak_undefined()) value = gsym->value(); else value = 0; } unsigned got_offset = reloc.got_offset(); gold_assert(got_offset < oview_size); Valtype* wv = reinterpret_cast(oview + got_offset); Valtype x; switch (reloc.r_type()) { case elfcpp::R_MIPS_TLS_DTPMOD32: case elfcpp::R_MIPS_TLS_DTPMOD64: x = value; break; case elfcpp::R_MIPS_TLS_DTPREL32: case elfcpp::R_MIPS_TLS_DTPREL64: x = value - elfcpp::DTP_OFFSET; break; case elfcpp::R_MIPS_TLS_TPREL32: case elfcpp::R_MIPS_TLS_TPREL64: x = value - elfcpp::TP_OFFSET; break; default: gold_unreachable(); break; } elfcpp::Swap::writeval(wv, x); } of->write_output_view(offset, oview_size, oview); } // Mips_relobj methods. // Count the local symbols. The Mips backend needs to know if a symbol // is a MIPS16 or microMIPS function or not. For global symbols, it is easy // because the Symbol object keeps the ELF symbol type and st_other field. // For local symbol it is harder because we cannot access this information. // So we override the do_count_local_symbol in parent and scan local symbols to // mark MIPS16 and microMIPS functions. This is not the most efficient way but // I do not want to slow down other ports by calling a per symbol target hook // inside Sized_relobj_file::do_count_local_symbols. template void Mips_relobj::do_count_local_symbols( Stringpool_template* pool, Stringpool_template* dynpool) { // Ask parent to count the local symbols. Sized_relobj_file::do_count_local_symbols(pool, dynpool); const unsigned int loccount = this->local_symbol_count(); if (loccount == 0) return; // Initialize the mips16 and micromips function bit-vector. this->local_symbol_is_mips16_.resize(loccount, false); this->local_symbol_is_micromips_.resize(loccount, false); // Read the symbol table section header. const unsigned int symtab_shndx = this->symtab_shndx(); elfcpp::Shdr symtabshdr(this, this->elf_file()->section_header(symtab_shndx)); gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); // Read the local symbols. const int sym_size = elfcpp::Elf_sizes::sym_size; gold_assert(loccount == symtabshdr.get_sh_info()); off_t locsize = loccount * sym_size; const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), locsize, true, true); // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols. // Skip the first dummy symbol. psyms += sym_size; for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) { elfcpp::Sym sym(psyms); unsigned char st_other = sym.get_st_other(); this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other); this->local_symbol_is_micromips_[i] = elfcpp::elf_st_is_micromips(st_other); } } // Read the symbol information. template void Mips_relobj::do_read_symbols(Read_symbols_data* sd) { // Call parent class to read symbol information. this->base_read_symbols(sd); // Read processor-specific flags in ELF file header. const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset, elfcpp::Elf_sizes::ehdr_size, true, false); elfcpp::Ehdr ehdr(pehdr); this->processor_specific_flags_ = ehdr.get_e_flags(); // Get the section names. const unsigned char* pnamesu = sd->section_names->data(); const char* pnames = reinterpret_cast(pnamesu); // Initialize the mips16 stub section bit-vectors. this->section_is_mips16_fn_stub_.resize(this->shnum(), false); this->section_is_mips16_call_stub_.resize(this->shnum(), false); this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false); const size_t shdr_size = elfcpp::Elf_sizes::shdr_size; const unsigned char* pshdrs = sd->section_headers->data(); const unsigned char* ps = pshdrs + shdr_size; for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size) { elfcpp::Shdr shdr(ps); if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO) { this->has_reginfo_section_ = true; // Read the gp value that was used to create this object. We need the // gp value while processing relocs. The .reginfo section is not used // in the 64-bit MIPS ELF ABI. section_offset_type section_offset = shdr.get_sh_offset(); section_size_type section_size = convert_to_section_size_type(shdr.get_sh_size()); const unsigned char* view = this->get_view(section_offset, section_size, true, false); this->gp_ = elfcpp::Swap::readval(view + 20); // Read the rest of .reginfo. this->gprmask_ = elfcpp::Swap::readval(view); this->cprmask1_ = elfcpp::Swap::readval(view + 4); this->cprmask2_ = elfcpp::Swap::readval(view + 8); this->cprmask3_ = elfcpp::Swap::readval(view + 12); this->cprmask4_ = elfcpp::Swap::readval(view + 16); } if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES) { gold_assert(this->attributes_section_data_ == NULL); section_offset_type section_offset = shdr.get_sh_offset(); section_size_type section_size = convert_to_section_size_type(shdr.get_sh_size()); const unsigned char* view = this->get_view(section_offset, section_size, true, false); this->attributes_section_data_ = new Attributes_section_data(view, section_size); } if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS) { gold_assert(this->abiflags_ == NULL); section_offset_type section_offset = shdr.get_sh_offset(); section_size_type section_size = convert_to_section_size_type(shdr.get_sh_size()); const unsigned char* view = this->get_view(section_offset, section_size, true, false); this->abiflags_ = new Mips_abiflags(); this->abiflags_->version = elfcpp::Swap<16, big_endian>::readval(view); if (this->abiflags_->version != 0) { gold_error(_("%s: .MIPS.abiflags section has " "unsupported version %u"), this->name().c_str(), this->abiflags_->version); break; } this->abiflags_->isa_level = elfcpp::Swap<8, big_endian>::readval(view + 2); this->abiflags_->isa_rev = elfcpp::Swap<8, big_endian>::readval(view + 3); this->abiflags_->gpr_size = elfcpp::Swap<8, big_endian>::readval(view + 4); this->abiflags_->cpr1_size = elfcpp::Swap<8, big_endian>::readval(view + 5); this->abiflags_->cpr2_size = elfcpp::Swap<8, big_endian>::readval(view + 6); this->abiflags_->fp_abi = elfcpp::Swap<8, big_endian>::readval(view + 7); this->abiflags_->isa_ext = elfcpp::Swap<32, big_endian>::readval(view + 8); this->abiflags_->ases = elfcpp::Swap<32, big_endian>::readval(view + 12); this->abiflags_->flags1 = elfcpp::Swap<32, big_endian>::readval(view + 16); this->abiflags_->flags2 = elfcpp::Swap<32, big_endian>::readval(view + 20); } // In the 64-bit ABI, .MIPS.options section holds register information. // A SHT_MIPS_OPTIONS section contains a series of options, each of which // starts with this header: // // typedef struct // { // // Type of option. // unsigned char kind[1]; // // Size of option descriptor, including header. // unsigned char size[1]; // // Section index of affected section, or 0 for global option. // unsigned char section[2]; // // Information specific to this kind of option. // unsigned char info[4]; // }; // // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set // the gp value based on what we find. We may see both SHT_MIPS_REGINFO // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree. if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS) { section_offset_type section_offset = shdr.get_sh_offset(); section_size_type section_size = convert_to_section_size_type(shdr.get_sh_size()); const unsigned char* view = this->get_view(section_offset, section_size, true, false); const unsigned char* end = view + section_size; while (view + 8 <= end) { unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view); unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1); if (sz < 8) { gold_error(_("%s: Warning: bad `%s' option size %u smaller " "than its header"), this->name().c_str(), this->mips_elf_options_section_name(), sz); break; } if (this->is_n64() && kind == elfcpp::ODK_REGINFO) { // In the 64 bit ABI, an ODK_REGINFO option is the following // structure. The info field of the options header is not // used. // // typedef struct // { // // Mask of general purpose registers used. // unsigned char ri_gprmask[4]; // // Padding. // unsigned char ri_pad[4]; // // Mask of co-processor registers used. // unsigned char ri_cprmask[4][4]; // // GP register value for this object file. // unsigned char ri_gp_value[8]; // }; this->gp_ = elfcpp::Swap::readval(view + 32); } else if (kind == elfcpp::ODK_REGINFO) { // In the 32 bit ABI, an ODK_REGINFO option is the following // structure. The info field of the options header is not // used. The same structure is used in .reginfo section. // // typedef struct // { // unsigned char ri_gprmask[4]; // unsigned char ri_cprmask[4][4]; // unsigned char ri_gp_value[4]; // }; this->gp_ = elfcpp::Swap::readval(view + 28); } view += sz; } } const char* name = pnames + shdr.get_sh_name(); this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name); this->section_is_mips16_call_stub_[i] = is_prefix_of(".mips16.call.", name); this->section_is_mips16_call_fp_stub_[i] = is_prefix_of(".mips16.call.fp.", name); if (strcmp(name, ".pdr") == 0) { gold_assert(this->pdr_shndx_ == -1U); this->pdr_shndx_ = i; } } } // Discard MIPS16 stub secions that are not needed. template void Mips_relobj::discard_mips16_stub_sections(Symbol_table* symtab) { for (typename Mips16_stubs_int_map::const_iterator it = this->mips16_stub_sections_.begin(); it != this->mips16_stub_sections_.end(); ++it) { Mips16_stub_section* stub_section = it->second; if (!stub_section->is_target_found()) { gold_error(_("no relocation found in mips16 stub section '%s'"), stub_section->object() ->section_name(stub_section->shndx()).c_str()); } bool discard = false; if (stub_section->is_for_local_function()) { if (stub_section->is_fn_stub()) { // This stub is for a local symbol. This stub will only // be needed if there is some relocation in this object, // other than a 16 bit function call, which refers to this // symbol. if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym())) discard = true; else this->add_local_mips16_fn_stub(stub_section); } else { // This stub is for a local symbol. This stub will only // be needed if there is some relocation (R_MIPS16_26) in // this object that refers to this symbol. gold_assert(stub_section->is_call_stub() || stub_section->is_call_fp_stub()); if (!this->has_local_16bit_call_relocs(stub_section->r_sym())) discard = true; else this->add_local_mips16_call_stub(stub_section); } } else { Mips_symbol* gsym = stub_section->gsym(); if (stub_section->is_fn_stub()) { if (gsym->has_mips16_fn_stub()) // We already have a stub for this function. discard = true; else { gsym->set_mips16_fn_stub(stub_section); if (gsym->should_add_dynsym_entry(symtab)) { // If we have a MIPS16 function with a stub, the // dynamic symbol must refer to the stub, since only // the stub uses the standard calling conventions. gsym->set_need_fn_stub(); if (gsym->is_from_dynobj()) gsym->set_needs_dynsym_value(); } } if (!gsym->need_fn_stub()) discard = true; } else if (stub_section->is_call_stub()) { if (gsym->is_mips16()) // We don't need the call_stub; this is a 16 bit // function, so calls from other 16 bit functions are // OK. discard = true; else if (gsym->has_mips16_call_stub()) // We already have a stub for this function. discard = true; else gsym->set_mips16_call_stub(stub_section); } else { gold_assert(stub_section->is_call_fp_stub()); if (gsym->is_mips16()) // We don't need the call_stub; this is a 16 bit // function, so calls from other 16 bit functions are // OK. discard = true; else if (gsym->has_mips16_call_fp_stub()) // We already have a stub for this function. discard = true; else gsym->set_mips16_call_fp_stub(stub_section); } } if (discard) this->set_output_section(stub_section->shndx(), NULL); } } // Mips_output_data_la25_stub methods. // Template for standard LA25 stub. template const uint32_t Mips_output_data_la25_stub::la25_stub_entry[] = { 0x3c190000, // lui $25,%hi(func) 0x08000000, // j func 0x27390000, // add $25,$25,%lo(func) 0x00000000 // nop }; // Template for microMIPS LA25 stub. template const uint32_t Mips_output_data_la25_stub::la25_stub_micromips_entry[] = { 0x41b9, 0x0000, // lui t9,%hi(func) 0xd400, 0x0000, // j func 0x3339, 0x0000, // addiu t9,t9,%lo(func) 0x0000, 0x0000 // nop }; // Create la25 stub for a symbol. template void Mips_output_data_la25_stub::create_la25_stub( Symbol_table* symtab, Target_mips* target, Mips_symbol* gsym) { if (!gsym->has_la25_stub()) { gsym->set_la25_stub_offset(this->symbols_.size() * 16); this->symbols_.push_back(gsym); this->create_stub_symbol(gsym, symtab, target, 16); } } // Create a symbol for SYM stub's value and size, to help make the disassembly // easier to read. template void Mips_output_data_la25_stub::create_stub_symbol( Mips_symbol* sym, Symbol_table* symtab, Target_mips* target, uint64_t symsize) { std::string name(".pic."); name += sym->name(); unsigned int offset = sym->la25_stub_offset(); if (sym->is_micromips()) offset |= 1; // Make it a local function. Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL, Symbol_table::PREDEFINED, target->la25_stub_section(), offset, symsize, elfcpp::STT_FUNC, elfcpp::STB_LOCAL, elfcpp::STV_DEFAULT, 0, false, false); new_sym->set_is_forced_local(); } // Write out la25 stubs. This uses the hand-coded instructions above, // and adjusts them as needed. template void Mips_output_data_la25_stub::do_write(Output_file* of) { const off_t offset = this->offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(offset, oview_size); for (typename std::vector*>::iterator p = this->symbols_.begin(); p != this->symbols_.end(); ++p) { Mips_symbol* sym = *p; unsigned char* pov = oview + sym->la25_stub_offset(); Mips_address target = sym->value(); if (!sym->is_micromips()) { elfcpp::Swap<32, big_endian>::writeval(pov, la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff)); elfcpp::Swap<32, big_endian>::writeval(pov + 4, la25_stub_entry[1] | ((target >> 2) & 0x3ffffff)); elfcpp::Swap<32, big_endian>::writeval(pov + 8, la25_stub_entry[2] | (target & 0xffff)); elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]); } else { target |= 1; // First stub instruction. Paste high 16-bits of the target. elfcpp::Swap<16, big_endian>::writeval(pov, la25_stub_micromips_entry[0]); elfcpp::Swap<16, big_endian>::writeval(pov + 2, ((target + 0x8000) >> 16) & 0xffff); // Second stub instruction. Paste low 26-bits of the target, shifted // right by 1. elfcpp::Swap<16, big_endian>::writeval(pov + 4, la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff)); elfcpp::Swap<16, big_endian>::writeval(pov + 6, la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff)); // Third stub instruction. Paste low 16-bits of the target. elfcpp::Swap<16, big_endian>::writeval(pov + 8, la25_stub_micromips_entry[4]); elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff); // Fourth stub instruction. elfcpp::Swap<16, big_endian>::writeval(pov + 12, la25_stub_micromips_entry[6]); elfcpp::Swap<16, big_endian>::writeval(pov + 14, la25_stub_micromips_entry[7]); } } of->write_output_view(offset, oview_size, oview); } // Mips_output_data_plt methods. // The format of the first PLT entry in an O32 executable. template const uint32_t Mips_output_data_plt::plt0_entry_o32[] = { 0x3c1c0000, // lui $28, %hi(&GOTPLT[0]) 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28) 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0]) 0x031cc023, // subu $24, $24, $28 0x03e07825, // or $15, $31, zero 0x0018c082, // srl $24, $24, 2 0x0320f809, // jalr $25 0x2718fffe // subu $24, $24, 2 }; // The format of the first PLT entry in an N32 executable. Different // because gp ($28) is not available; we use t2 ($14) instead. template const uint32_t Mips_output_data_plt::plt0_entry_n32[] = { 0x3c0e0000, // lui $14, %hi(&GOTPLT[0]) 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14) 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0]) 0x030ec023, // subu $24, $24, $14 0x03e07825, // or $15, $31, zero 0x0018c082, // srl $24, $24, 2 0x0320f809, // jalr $25 0x2718fffe // subu $24, $24, 2 }; // The format of the first PLT entry in an N64 executable. Different // from N32 because of the increased size of GOT entries. template const uint32_t Mips_output_data_plt::plt0_entry_n64[] = { 0x3c0e0000, // lui $14, %hi(&GOTPLT[0]) 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14) 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0]) 0x030ec023, // subu $24, $24, $14 0x03e07825, // or $15, $31, zero 0x0018c0c2, // srl $24, $24, 3 0x0320f809, // jalr $25 0x2718fffe // subu $24, $24, 2 }; // The format of the microMIPS first PLT entry in an O32 executable. // We rely on v0 ($2) rather than t8 ($24) to contain the address // of the GOTPLT entry handled, so this stub may only be used when // all the subsequent PLT entries are microMIPS code too. // // The trailing NOP is for alignment and correct disassembly only. template const uint32_t Mips_output_data_plt:: plt0_entry_micromips_o32[] = { 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - . 0xff23, 0x0000, // lw $25, 0($3) 0x0535, // subu $2, $2, $3 0x2525, // srl $2, $2, 2 0x3302, 0xfffe, // subu $24, $2, 2 0x0dff, // move $15, $31 0x45f9, // jalrs $25 0x0f83, // move $28, $3 0x0c00 // nop }; // The format of the microMIPS first PLT entry in an O32 executable // in the insn32 mode. template const uint32_t Mips_output_data_plt:: plt0_entry_micromips32_o32[] = { 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0]) 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28) 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0]) 0x0398, 0xc1d0, // subu $24, $24, $28 0x001f, 0x7a90, // or $15, $31, zero 0x0318, 0x1040, // srl $24, $24, 2 0x03f9, 0x0f3c, // jalr $25 0x3318, 0xfffe // subu $24, $24, 2 }; // The format of subsequent standard entries in the PLT. template const uint32_t Mips_output_data_plt::plt_entry[] = { 0x3c0f0000, // lui $15, %hi(.got.plt entry) 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15) 0x03200008, // jr $25 0x25f80000 // addiu $24, $15, %lo(.got.plt entry) }; // The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a // temporary because t8 ($24) and t9 ($25) are not directly addressable. // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3). // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect // target function address in register v0. template const uint32_t Mips_output_data_plt::plt_entry_mips16_o32[] = { 0xb303, // lw $3, 12($pc) 0x651b, // move $24, $3 0x9b60, // lw $3, 0($3) 0xeb00, // jr $3 0x653b, // move $25, $3 0x6500, // nop 0x0000, 0x0000 // .word (.got.plt entry) }; // The format of subsequent microMIPS o32 PLT entries. We use v0 ($2) // as a temporary because t8 ($24) is not addressable with ADDIUPC. template const uint32_t Mips_output_data_plt:: plt_entry_micromips_o32[] = { 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - . 0xff22, 0x0000, // lw $25, 0($2) 0x4599, // jr $25 0x0f02 // move $24, $2 }; // The format of subsequent microMIPS o32 PLT entries in the insn32 mode. template const uint32_t Mips_output_data_plt:: plt_entry_micromips32_o32[] = { 0x41af, 0x0000, // lui $15, %hi(.got.plt entry) 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15) 0x0019, 0x0f3c, // jr $25 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry) }; // Add an entry to the PLT for a symbol referenced by r_type relocation. template void Mips_output_data_plt::add_entry(Mips_symbol* gsym, unsigned int r_type) { gold_assert(!gsym->has_plt_offset()); // Final PLT offset for a symbol will be set in method set_plt_offsets(). gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry) + sizeof(plt0_entry_o32)); this->symbols_.push_back(gsym); // Record whether the relocation requires a standard MIPS // or a compressed code entry. if (jal_reloc(r_type)) { if (r_type == elfcpp::R_MIPS_26) gsym->set_needs_mips_plt(true); else gsym->set_needs_comp_plt(true); } section_offset_type got_offset = this->got_plt_->current_data_size(); // Every PLT entry needs a GOT entry which points back to the PLT // entry (this will be changed by the dynamic linker, normally // lazily when the function is called). this->got_plt_->set_current_data_size(got_offset + size/8); gsym->set_needs_dynsym_entry(); this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_, got_offset); } // Set final PLT offsets. For each symbol, determine whether standard or // compressed (MIPS16 or microMIPS) PLT entry is used. template void Mips_output_data_plt::set_plt_offsets() { // The sizes of individual PLT entries. unsigned int plt_mips_entry_size = this->standard_plt_entry_size(); unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi() ? this->compressed_plt_entry_size() : 0); for (typename std::vector*>::const_iterator p = this->symbols_.begin(); p != this->symbols_.end(); ++p) { Mips_symbol* mips_sym = *p; // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64, // so always use a standard entry there. // // If the symbol has a MIPS16 call stub and gets a PLT entry, then // all MIPS16 calls will go via that stub, and there is no benefit // to having a MIPS16 entry. And in the case of call_stub a // standard entry actually has to be used as the stub ends with a J // instruction. if (this->target_->is_output_newabi() || mips_sym->has_mips16_call_stub() || mips_sym->has_mips16_call_fp_stub()) { mips_sym->set_needs_mips_plt(true); mips_sym->set_needs_comp_plt(false); } // Otherwise, if there are no direct calls to the function, we // have a free choice of whether to use standard or compressed // entries. Prefer microMIPS entries if the object is known to // contain microMIPS code, so that it becomes possible to create // pure microMIPS binaries. Prefer standard entries otherwise, // because MIPS16 ones are no smaller and are usually slower. if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt()) { if (this->target_->is_output_micromips()) mips_sym->set_needs_comp_plt(true); else mips_sym->set_needs_mips_plt(true); } if (mips_sym->needs_mips_plt()) { mips_sym->set_mips_plt_offset(this->plt_mips_offset_); this->plt_mips_offset_ += plt_mips_entry_size; } if (mips_sym->needs_comp_plt()) { mips_sym->set_comp_plt_offset(this->plt_comp_offset_); this->plt_comp_offset_ += plt_comp_entry_size; } } // Figure out the size of the PLT header if we know that we are using it. if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0) this->plt_header_size_ = this->get_plt_header_size(); } // Write out the PLT. This uses the hand-coded instructions above, // and adjusts them as needed. template void Mips_output_data_plt::do_write(Output_file* of) { const off_t offset = this->offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(offset, oview_size); const off_t gotplt_file_offset = this->got_plt_->offset(); const section_size_type gotplt_size = convert_to_section_size_type(this->got_plt_->data_size()); unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset, gotplt_size); unsigned char* pov = oview; Mips_address plt_address = this->address(); // Calculate the address of .got.plt. Mips_address gotplt_addr = this->got_plt_->address(); Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff; Mips_address gotplt_addr_low = gotplt_addr & 0xffff; // The PLT sequence is not safe for N64 if .got.plt's address can // not be loaded in two instructions. gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0 || ~(gotplt_addr | 0x7fffffff) == 0); // Write the PLT header. const uint32_t* plt0_entry = this->get_plt_header_entry(); if (plt0_entry == plt0_entry_micromips_o32) { // Write microMIPS PLT header. gold_assert(gotplt_addr % 4 == 0); Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3); // ADDIUPC has a span of +/-16MB, check we're in range. if (gotpc_offset + 0x1000000 >= 0x2000000) { gold_error(_(".got.plt offset of %ld from .plt beyond the range of " "ADDIUPC"), (long)gotpc_offset); return; } elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f)); elfcpp::Swap<16, big_endian>::writeval(pov + 2, (gotpc_offset >> 2) & 0xffff); pov += 4; for (unsigned int i = 2; i < (sizeof(plt0_entry_micromips_o32) / sizeof(plt0_entry_micromips_o32[0])); i++) { elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]); pov += 2; } } else if (plt0_entry == plt0_entry_micromips32_o32) { // Write microMIPS PLT header in insn32 mode. elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]); elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high); elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]); elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low); elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]); elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low); pov += 12; for (unsigned int i = 6; i < (sizeof(plt0_entry_micromips32_o32) / sizeof(plt0_entry_micromips32_o32[0])); i++) { elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]); pov += 2; } } else { // Write standard PLT header. elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[0] | gotplt_addr_high); elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt0_entry[1] | gotplt_addr_low); elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt0_entry[2] | gotplt_addr_low); pov += 12; for (int i = 3; i < 8; i++) { elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]); pov += 4; } } unsigned char* gotplt_pov = gotplt_view; unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE // The first two entries in .got.plt are reserved. elfcpp::Swap::writeval(gotplt_pov, 0); elfcpp::Swap::writeval(gotplt_pov + got_entry_size, 0); unsigned int gotplt_offset = 2 * got_entry_size; gotplt_pov += 2 * got_entry_size; // Calculate the address of the PLT header. Mips_address header_address = (plt_address + (this->is_plt_header_compressed() ? 1 : 0)); // Initialize compressed PLT area view. unsigned char* pov2 = pov + this->plt_mips_offset_; // Write the PLT entries. for (typename std::vector*>::const_iterator p = this->symbols_.begin(); p != this->symbols_.end(); ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size) { Mips_symbol* mips_sym = *p; // Calculate the address of the .got.plt entry. uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset); uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16) & 0xffff); uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff; // Initially point the .got.plt entry at the PLT header. if (this->target_->is_output_n64()) elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address); else elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address); // Now handle the PLT itself. First the standard entry. if (mips_sym->has_mips_plt_offset()) { // Pick the load opcode (LW or LD). uint64_t load = this->target_->is_output_n64() ? 0xdc000000 : 0x8c000000; // Fill in the PLT entry itself. elfcpp::Swap<32, big_endian>::writeval(pov, plt_entry[0] | gotplt_entry_addr_hi); elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_entry[1] | gotplt_entry_addr_lo | load); elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_entry[2]); elfcpp::Swap<32, big_endian>::writeval(pov + 12, plt_entry[3] | gotplt_entry_addr_lo); pov += 16; } // Now the compressed entry. They come after any standard ones. if (mips_sym->has_comp_plt_offset()) { if (!this->target_->is_output_micromips()) { // Write MIPS16 PLT entry. const uint32_t* plt_entry = plt_entry_mips16_o32; elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]); elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]); elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]); elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]); elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]); elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]); elfcpp::Swap<32, big_endian>::writeval(pov2 + 12, gotplt_entry_addr); pov2 += 16; } else if (this->target_->use_32bit_micromips_instructions()) { // Write microMIPS PLT entry in insn32 mode. const uint32_t* plt_entry = plt_entry_micromips32_o32; elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]); elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, gotplt_entry_addr_hi); elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]); elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, gotplt_entry_addr_lo); elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]); elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]); elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]); elfcpp::Swap<16, big_endian>::writeval(pov2 + 14, gotplt_entry_addr_lo); pov2 += 16; } else { // Write microMIPS PLT entry. const uint32_t* plt_entry = plt_entry_micromips_o32; gold_assert(gotplt_entry_addr % 4 == 0); Mips_address loc_address = plt_address + pov2 - oview; int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3); // ADDIUPC has a span of +/-16MB, check we're in range. if (gotpc_offset + 0x1000000 >= 0x2000000) { gold_error(_(".got.plt offset of %ld from .plt beyond the " "range of ADDIUPC"), (long)gotpc_offset); return; } elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0] | ((gotpc_offset >> 18) & 0x7f)); elfcpp::Swap<16, big_endian>::writeval( pov2 + 2, (gotpc_offset >> 2) & 0xffff); elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]); elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]); elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]); elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]); pov2 += 12; } } } // Check the number of bytes written for standard entries. gold_assert(static_cast( pov - oview - this->plt_header_size_) == this->plt_mips_offset_); // Check the number of bytes written for compressed entries. gold_assert((static_cast(pov2 - pov) == this->plt_comp_offset_)); // Check the total number of bytes written. gold_assert(static_cast(pov2 - oview) == oview_size); gold_assert(static_cast(gotplt_pov - gotplt_view) == gotplt_size); of->write_output_view(offset, oview_size, oview); of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view); } // Mips_output_data_mips_stubs methods. // The format of the lazy binding stub when dynamic symbol count is less than // 64K, dynamic symbol index is less than 32K, and ABI is not N64. template const uint32_t Mips_output_data_mips_stubs::lazy_stub_normal_1[4] = { 0x8f998010, // lw t9,0x8010(gp) 0x03e07825, // or t7,ra,zero 0x0320f809, // jalr t9,ra 0x24180000 // addiu t8,zero,DYN_INDEX sign extended }; // The format of the lazy binding stub when dynamic symbol count is less than // 64K, dynamic symbol index is less than 32K, and ABI is N64. template const uint32_t Mips_output_data_mips_stubs::lazy_stub_normal_1_n64[4] = { 0xdf998010, // ld t9,0x8010(gp) 0x03e07825, // or t7,ra,zero 0x0320f809, // jalr t9,ra 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended }; // The format of the lazy binding stub when dynamic symbol count is less than // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64. template const uint32_t Mips_output_data_mips_stubs::lazy_stub_normal_2[4] = { 0x8f998010, // lw t9,0x8010(gp) 0x03e07825, // or t7,ra,zero 0x0320f809, // jalr t9,ra 0x34180000 // ori t8,zero,DYN_INDEX unsigned }; // The format of the lazy binding stub when dynamic symbol count is less than // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64. template const uint32_t Mips_output_data_mips_stubs::lazy_stub_normal_2_n64[4] = { 0xdf998010, // ld t9,0x8010(gp) 0x03e07825, // or t7,ra,zero 0x0320f809, // jalr t9,ra 0x34180000 // ori t8,zero,DYN_INDEX unsigned }; // The format of the lazy binding stub when dynamic symbol count is greater than // 64K, and ABI is not N64. template const uint32_t Mips_output_data_mips_stubs::lazy_stub_big[5] = { 0x8f998010, // lw t9,0x8010(gp) 0x03e07825, // or t7,ra,zero 0x3c180000, // lui t8,DYN_INDEX 0x0320f809, // jalr t9,ra 0x37180000 // ori t8,t8,DYN_INDEX }; // The format of the lazy binding stub when dynamic symbol count is greater than // 64K, and ABI is N64. template const uint32_t Mips_output_data_mips_stubs::lazy_stub_big_n64[5] = { 0xdf998010, // ld t9,0x8010(gp) 0x03e07825, // or t7,ra,zero 0x3c180000, // lui t8,DYN_INDEX 0x0320f809, // jalr t9,ra 0x37180000 // ori t8,t8,DYN_INDEX }; // microMIPS stubs. // The format of the microMIPS lazy binding stub when dynamic symbol count is // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64. template const uint32_t Mips_output_data_mips_stubs::lazy_stub_micromips_normal_1[] = { 0xff3c, 0x8010, // lw t9,0x8010(gp) 0x0dff, // move t7,ra 0x45d9, // jalr t9 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended }; // The format of the microMIPS lazy binding stub when dynamic symbol count is // less than 64K, dynamic symbol index is less than 32K, and ABI is N64. template const uint32_t Mips_output_data_mips_stubs:: lazy_stub_micromips_normal_1_n64[] = { 0xdf3c, 0x8010, // ld t9,0x8010(gp) 0x0dff, // move t7,ra 0x45d9, // jalr t9 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended }; // The format of the microMIPS lazy binding stub when dynamic symbol // count is less than 64K, dynamic symbol index is between 32K and 64K, // and ABI is not N64. template const uint32_t Mips_output_data_mips_stubs::lazy_stub_micromips_normal_2[] = { 0xff3c, 0x8010, // lw t9,0x8010(gp) 0x0dff, // move t7,ra 0x45d9, // jalr t9 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned }; // The format of the microMIPS lazy binding stub when dynamic symbol // count is less than 64K, dynamic symbol index is between 32K and 64K, // and ABI is N64. template const uint32_t Mips_output_data_mips_stubs:: lazy_stub_micromips_normal_2_n64[] = { 0xdf3c, 0x8010, // ld t9,0x8010(gp) 0x0dff, // move t7,ra 0x45d9, // jalr t9 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned }; // The format of the microMIPS lazy binding stub when dynamic symbol count is // greater than 64K, and ABI is not N64. template const uint32_t Mips_output_data_mips_stubs::lazy_stub_micromips_big[] = { 0xff3c, 0x8010, // lw t9,0x8010(gp) 0x0dff, // move t7,ra 0x41b8, 0x0000, // lui t8,DYN_INDEX 0x45d9, // jalr t9 0x5318, 0x0000 // ori t8,t8,DYN_INDEX }; // The format of the microMIPS lazy binding stub when dynamic symbol count is // greater than 64K, and ABI is N64. template const uint32_t Mips_output_data_mips_stubs::lazy_stub_micromips_big_n64[] = { 0xdf3c, 0x8010, // ld t9,0x8010(gp) 0x0dff, // move t7,ra 0x41b8, 0x0000, // lui t8,DYN_INDEX 0x45d9, // jalr t9 0x5318, 0x0000 // ori t8,t8,DYN_INDEX }; // 32-bit microMIPS stubs. // The format of the microMIPS lazy binding stub when dynamic symbol count is // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we // can use only 32-bit instructions. template const uint32_t Mips_output_data_mips_stubs:: lazy_stub_micromips32_normal_1[] = { 0xff3c, 0x8010, // lw t9,0x8010(gp) 0x001f, 0x7a90, // or t7,ra,zero 0x03f9, 0x0f3c, // jalr ra,t9 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended }; // The format of the microMIPS lazy binding stub when dynamic symbol count is // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can // use only 32-bit instructions. template const uint32_t Mips_output_data_mips_stubs:: lazy_stub_micromips32_normal_1_n64[] = { 0xdf3c, 0x8010, // ld t9,0x8010(gp) 0x001f, 0x7a90, // or t7,ra,zero 0x03f9, 0x0f3c, // jalr ra,t9 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended }; // The format of the microMIPS lazy binding stub when dynamic symbol // count is less than 64K, dynamic symbol index is between 32K and 64K, // ABI is not N64, and we can use only 32-bit instructions. template const uint32_t Mips_output_data_mips_stubs:: lazy_stub_micromips32_normal_2[] = { 0xff3c, 0x8010, // lw t9,0x8010(gp) 0x001f, 0x7a90, // or t7,ra,zero 0x03f9, 0x0f3c, // jalr ra,t9 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned }; // The format of the microMIPS lazy binding stub when dynamic symbol // count is less than 64K, dynamic symbol index is between 32K and 64K, // ABI is N64, and we can use only 32-bit instructions. template const uint32_t Mips_output_data_mips_stubs:: lazy_stub_micromips32_normal_2_n64[] = { 0xdf3c, 0x8010, // ld t9,0x8010(gp) 0x001f, 0x7a90, // or t7,ra,zero 0x03f9, 0x0f3c, // jalr ra,t9 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned }; // The format of the microMIPS lazy binding stub when dynamic symbol count is // greater than 64K, ABI is not N64, and we can use only 32-bit instructions. template const uint32_t Mips_output_data_mips_stubs::lazy_stub_micromips32_big[] = { 0xff3c, 0x8010, // lw t9,0x8010(gp) 0x001f, 0x7a90, // or t7,ra,zero 0x41b8, 0x0000, // lui t8,DYN_INDEX 0x03f9, 0x0f3c, // jalr ra,t9 0x5318, 0x0000 // ori t8,t8,DYN_INDEX }; // The format of the microMIPS lazy binding stub when dynamic symbol count is // greater than 64K, ABI is N64, and we can use only 32-bit instructions. template const uint32_t Mips_output_data_mips_stubs::lazy_stub_micromips32_big_n64[] = { 0xdf3c, 0x8010, // ld t9,0x8010(gp) 0x001f, 0x7a90, // or t7,ra,zero 0x41b8, 0x0000, // lui t8,DYN_INDEX 0x03f9, 0x0f3c, // jalr ra,t9 0x5318, 0x0000 // ori t8,t8,DYN_INDEX }; // Create entry for a symbol. template void Mips_output_data_mips_stubs::make_entry( Mips_symbol* gsym) { if (!gsym->has_lazy_stub() && !gsym->has_plt_offset()) { this->symbols_.insert(gsym); gsym->set_has_lazy_stub(true); } } // Remove entry for a symbol. template void Mips_output_data_mips_stubs::remove_entry( Mips_symbol* gsym) { if (gsym->has_lazy_stub()) { this->symbols_.erase(gsym); gsym->set_has_lazy_stub(false); } } // Set stub offsets for symbols. This method expects that the number of // entries in dynamic symbol table is set. template void Mips_output_data_mips_stubs::set_lazy_stub_offsets() { gold_assert(this->dynsym_count_ != -1U); if (this->stub_offsets_are_set_) return; unsigned int stub_size = this->stub_size(); unsigned int offset = 0; for (typename