// gold.cc -- main linker functions // Copyright 2006, 2007 Free Software Foundation, Inc. // Written by Ian Lance Taylor . // This file is part of gold. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #include "gold.h" #include #include #include #include #include "libiberty.h" #include "options.h" #include "workqueue.h" #include "dirsearch.h" #include "readsyms.h" #include "symtab.h" #include "common.h" #include "object.h" #include "layout.h" #include "reloc.h" #include "defstd.h" namespace gold { const char* program_name; void gold_exit(bool status) { if (!status && parameters != NULL && parameters->options_valid()) unlink_if_ordinary(parameters->output_file_name()); exit(status ? EXIT_SUCCESS : EXIT_FAILURE); } void gold_nomem() { // We are out of memory, so try hard to print a reasonable message. // Note that we don't try to translate this message, since the // translation process itself will require memory. write(2, program_name, strlen(program_name)); const char* const s = ": out of memory\n"; write(2, s, strlen(s)); gold_exit(false); } // Handle an unreachable case. void do_gold_unreachable(const char* filename, int lineno, const char* function) { fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"), program_name, function, filename, lineno); gold_exit(false); } // This class arranges to run the functions done in the middle of the // link. It is just a closure. class Middle_runner : public Task_function_runner { public: Middle_runner(const General_options& options, const Input_objects* input_objects, Symbol_table* symtab, Layout* layout) : options_(options), input_objects_(input_objects), symtab_(symtab), layout_(layout) { } void run(Workqueue*); private: const General_options& options_; const Input_objects* input_objects_; Symbol_table* symtab_; Layout* layout_; }; void Middle_runner::run(Workqueue* workqueue) { queue_middle_tasks(this->options_, this->input_objects_, this->symtab_, this->layout_, workqueue); } // Queue up the initial set of tasks for this link job. void queue_initial_tasks(const General_options& options, const Dirsearch& search_path, const Command_line& cmdline, Workqueue* workqueue, Input_objects* input_objects, Symbol_table* symtab, Layout* layout) { if (cmdline.begin() == cmdline.end()) gold_fatal(_("no input files")); int thread_count = options.thread_count_initial(); if (thread_count == 0) thread_count = cmdline.number_of_input_files(); workqueue->set_thread_count(thread_count); // Read the input files. We have to add the symbols to the symbol // table in order. We do this by creating a separate blocker for // each input file. We associate the blocker with the following // input file, to give us a convenient place to delete it. Task_token* this_blocker = NULL; for (Command_line::const_iterator p = cmdline.begin(); p != cmdline.end(); ++p) { Task_token* next_blocker = new Task_token(); next_blocker->add_blocker(); workqueue->queue(new Read_symbols(options, input_objects, symtab, layout, search_path, &*p, NULL, this_blocker, next_blocker)); this_blocker = next_blocker; } workqueue->queue(new Task_function(new Middle_runner(options, input_objects, symtab, layout), this_blocker, "Task_function Middle_runner")); } // Queue up the middle set of tasks. These are the tasks which run // after all the input objects have been found and all the symbols // have been read, but before we lay out the output file. void queue_middle_tasks(const General_options& options, const Input_objects* input_objects, Symbol_table* symtab, Layout* layout, Workqueue* workqueue) { if (input_objects->number_of_input_objects() == 0) { // We had some input files, but we weren't able to open any of // them. gold_fatal(_("no input files")); } int thread_count = options.thread_count_middle(); if (thread_count == 0) thread_count = input_objects->number_of_input_objects(); workqueue->set_thread_count(thread_count); // Now we have seen all the input files. const bool doing_static_link = (!input_objects->any_dynamic() && !parameters->output_is_shared()); set_parameters_doing_static_link(doing_static_link); if (!doing_static_link && options.is_static()) { // We print out just the first .so we see; there may be others. gold_error(_("cannot mix -static with dynamic object %s"), (*input_objects->dynobj_begin())->name().c_str()); } // For each dynamic object, record whether we've seen all the // dynamic objects that it depends upon. input_objects->check_dynamic_dependencies(); // See if any of the input definitions violate the One Definition Rule. // TODO: if