Mips_stubs_entry_set::const_iterator p = this->symbols_.begin(); p != this->symbols_.end(); ++p, offset += stub_size) { Mips_symbol* mips_sym = *p; mips_sym->set_lazy_stub_offset(offset); } this->stub_offsets_are_set_ = true; } template void Mips_output_data_mips_stubs::set_needs_dynsym_value() { for (typename Mips_stubs_entry_set::const_iterator p = this->symbols_.begin(); p != this->symbols_.end(); ++p) { Mips_symbol* sym = *p; if (sym->is_from_dynobj()) sym->set_needs_dynsym_value(); } } // Write out the .MIPS.stubs. This uses the hand-coded instructions and // adjusts them as needed. template void Mips_output_data_mips_stubs::do_write(Output_file* of) { const off_t offset = this->offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(offset, oview_size); bool big_stub = this->dynsym_count_ > 0x10000; unsigned char* pov = oview; for (typename Mips_stubs_entry_set::const_iterator p = this->symbols_.begin(); p != this->symbols_.end(); ++p) { Mips_symbol* sym = *p; const uint32_t* lazy_stub; bool n64 = this->target_->is_output_n64(); if (!this->target_->is_output_micromips()) { // Write standard (non-microMIPS) stub. if (!big_stub) { if (sym->dynsym_index() & ~0x7fff) // Dynsym index is between 32K and 64K. lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2; else // Dynsym index is less than 32K. lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1; } else lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big; unsigned int i = 0; elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]); elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]); pov += 8; i += 2; if (big_stub) { // LUI instruction of the big stub. Paste high 16 bits of the // dynsym index. elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff)); pov += 4; i += 1; } elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]); // Last stub instruction. Paste low 16 bits of the dynsym index. elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff)); pov += 8; } else if (this->target_->use_32bit_micromips_instructions()) { // Write microMIPS stub in insn32 mode. if (!big_stub) { if (sym->dynsym_index() & ~0x7fff) // Dynsym index is between 32K and 64K. lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64 : lazy_stub_micromips32_normal_2; else // Dynsym index is less than 32K. lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64 : lazy_stub_micromips32_normal_1; } else lazy_stub = n64 ? lazy_stub_micromips32_big_n64 : lazy_stub_micromips32_big; unsigned int i = 0; // First stub instruction. We emit 32-bit microMIPS instructions by // emitting two 16-bit parts because on microMIPS the 16-bit part of // the instruction where the opcode is must always come first, for // both little and big endian. elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]); elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]); // Second stub instruction. elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]); elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]); pov += 8; i += 4; if (big_stub) { // LUI instruction of the big stub. Paste high 16 bits of the // dynsym index. elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]); elfcpp::Swap<16, big_endian>::writeval(pov + 2, (sym->dynsym_index() >> 16) & 0x7fff); pov += 4; i += 2; } elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]); elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]); // Last stub instruction. Paste low 16 bits of the dynsym index. elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]); elfcpp::Swap<16, big_endian>::writeval(pov + 6, sym->dynsym_index() & 0xffff); pov += 8; } else { // Write microMIPS stub. if (!big_stub) { if (sym->dynsym_index() & ~0x7fff) // Dynsym index is between 32K and 64K. lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64 : lazy_stub_micromips_normal_2; else // Dynsym index is less than 32K. lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64 : lazy_stub_micromips_normal_1; } else lazy_stub = n64 ? lazy_stub_micromips_big_n64 : lazy_stub_micromips_big; unsigned int i = 0; // First stub instruction. We emit 32-bit microMIPS instructions by // emitting two 16-bit parts because on microMIPS the 16-bit part of // the instruction where the opcode is must always come first, for // both little and big endian. elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]); elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]); // Second stub instruction. elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]); pov += 6; i += 3; if (big_stub) { // LUI instruction of the big stub. Paste high 16 bits of the // dynsym index. elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]); elfcpp::Swap<16, big_endian>::writeval(pov + 2, (sym->dynsym_index() >> 16) & 0x7fff); pov += 4; i += 2; } elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]); // Last stub instruction. Paste low 16 bits of the dynsym index. elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]); elfcpp::Swap<16, big_endian>::writeval(pov + 4, sym->dynsym_index() & 0xffff); pov += 6; } } // We always allocate 20 bytes for every stub, because final dynsym count is // not known in method do_finalize_sections. There are 4 unused bytes per // stub if final dynsym count is less than 0x10000. unsigned int used = pov - oview; unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4; gold_assert(static_cast(used + unused) == oview_size); // Fill the unused space with zeroes. // TODO(sasa): Can we strip unused bytes during the relaxation? if (unused > 0) memset(pov, 0, unused); of->write_output_view(offset, oview_size, oview); } // Mips_output_section_reginfo methods. template void Mips_output_section_reginfo::do_write(Output_file* of) { off_t offset = this->offset(); off_t data_size = this->data_size(); unsigned char* view = of->get_output_view(offset, data_size); elfcpp::Swap::writeval(view, this->gprmask_); elfcpp::Swap::writeval(view + 4, this->cprmask1_); elfcpp::Swap::writeval(view + 8, this->cprmask2_); elfcpp::Swap::writeval(view + 12, this->cprmask3_); elfcpp::Swap::writeval(view + 16, this->cprmask4_); // Write the gp value. elfcpp::Swap::writeval(view + 20, this->target_->gp_value()); of->write_output_view(offset, data_size, view); } // Mips_output_section_abiflags methods. template void Mips_output_section_abiflags::do_write(Output_file* of) { off_t offset = this->offset(); off_t data_size = this->data_size(); unsigned char* view = of->get_output_view(offset, data_size); elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version); elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level); elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev); elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size); elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size); elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size); elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi); elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext); elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases); elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1); elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2); of->write_output_view(offset, data_size, view); } // Mips_copy_relocs methods. // Emit any saved relocs. template void Mips_copy_relocs::emit_mips( Output_data_reloc* reloc_section, Symbol_table* symtab, Layout* layout, Target_mips* target) { for (typename Copy_relocs:: Copy_reloc_entries::iterator p = this->entries_.begin(); p != this->entries_.end(); ++p) emit_entry(*p, reloc_section, symtab, layout, target); // We no longer need the saved information. this->entries_.clear(); } // Emit the reloc if appropriate. template void Mips_copy_relocs::emit_entry( Copy_reloc_entry& entry, Output_data_reloc* reloc_section, Symbol_table* symtab, Layout* layout, Target_mips* target) { // If the symbol is no longer defined in a dynamic object, then we // emitted a COPY relocation, and we do not want to emit this // dynamic relocation. if (!entry.sym_->is_from_dynobj()) return; bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32 || entry.reloc_type_ == elfcpp::R_MIPS_REL32 || entry.reloc_type_ == elfcpp::R_MIPS_64); Mips_symbol* sym = Mips_symbol::as_mips_sym(entry.sym_); if (can_make_dynamic && !sym->has_static_relocs()) { Mips_relobj* object = Mips_relobj::as_mips_relobj(entry.relobj_); target->got_section(symtab, layout)->record_global_got_symbol( sym, object, entry.reloc_type_, true, false); if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab))) target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_, entry.shndx_, entry.address_); else target->rel_dyn_section(layout)->add_symbolless_global_addend( sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_, entry.shndx_, entry.address_); } else this->make_copy_reloc(symtab, layout, static_cast*>(entry.sym_), entry.relobj_, reloc_section); } // Target_mips methods. // Return the value to use for a dynamic symbol which requires special // treatment. This is how we support equality comparisons of function // pointers across shared library boundaries, as described in the // processor specific ABI supplement. template uint64_t Target_mips::do_dynsym_value(const Symbol* gsym) const { uint64_t value = 0; const Mips_symbol* mips_sym = Mips_symbol::as_mips_sym(gsym); if (!mips_sym->has_lazy_stub()) { if (mips_sym->has_plt_offset()) { // We distinguish between PLT entries and lazy-binding stubs by // giving the former an st_other value of STO_MIPS_PLT. Set the // value to the stub address if there are any relocations in the // binary where pointer equality matters. if (mips_sym->pointer_equality_needed()) { // Prefer a standard MIPS PLT entry. if (mips_sym->has_mips_plt_offset()) value = this->plt_section()->mips_entry_address(mips_sym); else value = this->plt_section()->comp_entry_address(mips_sym) + 1; } else value = 0; } } else { // First, set stub offsets for symbols. This method expects that the // number of entries in dynamic symbol table is set. this->mips_stubs_section()->set_lazy_stub_offsets(); // The run-time linker uses the st_value field of the symbol // to reset the global offset table entry for this external // to its stub address when unlinking a shared object. value = this->mips_stubs_section()->stub_address(mips_sym); } if (mips_sym->has_mips16_fn_stub()) { // If we have a MIPS16 function with a stub, the dynamic symbol must // refer to the stub, since only the stub uses the standard calling // conventions. value = mips_sym->template get_mips16_fn_stub()->output_address(); } return value; } // Get the dynamic reloc section, creating it if necessary. It's always // .rel.dyn, even for MIPS64. template typename Target_mips::Reloc_section* Target_mips::rel_dyn_section(Layout* layout) { if (this->rel_dyn_ == NULL) { gold_assert(layout != NULL); this->rel_dyn_ = new Reloc_section(parameters->options().combreloc()); layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL, elfcpp::SHF_ALLOC, this->rel_dyn_, ORDER_DYNAMIC_RELOCS, false); // First entry in .rel.dyn has to be null. // This is hack - we define dummy output data and set its address to 0, // and define absolute R_MIPS_NONE relocation with offset 0 against it. // This ensures that the entry is null. Output_data* od = new Output_data_zero_fill(0, 0); od->set_address(0); this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0); } return this->rel_dyn_; } // Get the GOT section, creating it if necessary. template Mips_output_data_got* Target_mips::got_section(Symbol_table* symtab, Layout* layout) { if (this->got_ == NULL) { gold_assert(symtab != NULL && layout != NULL); this->got_ = new Mips_output_data_got(this, symtab, layout); layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE | elfcpp::SHF_MIPS_GPREL), this->got_, ORDER_DATA, false); // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section. symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, Symbol_table::PREDEFINED, this->got_, 0, 0, elfcpp::STT_OBJECT, elfcpp::STB_GLOBAL, elfcpp::STV_DEFAULT, 0, false, false); } return this->got_; } // Calculate value of _gp symbol. template void Target_mips::set_gp(Layout* layout, Symbol_table* symtab) { if (this->gp_ != NULL) return; Output_data* section = layout->find_output_section(".got"); if (section == NULL) { // If there is no .got section, gp should be based on .sdata. // TODO(sasa): This is probably not needed. This was needed for older // MIPS architectures which accessed both GOT and .sdata section using // gp-relative addressing. Modern Mips Linux ELF architectures don't // access .sdata using gp-relative addressing. for (Layout::Section_list::const_iterator p = layout->section_list().begin(); p != layout->section_list().end(); ++p) { if (strcmp((*p)->name(), ".sdata") == 0) { section = *p; break; } } } Sized_symbol* gp = static_cast*>(symtab->lookup("_gp")); if (gp != NULL) { if (gp->source() != Symbol::IS_CONSTANT && section != NULL) gp->init_output_data(gp->name(), NULL, section, MIPS_GP_OFFSET, 0, elfcpp::STT_OBJECT, elfcpp::STB_GLOBAL, elfcpp::STV_DEFAULT, 0, false, false); this->gp_ = gp; } else if (section != NULL) { gp = static_cast*>(symtab->define_in_output_data( "_gp", NULL, Symbol_table::PREDEFINED, section, MIPS_GP_OFFSET, 0, elfcpp::STT_OBJECT, elfcpp::STB_GLOBAL, elfcpp::STV_DEFAULT, 0, false, false)); this->gp_ = gp; } } // Set the dynamic symbol indexes. INDEX is the index of the first // global dynamic symbol. Pointers to the symbols are stored into the // vector SYMS. The names are added to DYNPOOL. This returns an // updated dynamic symbol index. template unsigned int Target_mips::do_set_dynsym_indexes( std::vector* dyn_symbols, unsigned int index, std::vector* syms, Stringpool* dynpool, Versions* versions, Symbol_table* symtab) const { std::vector non_got_symbols; std::vector got_symbols; reorder_dyn_symbols(dyn_symbols, &non_got_symbols, &got_symbols); for (std::vector::iterator p = non_got_symbols.begin(); p != non_got_symbols.end(); ++p) { Symbol* sym = *p; // Note that SYM may already have a dynamic symbol index, since // some symbols appear more than once in the symbol table, with // and without a version. if (!sym->has_dynsym_index()) { sym->set_dynsym_index(index); ++index; syms->push_back(sym); dynpool->add(sym->name(), false, NULL); // Record any version information. if (sym->version() != NULL) versions->record_version(symtab, dynpool, sym); // If the symbol is defined in a dynamic object and is // referenced in a regular object, then mark the dynamic // object as needed. This is used to implement --as-needed. if (sym->is_from_dynobj() && sym->in_reg()) sym->object()->set_is_needed(); } } for (std::vector::iterator p = got_symbols.begin(); p != got_symbols.end(); ++p) { Symbol* sym = *p; if (!sym->has_dynsym_index()) { // Record any version information. if (sym->version() != NULL) versions->record_version(symtab, dynpool, sym); } } index = versions->finalize(symtab, index, syms); int got_sym_count = 0; for (std::vector::iterator p = got_symbols.begin(); p != got_symbols.end(); ++p) { Symbol* sym = *p; if (!sym->has_dynsym_index()) { ++got_sym_count; sym->set_dynsym_index(index); ++index; syms->push_back(sym); dynpool->add(sym->name(), false, NULL); // If the symbol is defined in a dynamic object and is // referenced in a regular object, then mark the dynamic // object as needed. This is used to implement --as-needed. if (sym->is_from_dynobj() && sym->in_reg()) sym->object()->set_is_needed(); } } // Set index of the first symbol that has .got entry. this->got_->set_first_global_got_dynsym_index( got_sym_count > 0 ? index - got_sym_count : -1U); if (this->mips_stubs_ != NULL) this->mips_stubs_->set_dynsym_count(index); return index; } // Create a PLT entry for a global symbol referenced by r_type relocation. template void Target_mips::make_plt_entry(Symbol_table* symtab, Layout* layout, Mips_symbol* gsym, unsigned int r_type) { if (gsym->has_lazy_stub() || gsym->has_plt_offset()) return; if (this->plt_ == NULL) { // Create the GOT section first. this->got_section(symtab, layout); this->got_plt_ = new Output_data_space(4, "** GOT PLT"); layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_plt_, ORDER_DATA, false); // The first two entries are reserved. this->got_plt_->set_current_data_size(2 * size/8); this->plt_ = new Mips_output_data_plt(layout, this->got_plt_, this); layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR), this->plt_, ORDER_PLT, false); } this->plt_->add_entry(gsym, r_type); } // Get the .MIPS.stubs section, creating it if necessary. template Mips_output_data_mips_stubs* Target_mips::mips_stubs_section(Layout* layout) { if (this->mips_stubs_ == NULL) { this->mips_stubs_ = new Mips_output_data_mips_stubs(this); layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR), this->mips_stubs_, ORDER_PLT, false); } return this->mips_stubs_; } // Get the LA25 stub section, creating it if necessary. template Mips_output_data_la25_stub* Target_mips::la25_stub_section(Layout* layout) { if (this->la25_stub_ == NULL) { this->la25_stub_ = new Mips_output_data_la25_stub(); layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR), this->la25_stub_, ORDER_TEXT, false); } return this->la25_stub_; } // Process the relocations to determine unreferenced sections for // garbage collection. template void Target_mips::gc_process_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols) { typedef Target_mips Mips; if (sh_type == elfcpp::SHT_REL) { typedef Mips_classify_reloc Classify_reloc; gold::gc_process_relocs( symtab, layout, this, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols); } else if (sh_type == elfcpp::SHT_RELA) { typedef Mips_classify_reloc Classify_reloc; gold::gc_process_relocs( symtab, layout, this, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols); } else gold_unreachable(); } // Scan relocations for a section. template void Target_mips::scan_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols) { typedef Target_mips Mips; if (sh_type == elfcpp::SHT_REL) { typedef Mips_classify_reloc Classify_reloc; gold::scan_relocs( symtab, layout, this, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols); } else if (sh_type == elfcpp::SHT_RELA) { typedef Mips_classify_reloc Classify_reloc; gold::scan_relocs( symtab, layout, this, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols); } } template bool Target_mips::mips_32bit_flags(elfcpp::Elf_Word flags) { return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2); } // Return the MACH for a MIPS e_flags value. template unsigned int Target_mips::elf_mips_mach(elfcpp::Elf_Word flags) { switch (flags & elfcpp::EF_MIPS_MACH) { case elfcpp::E_MIPS_MACH_3900: return mach_mips3900; case elfcpp::E_MIPS_MACH_4010: return mach_mips4010; case elfcpp::E_MIPS_MACH_4100: return mach_mips4100; case elfcpp::E_MIPS_MACH_4111: return mach_mips4111; case elfcpp::E_MIPS_MACH_4120: return mach_mips4120; case elfcpp::E_MIPS_MACH_4650: return mach_mips4650; case elfcpp::E_MIPS_MACH_5400: return mach_mips5400; case elfcpp::E_MIPS_MACH_5500: return mach_mips5500; case elfcpp::E_MIPS_MACH_5900: return mach_mips5900; case elfcpp::E_MIPS_MACH_9000: return mach_mips9000; case elfcpp::E_MIPS_MACH_SB1: return mach_mips_sb1; case elfcpp::E_MIPS_MACH_LS2E: return mach_mips_loongson_2e; case elfcpp::E_MIPS_MACH_LS2F: return mach_mips_loongson_2f; case elfcpp::E_MIPS_MACH_LS3A: return mach_mips_loongson_3a; case elfcpp::E_MIPS_MACH_OCTEON3: return mach_mips_octeon3; case elfcpp::E_MIPS_MACH_OCTEON2: return mach_mips_octeon2; case elfcpp::E_MIPS_MACH_OCTEON: return mach_mips_octeon; case elfcpp::E_MIPS_MACH_XLR: return mach_mips_xlr; default: switch (flags & elfcpp::EF_MIPS_ARCH) { default: case elfcpp::E_MIPS_ARCH_1: return mach_mips3000; case elfcpp::E_MIPS_ARCH_2: return mach_mips6000; case elfcpp::E_MIPS_ARCH_3: return mach_mips4000; case elfcpp::E_MIPS_ARCH_4: return mach_mips8000; case elfcpp::E_MIPS_ARCH_5: return mach_mips5; case elfcpp::E_MIPS_ARCH_32: return mach_mipsisa32; case elfcpp::E_MIPS_ARCH_64: return mach_mipsisa64; case elfcpp::E_MIPS_ARCH_32R2: return mach_mipsisa32r2; case elfcpp::E_MIPS_ARCH_64R2: return mach_mipsisa64r2; } } return 0; } // Return the MACH for each .MIPS.abiflags ISA Extension. template unsigned int Target_mips::mips_isa_ext_mach(unsigned int isa_ext) { switch (isa_ext) { case elfcpp::AFL_EXT_3900: return mach_mips3900; case elfcpp::AFL_EXT_4010: return mach_mips4010; case elfcpp::AFL_EXT_4100: return mach_mips4100; case elfcpp::AFL_EXT_4111: return mach_mips4111; case elfcpp::AFL_EXT_4120: return mach_mips4120; case elfcpp::AFL_EXT_4650: return mach_mips4650; case elfcpp::AFL_EXT_5400: return mach_mips5400; case elfcpp::AFL_EXT_5500: return mach_mips5500; case elfcpp::AFL_EXT_5900: return mach_mips5900; case elfcpp::AFL_EXT_10000: return mach_mips10000; case elfcpp::AFL_EXT_LOONGSON_2E: return mach_mips_loongson_2e; case elfcpp::AFL_EXT_LOONGSON_2F: return mach_mips_loongson_2f; case elfcpp::AFL_EXT_LOONGSON_3A: return mach_mips_loongson_3a; case elfcpp::AFL_EXT_SB1: return mach_mips_sb1; case elfcpp::AFL_EXT_OCTEON: return mach_mips_octeon; case elfcpp::AFL_EXT_OCTEONP: return mach_mips_octeonp; case elfcpp::AFL_EXT_OCTEON2: return mach_mips_octeon2; case elfcpp::AFL_EXT_XLR: return mach_mips_xlr; default: return mach_mips3000; } } // Return the .MIPS.abiflags value representing each ISA Extension. template unsigned int Target_mips::mips_isa_ext(unsigned int mips_mach) { switch (mips_mach) { case mach_mips3900: return elfcpp::AFL_EXT_3900; case mach_mips4010: return elfcpp::AFL_EXT_4010; case mach_mips4100: return elfcpp::AFL_EXT_4100; case mach_mips4111: return elfcpp::AFL_EXT_4111; case mach_mips4120: return elfcpp::AFL_EXT_4120; case mach_mips4650: return elfcpp::AFL_EXT_4650; case mach_mips5400: return elfcpp::AFL_EXT_5400; case mach_mips5500: return elfcpp::AFL_EXT_5500; case mach_mips5900: return elfcpp::AFL_EXT_5900; case mach_mips10000: return elfcpp::AFL_EXT_10000; case mach_mips_loongson_2e: return elfcpp::AFL_EXT_LOONGSON_2E; case mach_mips_loongson_2f: return elfcpp::AFL_EXT_LOONGSON_2F; case mach_mips_loongson_3a: return elfcpp::AFL_EXT_LOONGSON_3A; case mach_mips_sb1: return elfcpp::AFL_EXT_SB1; case mach_mips_octeon: return elfcpp::AFL_EXT_OCTEON; case mach_mips_octeonp: return elfcpp::AFL_EXT_OCTEONP; case mach_mips_octeon3: return elfcpp::AFL_EXT_OCTEON3; case mach_mips_octeon2: return elfcpp::AFL_EXT_OCTEON2; case mach_mips_xlr: return elfcpp::AFL_EXT_XLR; default: return 0; } } // Update the isa_level, isa_rev, isa_ext fields of abiflags. template void Target_mips::update_abiflags_isa(const std::string& name, elfcpp::Elf_Word e_flags, Mips_abiflags* abiflags) { int new_isa = 0; switch (e_flags & elfcpp::EF_MIPS_ARCH) { case elfcpp::E_MIPS_ARCH_1: new_isa = this->level_rev(1, 0); break; case elfcpp::E_MIPS_ARCH_2: new_isa = this->level_rev(2, 0); break; case elfcpp::E_MIPS_ARCH_3: new_isa = this->level_rev(3, 0); break; case elfcpp::E_MIPS_ARCH_4: new_isa = this->level_rev(4, 0); break; case elfcpp::E_MIPS_ARCH_5: new_isa = this->level_rev(5, 0); break; case elfcpp::E_MIPS_ARCH_32: new_isa = this->level_rev(32, 1); break; case elfcpp::E_MIPS_ARCH_32R2: new_isa = this->level_rev(32, 2); break; case elfcpp::E_MIPS_ARCH_64: new_isa = this->level_rev(64, 1); break; case elfcpp::E_MIPS_ARCH_64R2: new_isa = this->level_rev(64, 2); break; default: gold_error(_("%s: Unknown architecture %s"), name.c_str(), this->elf_mips_mach_name(e_flags)); } if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev)) { // Decode a single value into level and revision. abiflags->isa_level = new_isa >> 3; abiflags->isa_rev = new_isa & 0x7; } // Update the isa_ext if needed. if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext), this->elf_mips_mach(e_flags))) abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags)); } // Infer the content of the ABI flags based on the elf header. template void Target_mips::infer_abiflags( Mips_relobj* relobj, Mips_abiflags* abiflags) { const Attributes_section_data* pasd = relobj->attributes_section_data(); int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY; elfcpp::Elf_Word e_flags = relobj->processor_specific_flags(); this->update_abiflags_isa(relobj->name(), e_flags, abiflags); if (pasd != NULL) { // Read fp_abi from the .gnu.attribute section. const Object_attribute* attr = pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU); attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value(); } abiflags->fp_abi = attr_fp_abi; abiflags->cpr1_size = elfcpp::AFL_REG_NONE; abiflags->cpr2_size = elfcpp::AFL_REG_NONE; abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32 : elfcpp::AFL_REG_64; if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE && abiflags->gpr_size == elfcpp::AFL_REG_32)) abiflags->cpr1_size = elfcpp::AFL_REG_32; else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A) abiflags->cpr1_size = elfcpp::AFL_REG_64; if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX) abiflags->ases |= elfcpp::AFL_ASE_MDMX; if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16) abiflags->ases |= elfcpp::AFL_ASE_MIPS16; if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS) abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS; if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A && abiflags->isa_level >= 32 && abiflags->isa_ext != elfcpp::AFL_EXT_LOONGSON_3A) abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG; } // Create abiflags from elf header or from .MIPS.abiflags section. template void Target_mips::create_abiflags( Mips_relobj* relobj, Mips_abiflags* abiflags) { Mips_abiflags* sec_abiflags = relobj->abiflags(); Mips_abiflags header_abiflags; this->infer_abiflags(relobj, &header_abiflags); if (sec_abiflags == NULL) { // If there is no input .MIPS.abiflags section, use abiflags created // from elf header. *abiflags = header_abiflags; return; } this->has_abiflags_section_ = true; // It is not possible to infer the correct ISA revision for R3 or R5 // so drop down to R2 for the checks. unsigned char isa_rev = sec_abiflags->isa_rev; if (isa_rev == 3 || isa_rev == 5) isa_rev = 2; // Check compatibility between abiflags created from elf header // and abiflags from .MIPS.abiflags section in this object file. if (this->level_rev(sec_abiflags->isa_level, isa_rev) < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev)) gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"), relobj->name().c_str()); if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY && sec_abiflags->fp_abi != header_abiflags.fp_abi) gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and " ".MIPS.abiflags"), relobj->name().c_str()); if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases) gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"), relobj->name().c_str()); // The isa_ext is allowed to be an extension of what can be inferred // from e_flags. if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext), this->mips_isa_ext_mach(sec_abiflags->isa_ext))) gold_warning(_("%s: Inconsistent ISA extensions between e_flags and " ".MIPS.abiflags"), relobj->name().c_str()); if (sec_abiflags->flags2 != 0) gold_warning(_("%s: Unexpected flag in the flags2 field of " ".MIPS.abiflags (0x%x)"), relobj->name().c_str(), sec_abiflags->flags2); // Use abiflags from .MIPS.abiflags section. *abiflags = *sec_abiflags; } // Return the meaning of fp_abi, or "unknown" if not known. template const char* Target_mips::fp_abi_string(int fp) { switch (fp) { case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE: return "-mdouble-float"; case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE: return "-msingle-float"; case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT: return "-msoft-float"; case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64: return _("-mips32r2 -mfp64 (12 callee-saved)"); case elfcpp::Val_GNU_MIPS_ABI_FP_XX: return "-mfpxx"; case elfcpp::Val_GNU_MIPS_ABI_FP_64: return "-mgp32 -mfp64"; case elfcpp::Val_GNU_MIPS_ABI_FP_64A: return "-mgp32 -mfp64 -mno-odd-spreg"; default: return "unknown"; } } // Select fp_abi. template int Target_mips::select_fp_abi(const std::string& name, int in_fp, int out_fp) { if (in_fp == out_fp) return out_fp; if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY) return in_fp; else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A)) return in_fp; else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A)) return out_fp; // Keep the current setting. else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64) return in_fp; else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64) return out_fp; // Keep the current setting. else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY) gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(), fp_abi_string(in_fp), fp_abi_string(out_fp)); return out_fp; } // Merge attributes from input object. template void Target_mips::merge_obj_attributes(const std::string& name, const Attributes_section_data* pasd) { // Return if there is no attributes section data. if (pasd == NULL) return; // If output has no object attributes, just copy. if (this->attributes_section_data_ == NULL) { this->attributes_section_data_ = new Attributes_section_data(*pasd); return; } Object_attribute* out_attr = this->attributes_section_data_->known_attributes( Object_attribute::OBJ_ATTR_GNU); out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1); out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi); // Merge Tag_compatibility attributes and any common GNU ones. this->attributes_section_data_->merge(name.c_str(), pasd); } // Merge abiflags from input object. template void Target_mips::merge_obj_abiflags(const std::string& name, Mips_abiflags* in_abiflags) { // If output has no abiflags, just copy. if (this->abiflags_ == NULL) { this->abiflags_ = new Mips_abiflags(*in_abiflags); return; } this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi, this->abiflags_->fp_abi); // Merge abiflags. this->abiflags_->isa_level = std::max(this->abiflags_->isa_level, in_abiflags->isa_level); this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev, in_abiflags->isa_rev); this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size, in_abiflags->gpr_size); this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size, in_abiflags->cpr1_size); this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size, in_abiflags->cpr2_size); this->abiflags_->ases |= in_abiflags->ases; this->abiflags_->flags1 |= in_abiflags->flags1; } // Check whether machine EXTENSION is an extension of machine BASE. template bool Target_mips::mips_mach_extends(unsigned int base, unsigned int extension) { if (extension == base) return true; if ((base == mach_mipsisa32) && this->mips_mach_extends(mach_mipsisa64, extension)) return true; if ((base == mach_mipsisa32r2) && this->mips_mach_extends(mach_mipsisa64r2, extension)) return true; for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i) if (extension == this->mips_mach_extensions_[i].first) { extension = this->mips_mach_extensions_[i].second; if (extension == base) return true; } return false; } // Merge file header flags from input object. template void Target_mips::merge_obj_e_flags(const std::string& name, elfcpp::Elf_Word in_flags) { // If flags are not set yet, just copy them. if (!this->are_processor_specific_flags_set()) { this->set_processor_specific_flags(in_flags); this->mach_ = this->elf_mips_mach(in_flags); return; } elfcpp::Elf_Word new_flags = in_flags; elfcpp::Elf_Word old_flags = this->processor_specific_flags(); elfcpp::Elf_Word merged_flags = this->processor_specific_flags(); merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER; // Check flag compatibility. new_flags &= ~elfcpp::EF_MIPS_NOREORDER; old_flags &= ~elfcpp::EF_MIPS_NOREORDER; // Some IRIX 6 BSD-compatibility objects have this bit set. It // doesn't seem to matter. new_flags &= ~elfcpp::EF_MIPS_XGOT; old_flags &= ~elfcpp::EF_MIPS_XGOT; // MIPSpro generates ucode info in n64 objects. Again, we should // just be able to ignore this. new_flags &= ~elfcpp::EF_MIPS_UCODE; old_flags &= ~elfcpp::EF_MIPS_UCODE; if (new_flags == old_flags) { this->set_processor_specific_flags(merged_flags); return; } if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0) != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)) gold_warning(_("%s: linking abicalls files with non-abicalls files"), name.c_str()); if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) merged_flags |= elfcpp::EF_MIPS_CPIC; if (!(new_flags & elfcpp::EF_MIPS_PIC)) merged_flags &= ~elfcpp::EF_MIPS_PIC; new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC); old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC); // Compare the ISAs. if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags)) gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str()); else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_)) { // Output ISA isn't the same as, or an extension of, input ISA. if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags))) { // Copy the architecture info from input object to output. Also copy // the 32-bit flag (if set) so that we continue to recognise // output as a 32-bit binary. this->mach_ = this->elf_mips_mach(in_flags); merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH); merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE)); // Update the ABI flags isa_level, isa_rev, isa_ext fields. this->update_abiflags_isa(name, merged_flags, this->abiflags_); // Copy across the ABI flags if output doesn't use them // and if that was what caused us to treat input object as 32-bit. if ((old_flags & elfcpp::EF_MIPS_ABI) == 0 && this->mips_32bit_flags(new_flags) && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI)) merged_flags |= new_flags & elfcpp::EF_MIPS_ABI; } else // The ISAs aren't compatible. gold_error(_("%s: linking %s module with previous %s modules"), name.c_str(), this->elf_mips_mach_name(in_flags), this->elf_mips_mach_name(merged_flags)); } new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE)); old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE)); // Compare ABIs. if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI)) { // Only error if both are set (to different values). if ((new_flags & elfcpp::EF_MIPS_ABI) && (old_flags & elfcpp::EF_MIPS_ABI)) gold_error(_("%s: ABI mismatch: linking %s module with " "previous %s modules"), name.c_str(), this->elf_mips_abi_name(in_flags), this->elf_mips_abi_name(merged_flags)); new_flags &= ~elfcpp::EF_MIPS_ABI; old_flags &= ~elfcpp::EF_MIPS_ABI; } // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together // and allow arbitrary mixing of the remaining ASEs (retain the union). if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE) != (old_flags & elfcpp::EF_MIPS_ARCH_ASE)) { int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS; int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS; int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16; int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16; int micro_mis = old_m16 && new_micro; int m16_mis = old_micro && new_m16; if (m16_mis || micro_mis) gold_error(_("%s: ASE mismatch: linking %s module with " "previous %s modules"), name.c_str(), m16_mis ? "MIPS16" : "microMIPS", m16_mis ? "microMIPS" : "MIPS16"); merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE; new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE; old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE; } // Compare NaN encodings. if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008)) { gold_error(_("%s: linking %s module with previous %s modules"), name.c_str(), (new_flags & elfcpp::EF_MIPS_NAN2008 ? "-mnan=2008" : "-mnan=legacy"), (old_flags & elfcpp::EF_MIPS_NAN2008 ? "-mnan=2008" : "-mnan=legacy")); new_flags &= ~elfcpp::EF_MIPS_NAN2008; old_flags &= ~elfcpp::EF_MIPS_NAN2008; } // Compare FP64 state. if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64)) { gold_error(_("%s: linking %s module with previous %s modules"), name.c_str(), (new_flags & elfcpp::EF_MIPS_FP64 ? "-mfp64" : "-mfp32"), (old_flags & elfcpp::EF_MIPS_FP64 ? "-mfp64" : "-mfp32")); new_flags &= ~elfcpp::EF_MIPS_FP64; old_flags &= ~elfcpp::EF_MIPS_FP64; } // Warn about any other mismatches. if (new_flags != old_flags) gold_error(_("%s: uses different e_flags (0x%x) fields than previous " "modules (0x%x)"), name.c_str(), new_flags, old_flags); this->set_processor_specific_flags(merged_flags); } // Adjust ELF file header. template void Target_mips::do_adjust_elf_header( unsigned char* view, int len) { gold_assert(len == elfcpp::Elf_sizes::ehdr_size); elfcpp::Ehdr ehdr(view); unsigned char e_ident[elfcpp::EI_NIDENT]; elfcpp::Elf_Word flags = this->processor_specific_flags(); memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT); unsigned char ei_abiversion = 0; elfcpp::Elf_Half type = ehdr.get_e_type(); if (type == elfcpp::ET_EXEC && parameters->options().copyreloc() && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) == elfcpp::EF_MIPS_CPIC) ei_abiversion = 1; if (this->abiflags_ != NULL && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64 || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)) ei_abiversion = 3; e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion; elfcpp::Ehdr_write oehdr(view); oehdr.put_e_ident(e_ident); if (this->entry_symbol_is_compressed_) oehdr.put_e_entry(ehdr.get_e_entry() + 1); } // do_make_elf_object to override the same function in the base class. // We need to use a target-specific sub-class of // Sized_relobj_file to store Mips specific information. // Hence we need to have our own ELF object creation. template Object* Target_mips::do_make_elf_object( const std::string& name, Input_file* input_file, off_t offset, const elfcpp::Ehdr& ehdr) { int et = ehdr.get_e_type(); // ET_EXEC files are valid input for --just-symbols/-R, // and we treat them as relocatable objects. if (et == elfcpp::ET_REL || (et == elfcpp::ET_EXEC && input_file->just_symbols())) { Mips_relobj* obj = new Mips_relobj(name, input_file, offset, ehdr); obj->setup(); return obj; } else if (et == elfcpp::ET_DYN) { // TODO(sasa): Should we create Mips_dynobj? return Target::do_make_elf_object(name, input_file, offset, ehdr); } else { gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et); return NULL; } } // Finalize the sections. template void Target_mips::do_finalize_sections(Layout* layout, const Input_objects* input_objects, Symbol_table* symtab) { // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and // DT_FINI have correct values. Mips_symbol* init = static_cast*>( symtab->lookup(parameters->options().init())); if (init != NULL && (init->is_mips16() || init->is_micromips())) init->set_value(init->value() | 1); Mips_symbol* fini = static_cast*>( symtab->lookup(parameters->options().fini())); if (fini != NULL && (fini->is_mips16() || fini->is_micromips())) fini->set_value(fini->value() | 1); // Check whether the entry symbol is mips16 or micromips. This is needed to // adjust entry address in ELF header. Mips_symbol* entry = static_cast*>(symtab->lookup(this->entry_symbol_name())); this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16() || entry->is_micromips())); if (!parameters->doing_static_link() && (strcmp(parameters->options().hash_style(), "gnu") == 0 || strcmp(parameters->options().hash_style(), "both") == 0)) { // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different // ways. .gnu.hash needs symbols to be grouped by hash code whereas the // MIPS ABI requires a mapping between the GOT and the symbol table. gold_error(".gnu.hash is incompatible with the MIPS ABI"); } // Check whether the final section that was scanned has HI16 or GOT16 // relocations without the corresponding LO16 part. if (this->got16_addends_.size() > 0) gold_error("Can't find matching LO16 reloc"); // Set _gp value. this->set_gp(layout, symtab); // Check for any mips16 stub sections that we can discard. if (!parameters->options().relocatable()) { for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); p != input_objects->relobj_end(); ++p) { Mips_relobj* object = Mips_relobj::as_mips_relobj(*p); object->discard_mips16_stub_sections(symtab); } } Valtype gprmask = 0; Valtype cprmask1 = 0; Valtype cprmask2 = 0; Valtype cprmask3 = 0; Valtype cprmask4 = 0; bool has_reginfo_section = false; for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); p != input_objects->relobj_end(); ++p) { Mips_relobj* relobj = Mips_relobj::as_mips_relobj(*p); // Merge .reginfo contents of input objects. if (relobj->has_reginfo_section()) { has_reginfo_section = true; gprmask |= relobj->gprmask(); cprmask1 |= relobj->cprmask1(); cprmask2 |= relobj->cprmask2(); cprmask3 |= relobj->cprmask3(); cprmask4 |= relobj->cprmask4(); } Input_file::Format format = relobj->input_file()->format(); if (format != Input_file::FORMAT_ELF) continue; // If all input sections will be discarded, don't use this object // file for merging processor specific flags. bool should_merge_processor_specific_flags = false; for (unsigned int i = 1; i < relobj->shnum(); ++i) if (relobj->output_section(i) != NULL) { should_merge_processor_specific_flags = true; break; } if (!should_merge_processor_specific_flags) continue; // Merge processor specific flags. Mips_abiflags in_abiflags; this->create_abiflags(relobj, &in_abiflags); this->merge_obj_e_flags(relobj->name(), relobj->processor_specific_flags()); this->merge_obj_abiflags(relobj->name(), &in_abiflags); this->merge_obj_attributes(relobj->name(), relobj->attributes_section_data()); } // Create a .gnu.attributes section if we have merged any attributes // from inputs. if (this->attributes_section_data_ != NULL) { Output_attributes_section_data* attributes_section = new Output_attributes_section_data(*this->attributes_section_data_); layout->add_output_section_data(".gnu.attributes", elfcpp::SHT_GNU_ATTRIBUTES, 0, attributes_section, ORDER_INVALID, false); } // Create .MIPS.abiflags output section if there is an input section. if (this->has_abiflags_section_) { Mips_output_section_abiflags* abiflags_section = new Mips_output_section_abiflags(*this->abiflags_); Output_section* os = layout->add_output_section_data(".MIPS.abiflags", elfcpp::SHT_MIPS_ABIFLAGS, elfcpp::SHF_ALLOC, abiflags_section, ORDER_INVALID, false); if (!parameters->options().relocatable() && os != NULL) { Output_segment* abiflags_segment = layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R); abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R); } } if (has_reginfo_section && !parameters->options().gc_sections()) { // Create .reginfo output section. Mips_output_section_reginfo* reginfo_section = new Mips_output_section_reginfo(this, gprmask, cprmask1, cprmask2, cprmask3, cprmask4); Output_section* os = layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO, elfcpp::SHF_ALLOC, reginfo_section, ORDER_INVALID, false); if (!parameters->options().relocatable() && os != NULL) { Output_segment* reginfo_segment = layout->make_output_segment(elfcpp::PT_MIPS_REGINFO, elfcpp::PF_R); reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R); } } if (this->plt_ != NULL) { // Set final PLT offsets for symbols. this->plt_section()->set_plt_offsets(); // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section. // Set STO_MICROMIPS flag if the output has microMIPS code, but only if // there are no standard PLT entries present. unsigned char nonvis = 0; if (this->is_output_micromips() && !this->plt_section()->has_standard_entries()) nonvis = elfcpp::STO_MICROMIPS >> 2; symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL, Symbol_table::PREDEFINED, this->plt_, 0, 0, elfcpp::STT_FUNC, elfcpp::STB_LOCAL, elfcpp::STV_DEFAULT, nonvis, false, false); } if (this->mips_stubs_ != NULL) { // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section. unsigned char nonvis = 0; if (this->is_output_micromips()) nonvis = elfcpp::STO_MICROMIPS >> 2; symtab->define_in_output_data("_MIPS_STUBS_", NULL, Symbol_table::PREDEFINED, this->mips_stubs_, 0, 0, elfcpp::STT_FUNC, elfcpp::STB_LOCAL, elfcpp::STV_DEFAULT, nonvis, false, false); } if (!parameters->options().relocatable() && !parameters->doing_static_link()) // In case there is no .got section, create one. this->got_section(symtab, layout); // Emit any relocs we saved in an attempt to avoid generating COPY // relocs. if (this->copy_relocs_.any_saved_relocs()) this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout, this); // Emit dynamic relocs. for (typename std::vector::iterator p = this->dyn_relocs_.begin(); p != this->dyn_relocs_.end(); ++p) p->emit(this->rel_dyn_section(layout), this->got_section(), symtab); if (this->has_got_section()) this->got_section()->lay_out_got(layout, symtab, input_objects); if (this->mips_stubs_ != NULL) this->mips_stubs_->set_needs_dynsym_value(); // Check for functions that might need $25 to be valid on entry. // TODO(sasa): Can we do this without iterating over all symbols? typedef Symbol_visitor_check_symbols Symbol_visitor; symtab->for_all_symbols(Symbol_visitor(this, layout, symtab)); // Add NULL segment. if (!parameters->options().relocatable()) layout->make_output_segment(elfcpp::PT_NULL, 0); // Fill in some more dynamic tags. // TODO(sasa): Add more dynamic tags. const Reloc_section* rel_plt = (this->plt_ == NULL ? NULL : this->plt_->rel_plt()); layout->add_target_dynamic_tags(true, this->got_, rel_plt, this->rel_dyn_, true, false); Output_data_dynamic* const odyn = layout->dynamic_data(); if (odyn != NULL && !parameters->options().relocatable() && !parameters->doing_static_link()) { unsigned int d_val; // This element holds a 32-bit version id for the Runtime // Linker Interface. This will start at integer value 1. d_val = 0x01; odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val); // Dynamic flags d_val = elfcpp::RHF_NOTPOT; odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val); // Save layout for using when emiting custom dynamic tags. this->layout_ = layout; // This member holds the base address of the segment. odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS); // This member holds the number of entries in the .dynsym section. odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO); // This member holds the index of the first dynamic symbol // table entry that corresponds to an entry in the global offset table. odyn->add_custom(elfcpp::DT_MIPS_GOTSYM); // This member holds the number of local GOT entries. odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO, this->got_->get_local_gotno()); if (this->plt_ != NULL) // DT_MIPS_PLTGOT dynamic tag odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_); } } // Get the custom dynamic tag value. template unsigned int Target_mips::do_dynamic_tag_custom_value(elfcpp::DT tag) const { switch (tag) { case elfcpp::DT_MIPS_BASE_ADDRESS: { // The base address of the segment. // At this point, the segment list has been sorted into final order, // so just return vaddr of the first readable PT_LOAD segment. Output_segment* seg = this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0); gold_assert(seg != NULL); return seg->vaddr(); } case elfcpp::DT_MIPS_SYMTABNO: // The number of entries in the .dynsym section. return this->get_dt_mips_symtabno(); case elfcpp::DT_MIPS_GOTSYM: { // The index of the first dynamic symbol table entry that corresponds // to an entry in the GOT. if (this->got_->first_global_got_dynsym_index() != -1U) return this->got_->first_global_got_dynsym_index(); else // In case if we don't have global GOT symbols we default to setting // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO. return this->get_dt_mips_symtabno(); } default: gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag); } return (unsigned int)-1; } // Relocate section data. template void Target_mips::relocate_section( const Relocate_info* relinfo, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, unsigned char* view, Mips_address address, section_size_type view_size, const Reloc_symbol_changes* reloc_symbol_changes) { typedef Target_mips Mips; typedef typename Target_mips::Relocate Mips_relocate; if (sh_type == elfcpp::SHT_REL) { typedef Mips_classify_reloc Classify_reloc; gold::relocate_section( relinfo, this, prelocs, reloc_count, output_section, needs_special_offset_handling, view, address, view_size, reloc_symbol_changes); } else if (sh_type == elfcpp::SHT_RELA) { typedef Mips_classify_reloc Classify_reloc; gold::relocate_section( relinfo, this, prelocs, reloc_count, output_section, needs_special_offset_handling, view, address, view_size, reloc_symbol_changes); } } // Return the size of a relocation while scanning during a relocatable // link. unsigned int mips_get_size_for_reloc(unsigned int r_type, Relobj* object) { switch (r_type) { case elfcpp::R_MIPS_NONE: case elfcpp::R_MIPS_TLS_DTPMOD64: case elfcpp::R_MIPS_TLS_DTPREL64: case elfcpp::R_MIPS_TLS_TPREL64: return 0; case elfcpp::R_MIPS_32: case elfcpp::R_MIPS_TLS_DTPMOD32: case elfcpp::R_MIPS_TLS_DTPREL32: case elfcpp::R_MIPS_TLS_TPREL32: case elfcpp::R_MIPS_REL32: case elfcpp::R_MIPS_PC32: case elfcpp::R_MIPS_GPREL32: case elfcpp::R_MIPS_JALR: case elfcpp::R_MIPS_EH: return 4; case elfcpp::R_MIPS_16: case elfcpp::R_MIPS_HI16: case elfcpp::R_MIPS_LO16: case elfcpp::R_MIPS_GPREL16: case elfcpp::R_MIPS16_HI16: case elfcpp::R_MIPS16_LO16: case elfcpp::R_MIPS_PC16: case elfcpp::R_MIPS_GOT16: case elfcpp::R_MIPS16_GOT16: case elfcpp::R_MIPS_CALL16: case elfcpp::R_MIPS16_CALL16: case elfcpp::R_MIPS_GOT_HI16: case elfcpp::R_MIPS_CALL_HI16: case elfcpp::R_MIPS_GOT_LO16: case elfcpp::R_MIPS_CALL_LO16: case elfcpp::R_MIPS_TLS_DTPREL_HI16: case elfcpp::R_MIPS_TLS_DTPREL_LO16: case elfcpp::R_MIPS_TLS_TPREL_HI16: case elfcpp::R_MIPS_TLS_TPREL_LO16: case elfcpp::R_MIPS16_GPREL: case elfcpp::R_MIPS_GOT_DISP: case elfcpp::R_MIPS_LITERAL: case elfcpp::R_MIPS_GOT_PAGE: case elfcpp::R_MIPS_GOT_OFST: case elfcpp::R_MIPS_TLS_GD: case elfcpp::R_MIPS_TLS_LDM: case elfcpp::R_MIPS_TLS_GOTTPREL: return 2; // These relocations are not byte sized case elfcpp::R_MIPS_26: case elfcpp::R_MIPS16_26: return 4; case elfcpp::R_MIPS_COPY: case elfcpp::R_MIPS_JUMP_SLOT: object->error(_("unexpected reloc %u in object file"), r_type); return 0; default: object->error(_("unsupported reloc %u in object file"), r_type); return 0; } } // Scan the relocs during a relocatable link. template void Target_mips::scan_relocatable_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols, Relocatable_relocs* rr) { if (sh_type == elfcpp::SHT_REL) { typedef Mips_classify_reloc Classify_reloc; typedef Mips_scan_relocatable_relocs Scan_relocatable_relocs; gold::scan_relocatable_relocs( symtab, layout, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols, rr); } else if (sh_type == elfcpp::SHT_RELA) { typedef Mips_classify_reloc Classify_reloc; typedef Mips_scan_relocatable_relocs Scan_relocatable_relocs; gold::scan_relocatable_relocs( symtab, layout, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols, rr); } else gold_unreachable(); } // Scan the relocs for --emit-relocs. template void Target_mips::emit_relocs_scan( Symbol_table* symtab, Layout* layout, Sized_relobj_file* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_syms, Relocatable_relocs* rr) { if (sh_type == elfcpp::SHT_REL) { typedef Mips_classify_reloc Classify_reloc; typedef gold::Default_emit_relocs_strategy Emit_relocs_strategy; gold::scan_relocatable_relocs( symtab, layout, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_syms, rr); } else if (sh_type == elfcpp::SHT_RELA) { typedef Mips_classify_reloc Classify_reloc; typedef gold::Default_emit_relocs_strategy Emit_relocs_strategy; gold::scan_relocatable_relocs( symtab, layout, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_syms, rr); } else gold_unreachable(); } // Emit relocations for a section. template void Target_mips::relocate_relocs( const Relocate_info* relinfo, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, typename elfcpp::Elf_types::Elf_Off offset_in_output_section, unsigned char* view, Mips_address view_address, section_size_type view_size, unsigned char* reloc_view, section_size_type reloc_view_size) { if (sh_type == elfcpp::SHT_REL) { typedef Mips_classify_reloc Classify_reloc; gold::relocate_relocs( relinfo, prelocs, reloc_count, output_section, offset_in_output_section, view, view_address, view_size, reloc_view, reloc_view_size); } else if (sh_type == elfcpp::SHT_RELA) { typedef Mips_classify_reloc Classify_reloc; gold::relocate_relocs( relinfo, prelocs, reloc_count, output_section, offset_in_output_section, view, view_address, view_size, reloc_view, reloc_view_size); } else gold_unreachable(); } // Perform target-specific processing in a relocatable link. This is // only used if we use the relocation strategy RELOC_SPECIAL. template void Target_mips::relocate_special_relocatable( const Relocate_info* relinfo, unsigned int sh_type, const unsigned char* preloc_in, size_t relnum, Output_section* output_section, typename elfcpp::Elf_types::Elf_Off offset_in_output_section, unsigned char* view, Mips_address view_address, section_size_type, unsigned char* preloc_out) { // We can only handle REL type relocation sections. gold_assert(sh_type == elfcpp::SHT_REL); typedef typename Reloc_types::Reloc Reltype; typedef typename Reloc_types::Reloc_write Reltype_write; typedef Mips_relocate_functions Reloc_funcs; const Mips_address invalid_address = static_cast(0) - 1; Mips_relobj* object = Mips_relobj::as_mips_relobj(relinfo->object); const unsigned int local_count = object->local_symbol_count(); Reltype reloc(preloc_in); Reltype_write reloc_write(preloc_out); elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info(); const unsigned int r_sym = elfcpp::elf_r_sym(r_info); const unsigned int r_type = elfcpp::elf_r_type(r_info); // Get the new symbol index. // We only use RELOC_SPECIAL strategy in local relocations. gold_assert(r_sym < local_count); // We are adjusting a section symbol. We need to find // the symbol table index of the section symbol for // the output section corresponding to input section // in which this symbol is defined. bool is_ordinary; unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary); gold_assert(is_ordinary); Output_section* os = object->output_section(shndx); gold_assert(os != NULL); gold_assert(os->needs_symtab_index()); unsigned int new_symndx = os->symtab_index(); // Get the new offset--the location in the output section where // this relocation should be applied. Mips_address offset = reloc.get_r_offset(); Mips_address new_offset; if (offset_in_output_section != invalid_address) new_offset = offset + offset_in_output_section; else { section_offset_type sot_offset = convert_types(offset); section_offset_type new_sot_offset = output_section->output_offset(object, relinfo->data_shndx, sot_offset); gold_assert(new_sot_offset != -1); new_offset = new_sot_offset; } // In an object file, r_offset is an offset within the section. // In an executable or dynamic object, generated by // --emit-relocs, r_offset is an absolute address. if (!parameters->options().relocatable()) { new_offset += view_address; if (offset_in_output_section != invalid_address) new_offset -= offset_in_output_section; } reloc_write.put_r_offset(new_offset); reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type)); // Handle the reloc addend. // The relocation uses a section symbol in the input file. // We are adjusting it to use a section symbol in the output // file. The input section symbol refers to some address in // the input section. We need the relocation in the output // file to refer to that same address. This adjustment to // the addend is the same calculation we use for a simple // absolute relocation for the input section symbol. Valtype calculated_value = 0; const Symbol_value* psymval = object->local_symbol(r_sym); unsigned char* paddend = view + offset; typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY; switch (r_type) { case elfcpp::R_MIPS_26: reloc_status = Reloc_funcs::rel26(paddend, object, psymval, offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL, false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(), false, &calculated_value); break; default: gold_unreachable(); } // Report any errors. switch (reloc_status) { case Reloc_funcs::STATUS_OKAY: break; case Reloc_funcs::STATUS_OVERFLOW: gold_error_at_location(relinfo, relnum, reloc.get_r_offset(), _("relocation overflow")); break; case Reloc_funcs::STATUS_BAD_RELOC: gold_error_at_location(relinfo, relnum, reloc.get_r_offset(), _("unexpected opcode while processing relocation")); break; default: gold_unreachable(); } } // Optimize the TLS relocation type based on what we know about the // symbol. IS_FINAL is true if the final address of this symbol is // known at link time. template tls::Tls_optimization Target_mips::optimize_tls_reloc(bool, int) { // FIXME: Currently we do not do any TLS optimization. return tls::TLSOPT_NONE; } // Scan a relocation for a local symbol. template inline void Target_mips::Scan::local( Symbol_table* symtab, Layout* layout, Target_mips* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const Relatype* rela, const Reltype* rel, unsigned int rel_type, unsigned int r_type, const elfcpp::Sym& lsym, bool is_discarded) { if (is_discarded) return; Mips_address r_offset; unsigned int r_sym; typename elfcpp::Elf_types::Elf_Swxword r_addend; if (rel_type == elfcpp::SHT_RELA) { r_offset = rela->get_r_offset(); r_sym = Mips_classify_reloc:: get_r_sym(rela); r_addend = rela->get_r_addend(); } else { r_offset = rel->get_r_offset(); r_sym = Mips_classify_reloc:: get_r_sym(rel); r_addend = 0; } Mips_relobj* mips_obj = Mips_relobj::as_mips_relobj(object); if (mips_obj->is_mips16_stub_section(data_shndx)) { mips_obj->get_mips16_stub_section(data_shndx) ->new_local_reloc_found(r_type, r_sym); } if (r_type == elfcpp::R_MIPS_NONE) // R_MIPS_NONE is used in mips16 stub sections, to define the target of the // mips16 stub. return; if (!mips16_call_reloc(r_type) && !mips_obj->section_allows_mips16_refs(data_shndx)) // This reloc would need to refer to a MIPS16 hard-float stub, if // there is one. We ignore MIPS16 stub sections and .pdr section when // looking for relocs that would need to refer to MIPS16 stubs. mips_obj->add_local_non_16bit_call(r_sym); if (r_type == elfcpp::R_MIPS16_26 && !mips_obj->section_allows_mips16_refs(data_shndx)) mips_obj->add_local_16bit_call(r_sym); switch (r_type) { case elfcpp::R_MIPS_GOT16: case elfcpp::R_MIPS_CALL16: case elfcpp::R_MIPS_CALL_HI16: case elfcpp::R_MIPS_CALL_LO16: case elfcpp::R_MIPS_GOT_HI16: case elfcpp::R_MIPS_GOT_LO16: case elfcpp::R_MIPS_GOT_PAGE: case elfcpp::R_MIPS_GOT_OFST: case elfcpp::R_MIPS_GOT_DISP: case elfcpp::R_MIPS_TLS_GOTTPREL: case elfcpp::R_MIPS_TLS_GD: case elfcpp::R_MIPS_TLS_LDM: case elfcpp::R_MIPS16_GOT16: case elfcpp::R_MIPS16_CALL16: case elfcpp::R_MIPS16_TLS_GOTTPREL: case elfcpp::R_MIPS16_TLS_GD: case elfcpp::R_MIPS16_TLS_LDM: case elfcpp::R_MICROMIPS_GOT16: case elfcpp::R_MICROMIPS_CALL16: case elfcpp::R_MICROMIPS_CALL_HI16: case elfcpp::R_MICROMIPS_CALL_LO16: case elfcpp::R_MICROMIPS_GOT_HI16: case elfcpp::R_MICROMIPS_GOT_LO16: case elfcpp::R_MICROMIPS_GOT_PAGE: case elfcpp::R_MICROMIPS_GOT_OFST: case elfcpp::R_MICROMIPS_GOT_DISP: case elfcpp::R_MICROMIPS_TLS_GOTTPREL: case elfcpp::R_MICROMIPS_TLS_GD: case elfcpp::R_MICROMIPS_TLS_LDM: case elfcpp::R_MIPS_EH: // We need a GOT section. target->got_section(symtab, layout); break; default: break; } if (call_lo16_reloc(r_type) || got_lo16_reloc(r_type) || got_disp_reloc(r_type) || eh_reloc(r_type)) { // We may need a local GOT entry for this relocation. We // don't count R_MIPS_GOT_PAGE because we can estimate the // maximum number of pages needed by looking at the size of // the segment. Similar comments apply to R_MIPS*_GOT16 and // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or // R_MIPS_CALL_HI16 because these are always followed by an // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. Mips_output_data_got* got = target->got_section(symtab, layout); bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION; got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U, is_section_symbol); } switch (r_type) { case elfcpp::R_MIPS_CALL16: case elfcpp::R_MIPS16_CALL16: case elfcpp::R_MICROMIPS_CALL16: gold_error(_("CALL16 reloc at 0x%lx not against global symbol "), (unsigned long)r_offset); return; case elfcpp::R_MIPS_GOT_PAGE: case elfcpp::R_MICROMIPS_GOT_PAGE: case elfcpp::R_MIPS16_GOT16: case elfcpp::R_MIPS_GOT16: case elfcpp::R_MIPS_GOT_HI16: case elfcpp::R_MIPS_GOT_LO16: case elfcpp::R_MICROMIPS_GOT16: case elfcpp::R_MICROMIPS_GOT_HI16: case elfcpp::R_MICROMIPS_GOT_LO16: { // This relocation needs a page entry in the GOT. // Get the section contents. section_size_type view_size = 0; const unsigned char* view = object->section_contents(data_shndx, &view_size, false); view += r_offset; Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view); Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff : r_addend); if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type)) target->got16_addends_.push_back(got16_addend( object, data_shndx, r_type, r_sym, addend)); else target->got_section()->record_got_page_entry(mips_obj, r_sym, addend); break; } case elfcpp::R_MIPS_HI16: case elfcpp::R_MIPS16_HI16: case elfcpp::R_MICROMIPS_HI16: // Record the reloc so that we can check whether the corresponding LO16 // part exists. if (rel_type == elfcpp::SHT_REL) target->got16_addends_.push_back(got16_addend( object, data_shndx, r_type, r_sym, 0)); break; case elfcpp::R_MIPS_LO16: case elfcpp::R_MIPS16_LO16: case elfcpp::R_MICROMIPS_LO16: { if (rel_type != elfcpp::SHT_REL) break; // Find corresponding GOT16/HI16 relocation. // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must // be immediately following. However, for the IRIX6 ABI, the next // relocation may be a composed relocation consisting of several // relocations for the same address. In that case, the R_MIPS_LO16 // relocation may occur as one of these. We permit a similar // extension in general, as that is useful for GCC. // In some cases GCC dead code elimination removes the LO16 but // keeps the corresponding HI16. This is strictly speaking a // violation of the ABI but not immediately harmful. typename std::list >::iterator it = target->got16_addends_.begin(); while (it != target->got16_addends_.end()) { got16_addend _got16_addend = *it; // TODO(sasa): Split got16_addends_ list into two lists - one for // GOT16 relocs and the other for HI16 relocs. // Report an error if we find HI16 or GOT16 reloc from the // previous section without the matching LO16 part. if (_got16_addend.object != object || _got16_addend.shndx != data_shndx) { gold_error("Can't find matching LO16 reloc"); break; } if (_got16_addend.r_sym != r_sym || !is_matching_lo16_reloc(_got16_addend.r_type, r_type)) { ++it; continue; } // We found a matching HI16 or GOT16 reloc for this LO16 reloc. // For GOT16, we need to calculate combined addend and record GOT page // entry. if (got16_reloc(_got16_addend.r_type)) { section_size_type view_size = 0; const unsigned char* view = object->section_contents(data_shndx, &view_size, false); view += r_offset; Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view); int32_t addend = Bits<16>::sign_extend32(val & 0xffff); addend = (_got16_addend.addend << 16) + addend; target->got_section()->record_got_page_entry(mips_obj, r_sym, addend); } it = target->got16_addends_.erase(it); } break; } } switch (r_type) { case elfcpp::R_MIPS_32: case elfcpp::R_MIPS_REL32: case elfcpp::R_MIPS_64: { if (parameters->options().output_is_position_independent()) { // If building a shared library (or a position-independent // executable), we need to create a dynamic relocation for // this location. if (is_readonly_section(output_section)) break; Reloc_section* rel_dyn = target->rel_dyn_section(layout); rel_dyn->add_symbolless_local_addend(object, r_sym, elfcpp::R_MIPS_REL32, output_section, data_shndx, r_offset); } break; } case elfcpp::R_MIPS_TLS_GOTTPREL: case elfcpp::R_MIPS16_TLS_GOTTPREL: case elfcpp::R_MICROMIPS_TLS_GOTTPREL: case elfcpp::R_MIPS_TLS_LDM: case elfcpp::R_MIPS16_TLS_LDM: case elfcpp::R_MICROMIPS_TLS_LDM: case elfcpp::R_MIPS_TLS_GD: case elfcpp::R_MIPS16_TLS_GD: case elfcpp::R_MICROMIPS_TLS_GD: { bool output_is_shared = parameters->options().shared(); const tls::Tls_optimization optimized_type = Target_mips::optimize_tls_reloc( !output_is_shared, r_type); switch (r_type) { case elfcpp::R_MIPS_TLS_GD: case elfcpp::R_MIPS16_TLS_GD: case elfcpp::R_MICROMIPS_TLS_GD: if (optimized_type == tls::TLSOPT_NONE) { // Create a pair of GOT entries for the module index and // dtv-relative offset. Mips_output_data_got* got = target->got_section(symtab, layout); unsigned int shndx = lsym.get_st_shndx(); bool is_ordinary; shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary); if (!is_ordinary) { object->error(_("local symbol %u has bad shndx %u"), r_sym, shndx); break; } got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, shndx, false); } else { // FIXME: TLS optimization not supported yet. gold_unreachable(); } break; case elfcpp::R_MIPS_TLS_LDM: case elfcpp::R_MIPS16_TLS_LDM: case elfcpp::R_MICROMIPS_TLS_LDM: if (optimized_type == tls::TLSOPT_NONE) { // We always record LDM symbols as local with index 0. target->got_section()->record_local_got_symbol(mips_obj, 0, r_addend, r_type, -1U, false); } else { // FIXME: TLS optimization not supported yet. gold_unreachable(); } break; case elfcpp::R_MIPS_TLS_GOTTPREL: case elfcpp::R_MIPS16_TLS_GOTTPREL: case elfcpp::R_MICROMIPS_TLS_GOTTPREL: layout->set_has_static_tls(); if (optimized_type == tls::TLSOPT_NONE) { // Create a GOT entry for the tp-relative offset. Mips_output_data_got* got = target->got_section(symtab, layout); got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U, false); } else { // FIXME: TLS optimization not supported yet. gold_unreachable(); } break; default: gold_unreachable(); } } break; default: break; } // Refuse some position-dependent relocations when creating a // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're // not PIC, but we can create dynamic relocations and the result // will be fine. Also do not refuse R_MIPS_LO16, which can be // combined with R_MIPS_GOT16. if (parameters->options().shared()) { switch (r_type) { case elfcpp::R_MIPS16_HI16: case elfcpp::R_MIPS_HI16: case elfcpp::R_MICROMIPS_HI16: // Don't refuse a high part relocation if it's against // no symbol (e.g. part of a compound relocation). if (r_sym == 0) break; // FALLTHROUGH case elfcpp::R_MIPS16_26: case elfcpp::R_MIPS_26: case elfcpp::R_MICROMIPS_26_S1: gold_error(_("%s: relocation %u against `%s' can not be used when " "making a shared object; recompile with -fPIC"), object->name().c_str(), r_type, "a local symbol"); default: break; } } } template inline void Target_mips::Scan::local( Symbol_table* symtab, Layout* layout, Target_mips* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const Reltype& reloc, unsigned int r_type, const elfcpp::Sym& lsym, bool is_discarded) { if (is_discarded) return; local( symtab, layout, target, object, data_shndx, output_section, (const Relatype*) NULL, &reloc, elfcpp::SHT_REL, r_type, lsym, is_discarded); } template inline void Target_mips::Scan::local( Symbol_table* symtab, Layout* layout, Target_mips* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const Relatype& reloc, unsigned int r_type, const elfcpp::Sym& lsym, bool is_discarded) { if (is_discarded) return; local( symtab, layout, target, object, data_shndx, output_section, &reloc, (const Reltype*) NULL, elfcpp::SHT_RELA, r_type, lsym, is_discarded); } // Scan a relocation for a global symbol. template inline void Target_mips::Scan::global( Symbol_table* symtab, Layout* layout, Target_mips* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const Relatype* rela, const Reltype* rel, unsigned int rel_type, unsigned int r_type, Symbol* gsym) { Mips_address r_offset; unsigned int r_sym; typename elfcpp::Elf_types::Elf_Swxword r_addend; if (rel_type == elfcpp::SHT_RELA) { r_offset = rela->get_r_offset(); r_sym = Mips_classify_reloc:: get_r_sym(rela); r_addend = rela->get_r_addend(); } else { r_offset = rel->get_r_offset(); r_sym = Mips_classify_reloc:: get_r_sym(rel); r_addend = 0; } Mips_relobj* mips_obj = Mips_relobj::as_mips_relobj(object); Mips_symbol* mips_sym = Mips_symbol::as_mips_sym(gsym); if (mips_obj->is_mips16_stub_section(data_shndx)) { mips_obj->get_mips16_stub_section(data_shndx) ->new_global_reloc_found(r_type, mips_sym); } if (r_type == elfcpp::R_MIPS_NONE) // R_MIPS_NONE is used in mips16 stub sections, to define the target of the // mips16 stub. return; if (!mips16_call_reloc(r_type) && !mips_obj->section_allows_mips16_refs(data_shndx)) // This reloc would need to refer to a MIPS16 hard-float stub, if // there is one. We ignore MIPS16 stub sections and .pdr section when // looking for relocs that would need to refer to MIPS16 stubs. mips_sym->set_need_fn_stub(); // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got // section. We check here to avoid creating a dynamic reloc against // _GLOBAL_OFFSET_TABLE_. if (!target->has_got_section() && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0) target->got_section(symtab, layout); // We need PLT entries if there are static-only relocations against // an externally-defined function. This can technically occur for // shared libraries if there are branches to the symbol, although it // is unlikely that this will be used in practice due to the short // ranges involved. It can occur for any relative or absolute relocation // in executables; in that case, the PLT entry becomes the function's // canonical address. bool static_reloc = false; // Set CAN_MAKE_DYNAMIC to true if we can convert this // relocation into a dynamic one. bool can_make_dynamic = false; switch (r_type) { case elfcpp::R_MIPS_GOT16: case elfcpp::R_MIPS_CALL16: case elfcpp::R_MIPS_CALL_HI16: case elfcpp::R_MIPS_CALL_LO16: case elfcpp::R_MIPS_GOT_HI16: case elfcpp::R_MIPS_GOT_LO16: case elfcpp::R_MIPS_GOT_PAGE: case elfcpp::R_MIPS_GOT_OFST: case elfcpp::R_MIPS_GOT_DISP: case elfcpp::R_MIPS_TLS_GOTTPREL: case elfcpp::R_MIPS_TLS_GD: case elfcpp::R_MIPS_TLS_LDM: case elfcpp::R_MIPS16_GOT16: case elfcpp::R_MIPS16_CALL16: case elfcpp::R_MIPS16_TLS_GOTTPREL: case elfcpp::R_MIPS16_TLS_GD: case elfcpp::R_MIPS16_TLS_LDM: case elfcpp::R_MICROMIPS_GOT16: case elfcpp::R_MICROMIPS_CALL16: case elfcpp::R_MICROMIPS_CALL_HI16: case elfcpp::R_MICROMIPS_CALL_LO16: case elfcpp::R_MICROMIPS_GOT_HI16: case elfcpp::R_MICROMIPS_GOT_LO16: case elfcpp::R_MICROMIPS_GOT_PAGE: case elfcpp::R_MICROMIPS_GOT_OFST: case elfcpp::R_MICROMIPS_GOT_DISP: case elfcpp::R_MICROMIPS_TLS_GOTTPREL: case elfcpp::R_MICROMIPS_TLS_GD: case elfcpp::R_MICROMIPS_TLS_LDM: case elfcpp::R_MIPS_EH: // We need a GOT section. target->got_section(symtab, layout); break; // This is just a hint; it can safely be ignored. Don't set // has_static_relocs for the corresponding symbol. case elfcpp::R_MIPS_JALR: case elfcpp::R_MICROMIPS_JALR: break; case elfcpp::R_MIPS_GPREL16: case elfcpp::R_MIPS_GPREL32: case elfcpp::R_MIPS16_GPREL: case elfcpp::R_MICROMIPS_GPREL16: // TODO(sasa) // GP-relative relocations always resolve to a definition in a // regular input file, ignoring the one-definition rule. This is // important for the GP setup sequence in NewABI code, which // always resolves to a local function even if other relocations // against the symbol wouldn't. //constrain_symbol_p = FALSE; break; case elfcpp::R_MIPS_32: case elfcpp::R_MIPS_REL32: case elfcpp::R_MIPS_64: if ((parameters->options().shared() || (strcmp(gsym->name(), "__gnu_local_gp") != 0 && (!is_readonly_section(output_section) || mips_obj->is_pic()))) && (output_section->flags() & elfcpp::SHF_ALLOC) != 0) { if (r_type != elfcpp::R_MIPS_REL32) mips_sym->set_pointer_equality_needed(); can_make_dynamic = true; break; } // Fall through. default: // Most static relocations require pointer equality, except // for branches. mips_sym->set_pointer_equality_needed(); // Fall through. case elfcpp::R_MIPS_26: case elfcpp::R_MIPS_PC16: case elfcpp::R_MIPS16_26: case elfcpp::R_MICROMIPS_26_S1: case elfcpp::R_MICROMIPS_PC7_S1: case elfcpp::R_MICROMIPS_PC10_S1: case elfcpp::R_MICROMIPS_PC16_S1: case elfcpp::R_MICROMIPS_PC23_S2: static_reloc = true; mips_sym->set_has_static_relocs(); break; } // If there are call relocations against an externally-defined symbol, // see whether we can create a MIPS lazy-binding stub for it. We can // only do this if all references to the function are through call // relocations, and in that case, the traditional lazy-binding stubs // are much more efficient than PLT entries. switch (r_type) { case elfcpp::R_MIPS16_CALL16: case elfcpp::R_MIPS_CALL16: case elfcpp::R_MIPS_CALL_HI16: case elfcpp::R_MIPS_CALL_LO16: case elfcpp::R_MIPS_JALR: case elfcpp::R_MICROMIPS_CALL16: case elfcpp::R_MICROMIPS_CALL_HI16: case elfcpp::R_MICROMIPS_CALL_LO16: case elfcpp::R_MICROMIPS_JALR: if (!mips_sym->no_lazy_stub()) { if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj()) // Calls from shared objects to undefined symbols of type // STT_NOTYPE need lazy-binding stub. || (mips_sym->is_undefined() && parameters->options().shared())) target->mips_stubs_section(layout)->make_entry(mips_sym); } break; default: { // We must not create a stub for a symbol that has relocations // related to taking the function's address. mips_sym->set_no_lazy_stub(); target->remove_lazy_stub_entry(mips_sym); break; } } if (relocation_needs_la25_stub(mips_obj, r_type, mips_sym->is_mips16())) mips_sym->set_has_nonpic_branches(); // R_MIPS_HI16 against _gp_disp is used for $gp setup, // and has a special meaning. bool gp_disp_against_hi16 = (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0 && (hi16_reloc(r_type) || lo16_reloc(r_type))); if (static_reloc && gsym->needs_plt_entry()) { target->make_plt_entry(symtab, layout, mips_sym, r_type); // Since this is not a PC-relative relocation, we may be // taking the address of a function. In that case we need to // set the entry in the dynamic symbol table to the address of // the PLT entry. if (gsym->is_from_dynobj() && !parameters->options().shared()) { gsym->set_needs_dynsym_value(); // We distinguish between PLT entries and lazy-binding stubs by // giving the former an st_other value of STO_MIPS_PLT. Set the // flag if there are any relocations in the binary where pointer // equality matters. if (mips_sym->pointer_equality_needed()) mips_sym->set_mips_plt(); } } if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16) { // Absolute addressing relocations. // Make a dynamic relocation if necessary. if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))) { if (gsym->may_need_copy_reloc()) { target->copy_reloc(symtab, layout, object, data_shndx, output_section, gsym, r_type, r_offset); } else if (can_make_dynamic) { // Create .rel.dyn section. target->rel_dyn_section(layout); target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj, data_shndx, output_section, r_offset); } else gold_error(_("non-dynamic relocations refer to dynamic symbol %s"), gsym->name()); } } bool for_call = false; switch (r_type) { case elfcpp::R_MIPS_CALL16: case elfcpp::R_MIPS16_CALL16: case elfcpp::R_MICROMIPS_CALL16: case elfcpp::R_MIPS_CALL_HI16: case elfcpp::R_MIPS_CALL_LO16: case elfcpp::R_MICROMIPS_CALL_HI16: case elfcpp::R_MICROMIPS_CALL_LO16: for_call = true; // Fall through. case elfcpp::R_MIPS16_GOT16: case elfcpp::R_MIPS_GOT16: case elfcpp::R_MIPS_GOT_HI16: case elfcpp::R_MIPS_GOT_LO16: case elfcpp::R_MICROMIPS_GOT16: case elfcpp::R_MICROMIPS_GOT_HI16: case elfcpp::R_MICROMIPS_GOT_LO16: case elfcpp::R_MIPS_GOT_DISP: case elfcpp::R_MICROMIPS_GOT_DISP: case elfcpp::R_MIPS_EH: { // The symbol requires a GOT entry. Mips_output_data_got* got = target->got_section(symtab, layout); got->record_global_got_symbol(mips_sym, mips_obj, r_type, false, for_call); mips_sym->set_global_got_area(GGA_NORMAL); } break; case elfcpp::R_MIPS_GOT_PAGE: case elfcpp::R_MICROMIPS_GOT_PAGE: { // This relocation needs a page entry in the GOT. // Get the section contents. section_size_type view_size = 0; const unsigned char* view = object->section_contents(data_shndx, &view_size, false); view += r_offset; Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view); Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff : r_addend); Mips_output_data_got* got = target->got_section(symtab, layout); got->record_got_page_entry(mips_obj, r_sym, addend); // If this is a global, overridable symbol, GOT_PAGE will // decay to GOT_DISP, so we'll need a GOT entry for it. bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT && !mips_sym->object()->is_dynamic() && !mips_sym->is_undefined()); if (!def_regular || (parameters->options().output_is_position_independent() && !parameters->options().Bsymbolic() && !mips_sym->is_forced_local())) { got->record_global_got_symbol(mips_sym, mips_obj, r_type, false, for_call); mips_sym->set_global_got_area(GGA_NORMAL); } } break; case elfcpp::R_MIPS_TLS_GOTTPREL: case elfcpp::R_MIPS16_TLS_GOTTPREL: case elfcpp::R_MICROMIPS_TLS_GOTTPREL: case elfcpp::R_MIPS_TLS_LDM: case elfcpp::R_MIPS16_TLS_LDM: case elfcpp::R_MICROMIPS_TLS_LDM: case elfcpp::R_MIPS_TLS_GD: case elfcpp::R_MIPS16_TLS_GD: case elfcpp::R_MICROMIPS_TLS_GD: { const bool is_final = gsym->final_value_is_known(); const tls::Tls_optimization optimized_type = Target_mips::optimize_tls_reloc(is_final, r_type); switch (r_type) { case elfcpp::R_MIPS_TLS_GD: case elfcpp::R_MIPS16_TLS_GD: case elfcpp::R_MICROMIPS_TLS_GD: if (optimized_type == tls::TLSOPT_NONE) { // Create a pair of GOT entries for the module index and // dtv-relative offset. Mips_output_data_got* got = target->got_section(symtab, layout); got->record_global_got_symbol(mips_sym, mips_obj, r_type, false, false); } else { // FIXME: TLS optimization not supported yet. gold_unreachable(); } break; case elfcpp::R_MIPS_TLS_LDM: case elfcpp::R_MIPS16_TLS_LDM: case elfcpp::R_MICROMIPS_TLS_LDM: if (optimized_type == tls::TLSOPT_NONE) { // We always record LDM symbols as local with index 0. target->got_section()->record_local_got_symbol(mips_obj, 0, r_addend, r_type, -1U, false); } else { // FIXME: TLS optimization not supported yet. gold_unreachable(); } break; case elfcpp::R_MIPS_TLS_GOTTPREL: case elfcpp::R_MIPS16_TLS_GOTTPREL: case elfcpp::R_MICROMIPS_TLS_GOTTPREL: layout->set_has_static_tls(); if (optimized_type == tls::TLSOPT_NONE) { // Create a GOT entry for the tp-relative offset. Mips_output_data_got* got = target->got_section(symtab, layout); got->record_global_got_symbol(mips_sym, mips_obj, r_type, false, false); } else { // FIXME: TLS optimization not supported yet. gold_unreachable(); } break; default: gold_unreachable(); } } break; case elfcpp::R_MIPS_COPY: case elfcpp::R_MIPS_JUMP_SLOT: // These are relocations which should only be seen by the // dynamic linker, and should never be seen here. gold_error(_("%s: unexpected reloc %u in object file"), object->name().c_str(), r_type); break; default: break; } // Refuse some position-dependent relocations when creating a // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're // not PIC, but we can create dynamic relocations and the result // will be fine. Also do not refuse R_MIPS_LO16, which can be // combined with R_MIPS_GOT16. if (parameters->options().shared()) { switch (r_type) { case elfcpp::R_MIPS16_HI16: case elfcpp::R_MIPS_HI16: case elfcpp::R_MICROMIPS_HI16: // Don't refuse a high part relocation if it's against // no symbol (e.g. part of a compound relocation). if (r_sym == 0) break; // R_MIPS_HI16 against _gp_disp is used for $gp setup, // and has a special meaning. if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0) break; // FALLTHROUGH case elfcpp::R_MIPS16_26: case elfcpp::R_MIPS_26: case elfcpp::R_MICROMIPS_26_S1: gold_error(_("%s: relocation %u against `%s' can not be used when " "making a shared object; recompile with -fPIC"), object->name().c_str(), r_type, gsym->name()); default: break; } } } template inline void Target_mips::Scan::global( Symbol_table* symtab, Layout* layout, Target_mips* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const Relatype& reloc, unsigned int r_type, Symbol* gsym) { global( symtab, layout, target, object, data_shndx, output_section, &reloc, (const Reltype*) NULL, elfcpp::SHT_RELA, r_type, gsym); } template inline void Target_mips::Scan::global( Symbol_table* symtab, Layout* layout, Target_mips* target, Sized_relobj_file* object, unsigned int data_shndx, Output_section* output_section, const Reltype& reloc, unsigned int r_type, Symbol* gsym) { global( symtab, layout, target, object, data_shndx, output_section, (const Relatype*) NULL, &reloc, elfcpp::SHT_REL, r_type, gsym); } // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied. // In cases where Scan::local() or Scan::global() has created // a dynamic relocation, the addend of the relocation is carried // in the data, and we must not apply the static relocation. template inline bool Target_mips::Relocate::should_apply_static_reloc( const Mips_symbol* gsym, unsigned int r_type, Output_section* output_section, Target_mips* target) { // If the output section is not allocated, then we didn't call // scan_relocs, we didn't create a dynamic reloc, and we must apply // the reloc here. if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0) return true; if (gsym == NULL) return true; else { // For global symbols, we use the same helper routines used in the // scan pass. if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)) && !gsym->may_need_copy_reloc()) { // We have generated dynamic reloc (R_MIPS_REL32). bool multi_got = false; if (target->has_got_section()) multi_got = target->got_section()->multi_got(); bool has_got_offset; if (!multi_got) has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD); else has_got_offset = gsym->global_gotoffset() != -1U; if (!has_got_offset) return true; else // Apply the relocation only if the symbol is in the local got. // Do not apply the relocation if the symbol is in the global // got. return symbol_references_local(gsym, gsym->has_dynsym_index()); } else // We have not generated dynamic reloc. return true; } } // Perform a relocation. template inline bool Target_mips::Relocate::relocate( const Relocate_info* relinfo, unsigned int rel_type, Target_mips* target, Output_section* output_section, size_t relnum, const unsigned char* preloc, const Sized_symbol* gsym, const Symbol_value* psymval, unsigned char* view, Mips_address address, section_size_type) { Mips_address r_offset; unsigned int r_sym; unsigned int r_type; unsigned int r_type2; unsigned int r_type3; unsigned char r_ssym; typename elfcpp::Elf_types::Elf_Swxword r_addend; if (rel_type == elfcpp::SHT_RELA) { const Relatype rela(preloc); r_offset = rela.get_r_offset(); r_sym = Mips_classify_reloc:: get_r_sym(&rela); r_type = Mips_classify_reloc:: get_r_type(&rela); r_type2 = Mips_classify_reloc:: get_r_type2(&rela); r_type3 = Mips_classify_reloc:: get_r_type3(&rela); r_ssym = Mips_classify_reloc:: get_r_ssym(&rela); r_addend = rela.get_r_addend(); } else { const Reltype rel(preloc); r_offset = rel.get_r_offset(); r_sym = Mips_classify_reloc:: get_r_sym(&rel); r_type = Mips_classify_reloc:: get_r_type(&rel); r_ssym = 0; r_type2 = 0; r_type3 = 0; r_addend = 0; } typedef Mips_relocate_functions Reloc_funcs; typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY; Mips_relobj* object = Mips_relobj::as_mips_relobj(relinfo->object); bool target_is_16_bit_code = false; bool target_is_micromips_code = false; bool cross_mode_jump; Symbol_value symval; const Mips_symbol* mips_sym = Mips_symbol::as_mips_sym(gsym); bool changed_symbol_value = false; if (gsym == NULL) { target_is_16_bit_code = object->local_symbol_is_mips16(r_sym); target_is_micromips_code = object->local_symbol_is_micromips(r_sym); if (target_is_16_bit_code || target_is_micromips_code) { // MIPS16/microMIPS text labels should be treated as odd. symval.set_output_value(psymval->value(object, 1)); psymval = &symval; changed_symbol_value = true; } } else { target_is_16_bit_code = mips_sym->is_mips16(); target_is_micromips_code = mips_sym->is_micromips(); // If this is a mips16/microMIPS text symbol, add 1 to the value to make // it odd. This will cause something like .word SYM to come up with // the right value when it is loaded into the PC. if ((mips_sym->is_mips16() || mips_sym->is_micromips()) && psymval->value(object, 0) != 0) { symval.set_output_value(psymval->value(object, 0) | 1); psymval = &symval; changed_symbol_value = true; } // Pick the value to use for symbols defined in shared objects. if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type)) || mips_sym->has_lazy_stub()) { Mips_address value; if (!mips_sym->has_lazy_stub()) { // Prefer a standard MIPS PLT entry. if (mips_sym->has_mips_plt_offset()) { value = target->plt_section()->mips_entry_address(mips_sym); target_is_micromips_code = false; target_is_16_bit_code = false; } else { value = (target->plt_section()->comp_entry_address(mips_sym) + 1); if (target->is_output_micromips()) target_is_micromips_code = true; else target_is_16_bit_code = true; } } else value = target->mips_stubs_section()->stub_address(mips_sym); symval.set_output_value(value); psymval = &symval; } } // TRUE if the symbol referred to by this relocation is "_gp_disp". // Note that such a symbol must always be a global symbol. bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0) && !object->is_newabi()); // TRUE if the symbol referred to by this relocation is "__gnu_local_gp". // Note that such a symbol must always be a global symbol. bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0); if (gp_disp) { if (!hi16_reloc(r_type) && !lo16_reloc(r_type)) gold_error_at_location(relinfo, relnum, r_offset, _("relocations against _gp_disp are permitted only" " with R_MIPS_HI16 and R_MIPS_LO16 relocations.")); } else if (gnu_local_gp) { // __gnu_local_gp is _gp symbol. symval.set_output_value(target->adjusted_gp_value(object)); psymval = &symval; } // If this is a reference to a 16-bit function with a stub, we need // to redirect the relocation to the stub unless: // // (a) the relocation is for a MIPS16 JAL; // // (b) the relocation is for a MIPS16 PIC call, and there are no // non-MIPS16 uses of the GOT slot; or // // (c) the section allows direct references to MIPS16 functions. if (r_type != elfcpp::R_MIPS16_26 && !parameters->options().relocatable() && ((mips_sym != NULL && mips_sym->has_mips16_fn_stub() && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub())) || (mips_sym == NULL && object->get_local_mips16_fn_stub(r_sym) != NULL)) && !object->section_allows_mips16_refs(relinfo->data_shndx)) { // This is a 32- or 64-bit call to a 16-bit function. We should // have already noticed that we were going to need the // stub. Mips_address value; if (mips_sym == NULL) value = object->get_local_mips16_fn_stub(r_sym)->output_address(); else { gold_assert(mips_sym->need_fn_stub()); if (mips_sym->has_la25_stub()) value = target->la25_stub_section()->stub_address(mips_sym); else { value = mips_sym->template get_mips16_fn_stub()->output_address(); } } symval.set_output_value(value); psymval = &symval; changed_symbol_value = true; // The target is 16-bit, but the stub isn't. target_is_16_bit_code = false; } // If this is a MIPS16 call with a stub, that is made through the PLT or // to a standard MIPS function, we need to redirect the call to the stub. // Note that we specifically exclude R_MIPS16_CALL16 from this behavior; // indirect calls should use an indirect stub instead. else if (r_type == elfcpp::R_MIPS16_26 && !parameters->options().relocatable() && ((mips_sym != NULL && (mips_sym->has_mips16_call_stub() || mips_sym->has_mips16_call_fp_stub())) || (mips_sym == NULL && object->get_local_mips16_call_stub(r_sym) != NULL)) && ((mips_sym != NULL && mips_sym->has_plt_offset()) || !target_is_16_bit_code)) { Mips16_stub_section* call_stub; if (mips_sym == NULL) call_stub = object->get_local_mips16_call_stub(r_sym); else { // If both call_stub and call_fp_stub are defined, we can figure // out which one to use by checking which one appears in the input // file. if (mips_sym->has_mips16_call_stub() && mips_sym->has_mips16_call_fp_stub()) { call_stub = NULL; for (unsigned int i = 1; i < object->shnum(); ++i) { if (object->is_mips16_call_fp_stub_section(i)) { call_stub = mips_sym->template get_mips16_call_fp_stub(); break; } } if (call_stub == NULL) call_stub = mips_sym->template get_mips16_call_stub(); } else if (mips_sym->has_mips16_call_stub()) call_stub = mips_sym->template get_mips16_call_stub(); else call_stub = mips_sym->template get_mips16_call_fp_stub(); } symval.set_output_value(call_stub->output_address()); psymval = &symval; changed_symbol_value = true; } // If this is a direct call to a PIC function, redirect to the // non-PIC stub. else if (mips_sym != NULL && mips_sym->has_la25_stub() && relocation_needs_la25_stub( object, r_type, target_is_16_bit_code)) { Mips_address value = target->la25_stub_section()->stub_address(mips_sym); if (mips_sym->is_micromips()) value += 1; symval.set_output_value(value); psymval = &symval; } // For direct MIPS16 and microMIPS calls make sure the compressed PLT // entry is used if a standard PLT entry has also been made. else if ((r_type == elfcpp::R_MIPS16_26 || r_type == elfcpp::R_MICROMIPS_26_S1) && !parameters->options().relocatable() && mips_sym != NULL && mips_sym->has_plt_offset() && mips_sym->has_comp_plt_offset() && mips_sym->has_mips_plt_offset()) { Mips_address value = (target->plt_section()->comp_entry_address(mips_sym) + 1); symval.set_output_value(value); psymval = &symval; target_is_16_bit_code = !target->is_output_micromips(); target_is_micromips_code = target->is_output_micromips(); } // Make sure MIPS16 and microMIPS are not used together. if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code) || (micromips_branch_reloc(r_type) && target_is_16_bit_code)) { gold_error(_("MIPS16 and microMIPS functions cannot call each other")); } // Calls from 16-bit code to 32-bit code and vice versa require the // mode change. However, we can ignore calls to undefined weak symbols, // which should never be executed at runtime. This exception is important // because the assembly writer may have "known" that any definition of the // symbol would be 16-bit code, and that direct jumps were therefore // acceptable. cross_mode_jump = (!parameters->options().relocatable() && !(gsym != NULL && gsym->is_weak_undefined()) && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code) || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code) || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR) && (target_is_16_bit_code || target_is_micromips_code)))); bool local = (mips_sym == NULL || (mips_sym->got_only_for_calls() ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index()) : symbol_references_local(mips_sym, mips_sym->has_dynsym_index()))); // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. if (got_page_reloc(r_type) && !local) r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP : elfcpp::R_MIPS_GOT_DISP); unsigned int got_offset = 0; int gp_offset = 0; bool calculate_only = false; Valtype calculated_value = 0; bool extract_addend = rel_type == elfcpp::SHT_REL; unsigned int r_types[3] = { r_type, r_type2, r_type3 }; Reloc_funcs::mips_reloc_unshuffle(view, r_type, false); // For Mips64 N64 ABI, there may be up to three operations specified per // record, by the fields r_type, r_type2, and r_type3. The first operation // takes its addend from the relocation record. Each subsequent operation // takes as its addend the result of the previous operation. // The first operation in a record which references a symbol uses the symbol // implied by r_sym. The next operation in a record which references a symbol // uses the special symbol value given by the r_ssym field. A third operation // in a record which references a symbol will assume a NULL symbol, // i.e. value zero. // TODO(Vladimir) // Check if a record references to a symbol. for (unsigned int i = 0; i < 3; ++i) { if (r_types[i] == elfcpp::R_MIPS_NONE) break; // TODO(Vladimir) // Check if the next relocation is for the same instruction. calculate_only = i == 2 ? false : r_types[i+1] != elfcpp::R_MIPS_NONE; if (object->is_n64()) { if (i == 1) { // Handle special symbol for r_type2 relocation type. switch (r_ssym) { case RSS_UNDEF: symval.set_output_value(0); break; case RSS_GP: symval.set_output_value(target->gp_value()); break; case RSS_GP0: symval.set_output_value(object->gp_value()); break; case RSS_LOC: symval.set_output_value(address); break; default: gold_unreachable(); } psymval = &symval; } else if (i == 2) { // For r_type3 symbol value is 0. symval.set_output_value(0); } } bool update_got_entry = false; switch (r_types[i]) { case elfcpp::R_MIPS_NONE: break; case elfcpp::R_MIPS_16: reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend, extract_addend, calculate_only, &calculated_value); break; case elfcpp::R_MIPS_32: if (should_apply_static_reloc(mips_sym, r_types[i], output_section, target)) reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend, extract_addend, calculate_only, &calculated_value); if (mips_sym != NULL && (mips_sym->is_mips16() || mips_sym->is_micromips()) && mips_sym->global_got_area() == GGA_RELOC_ONLY) { // If mips_sym->has_mips16_fn_stub() is false, symbol value is // already updated by adding +1. if (mips_sym->has_mips16_fn_stub()) { gold_assert(mips_sym->need_fn_stub()); Mips16_stub_section* fn_stub = mips_sym->template