this is too slow, do this as a task, rather than inline. symtab->detect_odr_violations(options.output_file_name()); // Define some sections and symbols needed for a dynamic link. This // handles some cases we want to see before we read the relocs. layout->create_initial_dynamic_sections(input_objects, symtab); // Predefine standard symbols. This should be fast, so we don't // bother to create a task for it. define_standard_symbols(symtab, layout, input_objects->target()); // Define __start and __stop symbols for output sections where // appropriate. layout->define_section_symbols(symtab, input_objects->target()); // Read the relocations of the input files. We do this to find // which symbols are used by relocations which require a GOT and/or // a PLT entry, or a COPY reloc. When we implement garbage // collection we will do it here by reading the relocations in a // breadth first search by references. // // We could also read the relocations during the first pass, and // mark symbols at that time. That is how the old GNU linker works. // Doing that is more complex, since we may later decide to discard // some of the sections, and thus change our minds about the types // of references made to the symbols. Task_token* blocker = new Task_token(); Task_token* symtab_lock = new Task_token(); for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); p != input_objects->relobj_end(); ++p) { // We can read and process the relocations in any order. But we // only want one task to write to the symbol table at a time. // So we queue up a task for each object to read the // relocations. That task will in turn queue a task to wait // until it can write to the symbol table. blocker->add_blocker(); workqueue->queue(new Read_relocs(options, symtab, layout, *p, symtab_lock, blocker)); } // Allocate common symbols. This requires write access to the // symbol table, but is independent of the relocation processing. blocker->add_blocker(); workqueue->queue(new Allocate_commons_task(options, symtab, layout, symtab_lock, blocker)); // When all those tasks are complete, we can start laying out the // output file. workqueue->queue(new Task_function(new Layout_task_runner(options, input_objects, symtab, layout), blocker, "Task_function Layout_task_runner")); } // Queue up the final set of tasks. This is called at the end of // Layout_task. void queue_final_tasks(const General_options& options, const Input_objects* input_objects, const Symbol_table* symtab, Layout* layout, Workqueue* workqueue, Output_file* of) { int thread_count = options.thread_count_final(); if (thread_count == 0) thread_count = input_objects->number_of_input_objects(); workqueue->set_thread_count(thread_count); // Use a blocker to wait until all the input sections have been // written out. Task_token* input_sections_blocker = new Task_token(); // Use a blocker to block any objects which have to wait for the // output sections to complete before they can apply relocations. Task_token* output_sections_blocker = new Task_token(); // Use a blocker to block the final cleanup task. Task_token* final_blocker = new Task_token(); // Queue a task for each input object to relocate the sections and // write out the local symbols. for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); p != input_objects->relobj_end(); ++p) { input_sections_blocker->add_blocker(); final_blocker->add_blocker(); workqueue->queue(new Relocate_task(options, symtab, layout, *p, of, input_sections_blocker, output_sections_blocker, final_blocker)); } // Queue a task to write out the symbol table. if (!options.strip_all()) { final_blocker->add_blocker(); workqueue->queue(new Write_symbols_task(symtab, input_objects, layout->sympool(), layout->dynpool(), of, final_blocker)); } // Queue a task to write out the output sections. output_sections_blocker->add_blocker(); final_blocker->add_blocker(); workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker, final_blocker)); // Queue a task to write out everything else. final_blocker->add_blocker(); workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker)); // Queue a task to write out the output sections which depend on // input sections. final_blocker->add_blocker(); workqueue->queue(new Write_after_input_sections_task(layout, of, input_sections_blocker, final_blocker)); // Queue a task to close the output file. This will be blocked by // FINAL_BLOCKER. workqueue->queue(new Task_function(new Close_task_runner(of), final_blocker, "Task_function Close_task_runner")); } } // End namespace gold.