get_mips16_fn_stub(); symval.set_output_value(fn_stub->output_address()); psymval = &symval; } got_offset = mips_sym->global_gotoffset(); update_got_entry = true; } break; case elfcpp::R_MIPS_64: if (should_apply_static_reloc(mips_sym, r_types[i], output_section, target)) reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend, extract_addend, calculate_only, &calculated_value, false); else if (target->is_output_n64() && r_addend != 0) // Only apply the addend. The static relocation was RELA, but the // dynamic relocation is REL, so we need to apply the addend. reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend, extract_addend, calculate_only, &calculated_value, true); break; case elfcpp::R_MIPS_REL32: gold_unreachable(); case elfcpp::R_MIPS_PC32: reloc_status = Reloc_funcs::relpc32(view, object, psymval, address, r_addend, extract_addend, calculate_only, &calculated_value); break; case elfcpp::R_MIPS16_26: // The calculation for R_MIPS16_26 is just the same as for an // R_MIPS_26. It's only the storage of the relocated field into // the output file that's different. So, we just fall through to the // R_MIPS_26 case here. case elfcpp::R_MIPS_26: case elfcpp::R_MICROMIPS_26_S1: reloc_status = Reloc_funcs::rel26(view, object, psymval, address, gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump, r_types[i], target->jal_to_bal(), calculate_only, &calculated_value); break; case elfcpp::R_MIPS_HI16: case elfcpp::R_MIPS16_HI16: case elfcpp::R_MICROMIPS_HI16: if (rel_type == elfcpp::SHT_RELA) reloc_status = Reloc_funcs::do_relhi16(view, object, psymval, r_addend, address, gp_disp, r_types[i], extract_addend, 0, target, calculate_only, &calculated_value); else if (rel_type == elfcpp::SHT_REL) reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend, address, gp_disp, r_types[i], r_sym, extract_addend); else gold_unreachable(); break; case elfcpp::R_MIPS_LO16: case elfcpp::R_MIPS16_LO16: case elfcpp::R_MICROMIPS_LO16: case elfcpp::R_MICROMIPS_HI0_LO16: reloc_status = Reloc_funcs::rello16(target, view, object, psymval, r_addend, extract_addend, address, gp_disp, r_types[i], r_sym, rel_type, calculate_only, &calculated_value); break; case elfcpp::R_MIPS_LITERAL: case elfcpp::R_MICROMIPS_LITERAL: // Because we don't merge literal sections, we can handle this // just like R_MIPS_GPREL16. In the long run, we should merge // shared literals, and then we will need to additional work // here. // Fall through. case elfcpp::R_MIPS_GPREL16: case elfcpp::R_MIPS16_GPREL: case elfcpp::R_MICROMIPS_GPREL7_S2: case elfcpp::R_MICROMIPS_GPREL16: reloc_status = Reloc_funcs::relgprel(view, object, psymval, target->adjusted_gp_value(object), r_addend, extract_addend, gsym == NULL, r_types[i], calculate_only, &calculated_value); break; case elfcpp::R_MIPS_PC16: reloc_status = Reloc_funcs::relpc16(view, object, psymval, address, r_addend, extract_addend, calculate_only, &calculated_value); break; case elfcpp::R_MICROMIPS_PC7_S1: reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval, address, r_addend, extract_addend, calculate_only, &calculated_value); break; case elfcpp::R_MICROMIPS_PC10_S1: reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object, psymval, address, r_addend, extract_addend, calculate_only, &calculated_value); break; case elfcpp::R_MICROMIPS_PC16_S1: reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object, psymval, address, r_addend, extract_addend, calculate_only, &calculated_value); break; case elfcpp::R_MIPS_GPREL32: reloc_status = Reloc_funcs::relgprel32(view, object, psymval, target->adjusted_gp_value(object), r_addend, extract_addend, calculate_only, &calculated_value); break; case elfcpp::R_MIPS_GOT_HI16: case elfcpp::R_MIPS_CALL_HI16: case elfcpp::R_MICROMIPS_GOT_HI16: case elfcpp::R_MICROMIPS_CALL_HI16: if (gsym != NULL) got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD, object); else got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD, object, r_addend); gp_offset = target->got_section()->gp_offset(got_offset, object); reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset, calculate_only, &calculated_value); update_got_entry = changed_symbol_value; break; case elfcpp::R_MIPS_GOT_LO16: case elfcpp::R_MIPS_CALL_LO16: case elfcpp::R_MICROMIPS_GOT_LO16: case elfcpp::R_MICROMIPS_CALL_LO16: if (gsym != NULL) got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD, object); else got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD, object, r_addend); gp_offset = target->got_section()->gp_offset(got_offset, object); reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset, calculate_only, &calculated_value); update_got_entry = changed_symbol_value; break; case elfcpp::R_MIPS_GOT_DISP: case elfcpp::R_MICROMIPS_GOT_DISP: case elfcpp::R_MIPS_EH: if (gsym != NULL) got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD, object); else got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD, object, r_addend); gp_offset = target->got_section()->gp_offset(got_offset, object); if (eh_reloc(r_types[i])) reloc_status = Reloc_funcs::releh(view, gp_offset, calculate_only, &calculated_value); else reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only, &calculated_value); break; case elfcpp::R_MIPS_CALL16: case elfcpp::R_MIPS16_CALL16: case elfcpp::R_MICROMIPS_CALL16: gold_assert(gsym != NULL); got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD, object); gp_offset = target->got_section()->gp_offset(got_offset, object); reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only, &calculated_value); // TODO(sasa): We should also initialize update_got_entry // in other place swhere relgot is called. update_got_entry = changed_symbol_value; break; case elfcpp::R_MIPS_GOT16: case elfcpp::R_MIPS16_GOT16: case elfcpp::R_MICROMIPS_GOT16: if (gsym != NULL) { got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD, object); gp_offset = target->got_section()->gp_offset(got_offset, object); reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only, &calculated_value); } else { if (rel_type == elfcpp::SHT_RELA) reloc_status = Reloc_funcs::do_relgot16_local(view, object, psymval, r_addend, extract_addend, 0, target, calculate_only, &calculated_value); else if (rel_type == elfcpp::SHT_REL) reloc_status = Reloc_funcs::relgot16_local(view, object, psymval, r_addend, extract_addend, r_types[i], r_sym); else gold_unreachable(); } update_got_entry = changed_symbol_value; break; case elfcpp::R_MIPS_TLS_GD: case elfcpp::R_MIPS16_TLS_GD: case elfcpp::R_MICROMIPS_TLS_GD: if (gsym != NULL) got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_TLS_PAIR, object); else got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_TLS_PAIR, object, r_addend); gp_offset = target->got_section()->gp_offset(got_offset, object); reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only, &calculated_value); break; case elfcpp::R_MIPS_TLS_GOTTPREL: case elfcpp::R_MIPS16_TLS_GOTTPREL: case elfcpp::R_MICROMIPS_TLS_GOTTPREL: if (gsym != NULL) got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_TLS_OFFSET, object); else got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_TLS_OFFSET, object, r_addend); gp_offset = target->got_section()->gp_offset(got_offset, object); reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only, &calculated_value); break; case elfcpp::R_MIPS_TLS_LDM: case elfcpp::R_MIPS16_TLS_LDM: case elfcpp::R_MICROMIPS_TLS_LDM: // Relocate the field with the offset of the GOT entry for // the module index. got_offset = target->got_section()->tls_ldm_offset(object); gp_offset = target->got_section()->gp_offset(got_offset, object); reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only, &calculated_value); break; case elfcpp::R_MIPS_GOT_PAGE: case elfcpp::R_MICROMIPS_GOT_PAGE: reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval, r_addend, extract_addend, calculate_only, &calculated_value); break; case elfcpp::R_MIPS_GOT_OFST: case elfcpp::R_MICROMIPS_GOT_OFST: reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval, r_addend, extract_addend, local, calculate_only, &calculated_value); break; case elfcpp::R_MIPS_JALR: case elfcpp::R_MICROMIPS_JALR: // This relocation is only a hint. In some cases, we optimize // it into a bal instruction. But we don't try to optimize // when the symbol does not resolve locally. if (gsym == NULL || symbol_calls_local(gsym, gsym->has_dynsym_index())) reloc_status = Reloc_funcs::reljalr(view, object, psymval, address, r_addend, extract_addend, cross_mode_jump, r_types[i], target->jalr_to_bal(), target->jr_to_b(), calculate_only, &calculated_value); break; case elfcpp::R_MIPS_TLS_DTPREL_HI16: case elfcpp::R_MIPS16_TLS_DTPREL_HI16: case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16: reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval, elfcpp::DTP_OFFSET, r_addend, extract_addend, calculate_only, &calculated_value); break; case elfcpp::R_MIPS_TLS_DTPREL_LO16: case elfcpp::R_MIPS16_TLS_DTPREL_LO16: case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16: reloc_status = Reloc_funcs::tlsrello16(view, object, psymval, elfcpp::DTP_OFFSET, r_addend, extract_addend, calculate_only, &calculated_value); break; case elfcpp::R_MIPS_TLS_DTPREL32: case elfcpp::R_MIPS_TLS_DTPREL64: reloc_status = Reloc_funcs::tlsrel32(view, object, psymval, elfcpp::DTP_OFFSET, r_addend, extract_addend, calculate_only, &calculated_value); break; case elfcpp::R_MIPS_TLS_TPREL_HI16: case elfcpp::R_MIPS16_TLS_TPREL_HI16: case elfcpp::R_MICROMIPS_TLS_TPREL_HI16: reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval, elfcpp::TP_OFFSET, r_addend, extract_addend, calculate_only, &calculated_value); break; case elfcpp::R_MIPS_TLS_TPREL_LO16: case elfcpp::R_MIPS16_TLS_TPREL_LO16: case elfcpp::R_MICROMIPS_TLS_TPREL_LO16: reloc_status = Reloc_funcs::tlsrello16(view, object, psymval, elfcpp::TP_OFFSET, r_addend, extract_addend, calculate_only, &calculated_value); break; case elfcpp::R_MIPS_TLS_TPREL32: case elfcpp::R_MIPS_TLS_TPREL64: reloc_status = Reloc_funcs::tlsrel32(view, object, psymval, elfcpp::TP_OFFSET, r_addend, extract_addend, calculate_only, &calculated_value); break; case elfcpp::R_MIPS_SUB: case elfcpp::R_MICROMIPS_SUB: reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend, extract_addend, calculate_only, &calculated_value); break; default: gold_error_at_location(relinfo, relnum, r_offset, _("unsupported reloc %u"), r_types[i]); break; } if (update_got_entry) { Mips_output_data_got* got = target->got_section(); if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup()) got->update_got_entry(got->get_primary_got_offset(mips_sym), psymval->value(object, 0)); else got->update_got_entry(got_offset, psymval->value(object, 0)); } r_addend = calculated_value; } bool jal_shuffle = jal_reloc(r_type) ? !parameters->options().relocatable() : false; Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle); // Report any errors. switch (reloc_status) { case Reloc_funcs::STATUS_OKAY: break; case Reloc_funcs::STATUS_OVERFLOW: gold_error_at_location(relinfo, relnum, r_offset, _("relocation overflow")); break; case Reloc_funcs::STATUS_BAD_RELOC: gold_error_at_location(relinfo, relnum, r_offset, _("unexpected opcode while processing relocation")); break; default: gold_unreachable(); } return true; } // Get the Reference_flags for a particular relocation. template int Target_mips::Scan::get_reference_flags( unsigned int r_type) { switch (r_type) { case elfcpp::R_MIPS_NONE: // No symbol reference. return 0; case elfcpp::R_MIPS_16: case elfcpp::R_MIPS_32: case elfcpp::R_MIPS_64: case elfcpp::R_MIPS_HI16: case elfcpp::R_MIPS_LO16: case elfcpp::R_MIPS16_HI16: case elfcpp::R_MIPS16_LO16: case elfcpp::R_MICROMIPS_HI16: case elfcpp::R_MICROMIPS_LO16: return Symbol::ABSOLUTE_REF; case elfcpp::R_MIPS_26: case elfcpp::R_MIPS16_26: case elfcpp::R_MICROMIPS_26_S1: return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF; case elfcpp::R_MIPS_GPREL32: case elfcpp::R_MIPS_GPREL16: case elfcpp::R_MIPS_REL32: case elfcpp::R_MIPS16_GPREL: return Symbol::RELATIVE_REF; case elfcpp::R_MIPS_PC16: case elfcpp::R_MIPS_PC32: case elfcpp::R_MIPS_JALR: case elfcpp::R_MICROMIPS_JALR: return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF; case elfcpp::R_MIPS_GOT16: case elfcpp::R_MIPS_CALL16: case elfcpp::R_MIPS_GOT_DISP: case elfcpp::R_MIPS_GOT_HI16: case elfcpp::R_MIPS_GOT_LO16: case elfcpp::R_MIPS_CALL_HI16: case elfcpp::R_MIPS_CALL_LO16: case elfcpp::R_MIPS_LITERAL: case elfcpp::R_MIPS_GOT_PAGE: case elfcpp::R_MIPS_GOT_OFST: case elfcpp::R_MIPS16_GOT16: case elfcpp::R_MIPS16_CALL16: case elfcpp::R_MICROMIPS_GOT16: case elfcpp::R_MICROMIPS_CALL16: case elfcpp::R_MICROMIPS_GOT_HI16: case elfcpp::R_MICROMIPS_GOT_LO16: case elfcpp::R_MICROMIPS_CALL_HI16: case elfcpp::R_MICROMIPS_CALL_LO16: case elfcpp::R_MIPS_EH: // Absolute in GOT. return Symbol::RELATIVE_REF; case elfcpp::R_MIPS_TLS_DTPMOD32: case elfcpp::R_MIPS_TLS_DTPREL32: case elfcpp::R_MIPS_TLS_DTPMOD64: case elfcpp::R_MIPS_TLS_DTPREL64: case elfcpp::R_MIPS_TLS_GD: case elfcpp::R_MIPS_TLS_LDM: case elfcpp::R_MIPS_TLS_DTPREL_HI16: case elfcpp::R_MIPS_TLS_DTPREL_LO16: case elfcpp::R_MIPS_TLS_GOTTPREL: case elfcpp::R_MIPS_TLS_TPREL32: case elfcpp::R_MIPS_TLS_TPREL64: case elfcpp::R_MIPS_TLS_TPREL_HI16: case elfcpp::R_MIPS_TLS_TPREL_LO16: case elfcpp::R_MIPS16_TLS_GD: case elfcpp::R_MIPS16_TLS_GOTTPREL: case elfcpp::R_MICROMIPS_TLS_GD: case elfcpp::R_MICROMIPS_TLS_GOTTPREL: case elfcpp::R_MICROMIPS_TLS_TPREL_HI16: case elfcpp::R_MICROMIPS_TLS_TPREL_LO16: return Symbol::TLS_REF; case elfcpp::R_MIPS_COPY: case elfcpp::R_MIPS_JUMP_SLOT: default: gold_unreachable(); // Not expected. We will give an error later. return 0; } } // Report an unsupported relocation against a local symbol. template void Target_mips::Scan::unsupported_reloc_local( Sized_relobj_file* object, unsigned int r_type) { gold_error(_("%s: unsupported reloc %u against local symbol"), object->name().c_str(), r_type); } // Report an unsupported relocation against a global symbol. template void Target_mips::Scan::unsupported_reloc_global( Sized_relobj_file* object, unsigned int r_type, Symbol* gsym) { gold_error(_("%s: unsupported reloc %u against global symbol %s"), object->name().c_str(), r_type, gsym->demangled_name().c_str()); } // Return printable name for ABI. template const char* Target_mips::elf_mips_abi_name(elfcpp::Elf_Word e_flags) { switch (e_flags & elfcpp::EF_MIPS_ABI) { case 0: if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0) return "N32"; else if (size == 64) return "64"; else return "none"; case elfcpp::E_MIPS_ABI_O32: return "O32"; case elfcpp::E_MIPS_ABI_O64: return "O64"; case elfcpp::E_MIPS_ABI_EABI32: return "EABI32"; case elfcpp::E_MIPS_ABI_EABI64: return "EABI64"; default: return "unknown abi"; } } template const char* Target_mips::elf_mips_mach_name(elfcpp::Elf_Word e_flags) { switch (e_flags & elfcpp::EF_MIPS_MACH) { case elfcpp::E_MIPS_MACH_3900: return "mips:3900"; case elfcpp::E_MIPS_MACH_4010: return "mips:4010"; case elfcpp::E_MIPS_MACH_4100: return "mips:4100"; case elfcpp::E_MIPS_MACH_4111: return "mips:4111"; case elfcpp::E_MIPS_MACH_4120: return "mips:4120"; case elfcpp::E_MIPS_MACH_4650: return "mips:4650"; case elfcpp::E_MIPS_MACH_5400: return "mips:5400"; case elfcpp::E_MIPS_MACH_5500: return "mips:5500"; case elfcpp::E_MIPS_MACH_5900: return "mips:5900"; case elfcpp::E_MIPS_MACH_SB1: return "mips:sb1"; case elfcpp::E_MIPS_MACH_9000: return "mips:9000"; case elfcpp::E_MIPS_MACH_LS2E: return "mips:loongson_2e"; case elfcpp::E_MIPS_MACH_LS2F: return "mips:loongson_2f"; case elfcpp::E_MIPS_MACH_LS3A: return "mips:loongson_3a"; case elfcpp::E_MIPS_MACH_OCTEON: return "mips:octeon"; case elfcpp::E_MIPS_MACH_OCTEON2: return "mips:octeon2"; case elfcpp::E_MIPS_MACH_OCTEON3: return "mips:octeon3"; case elfcpp::E_MIPS_MACH_XLR: return "mips:xlr"; default: switch (e_flags & elfcpp::EF_MIPS_ARCH) { default: case elfcpp::E_MIPS_ARCH_1: return "mips:3000"; case elfcpp::E_MIPS_ARCH_2: return "mips:6000"; case elfcpp::E_MIPS_ARCH_3: return "mips:4000"; case elfcpp::E_MIPS_ARCH_4: return "mips:8000"; case elfcpp::E_MIPS_ARCH_5: return "mips:mips5"; case elfcpp::E_MIPS_ARCH_32: return "mips:isa32"; case elfcpp::E_MIPS_ARCH_64: return "mips:isa64"; case elfcpp::E_MIPS_ARCH_32R2: return "mips:isa32r2"; case elfcpp::E_MIPS_ARCH_64R2: return "mips:isa64r2"; } } return "unknown CPU"; } template const Target::Target_info Target_mips::mips_info = { size, // size big_endian, // is_big_endian elfcpp::EM_MIPS, // machine_code true, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1", // dynamic_linker 0x400000, // default_text_segment_address 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 4 * 1024, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL, // attributes_vendor "__start", // entry_symbol_name 32, // hash_entry_size }; template class Target_mips_nacl : public Target_mips { public: Target_mips_nacl() : Target_mips(&mips_nacl_info) { } private: static const Target::Target_info mips_nacl_info; }; template const Target::Target_info Target_mips_nacl::mips_nacl_info = { size, // size big_endian, // is_big_endian elfcpp::EM_MIPS, // machine_code true, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/lib/ld.so.1", // dynamic_linker 0x20000, // default_text_segment_address 0x10000, // abi_pagesize (overridable by -z max-page-size) 0x10000, // common_pagesize (overridable by -z common-page-size) true, // isolate_execinstr 0x10000000, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL, // attributes_vendor "_start", // entry_symbol_name 32, // hash_entry_size }; // Target selector for Mips. Note this is never instantiated directly. // It's only used in Target_selector_mips_nacl, below. template class Target_selector_mips : public Target_selector { public: Target_selector_mips() : Target_selector(elfcpp::EM_MIPS, size, big_endian, (size == 64 ? (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") : (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")), (size == 64 ? (big_endian ? "elf64btsmip" : "elf64ltsmip") : (big_endian ? "elf32btsmip" : "elf32ltsmip"))) { } Target* do_instantiate_target() { return new Target_mips(); } }; template class Target_selector_mips_nacl : public Target_selector_nacl, Target_mips_nacl > { public: Target_selector_mips_nacl() : Target_selector_nacl, Target_mips_nacl >( // NaCl currently supports only MIPS32 little-endian. "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl") { } }; Target_selector_mips_nacl<32, true> target_selector_mips32; Target_selector_mips_nacl<32, false> target_selector_mips32el; Target_selector_mips_nacl<64, true> target_selector_mips64; Target_selector_mips_nacl<64, false> target_selector_mips64el; } // End anonymous namespace.