// gc.h -- garbage collection of unused sections // Copyright (C) 2009-2020 Free Software Foundation, Inc. // Written by Sriraman Tallam <tmsriram@google.com>. // This file is part of gold. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #ifndef GOLD_GC_H #define GOLD_GC_H #include <vector> #include "elfcpp.h" #include "symtab.h" #include "object.h" #include "icf.h" namespace gold { class Object; template<int size, bool big_endian> class Sized_relobj_file; class Output_section; class General_options; class Layout; class Garbage_collection { public: typedef Unordered_set<Section_id, Section_id_hash> Sections_reachable; typedef std::map<Section_id, Sections_reachable> Section_ref; typedef std::vector<Section_id> Worklist_type; // This maps the name of the section which can be represented as a C // identifier (cident) to the list of sections that have that name. // Different object files can have cident sections with the same name. typedef std::map<std::string, Sections_reachable> Cident_section_map; Garbage_collection() : is_worklist_ready_(false) { } // Accessor methods for the private members. Sections_reachable& referenced_list() { return referenced_list_; } Section_ref& section_reloc_map() { return this->section_reloc_map_; } Worklist_type& worklist() { return this->work_list_; } bool is_worklist_ready() { return this->is_worklist_ready_; } void worklist_ready() { this->is_worklist_ready_ = true; } void do_transitive_closure(); bool is_section_garbage(Relobj* obj, unsigned int shndx) { return (this->referenced_list().find(Section_id(obj, shndx)) == this->referenced_list().end()); } Cident_section_map* cident_sections() { return &cident_sections_; } void add_cident_section(std::string section_name, Section_id secn) { this->cident_sections_[section_name].insert(secn); } // Add a reference from the SRC_SHNDX-th section of SRC_OBJECT to // DST_SHNDX-th section of DST_OBJECT. void add_reference(Relobj* src_object, unsigned int src_shndx, Relobj* dst_object, unsigned int dst_shndx) { Section_id src_id(src_object, src_shndx); Section_id dst_id(dst_object, dst_shndx); Sections_reachable& reachable = this->section_reloc_map_[src_id]; reachable.insert(dst_id); } private: Worklist_type work_list_; bool is_worklist_ready_; Section_ref section_reloc_map_; Sections_reachable referenced_list_; Cident_section_map cident_sections_; }; // Data to pass between successive invocations of do_layout // in object.cc while garbage collecting. This data structure // is filled by using the data from Read_symbols_data. struct Symbols_data { // Section headers. unsigned char* section_headers_data; // Section names. unsigned char* section_names_data; // Size of section name data in bytes. section_size_type section_names_size; // Symbol data. unsigned char* symbols_data; // Size of symbol data in bytes. section_size_type symbols_size; // Offset of external symbols within symbol data. This structure // sometimes contains only external symbols, in which case this will // be zero. Sometimes it contains all symbols. section_offset_type external_symbols_offset; // Symbol names. unsigned char* symbol_names_data; // Size of symbol name data in bytes. section_size_type symbol_names_size; }; // Relocations of type SHT_REL store the addend value in their bytes. // This function returns the size of the embedded addend which is // nothing but the size of the relocation. template<typename Classify_reloc> inline unsigned int get_embedded_addend_size(int r_type, Relobj* obj) { if (Classify_reloc::sh_type == elfcpp::SHT_REL) return Classify_reloc::get_size_for_reloc(r_type, obj); return 0; } // This function implements the generic part of reloc // processing to map a section to all the sections it // references through relocs. It is called only during // garbage collection (--gc-sections) and identical code // folding (--icf). template<int size, bool big_endian, typename Target_type, typename Scan, typename Classify_reloc> inline void gc_process_relocs( Symbol_table* symtab, Layout*, Target_type* target, Sized_relobj_file<size, big_endian>* src_obj, unsigned int src_indx, const unsigned char* prelocs, size_t reloc_count, Output_section*, bool, size_t local_count, const unsigned char* plocal_syms) { Scan scan; typedef typename Classify_reloc::Reltype Reltype; const int reloc_size = Classify_reloc::reloc_size; const int sym_size = elfcpp::Elf_sizes<size>::sym_size; Icf::Sections_reachable_info* secvec = NULL; Icf::Symbol_info* symvec = NULL; Icf::Addend_info* addendvec = NULL; Icf::Offset_info* offsetvec = NULL; Icf::Reloc_addend_size_info* reloc_addend_size_vec = NULL; bool is_icf_tracked = false; const char* cident_section_name = NULL; std::string src_section_name = (parameters->options().icf_enabled() ? src_obj->section_name(src_indx) : ""); bool check_section_for_function_pointers = false; if (parameters->options().icf_enabled() && (is_section_foldable_candidate(src_section_name) || is_prefix_of(".eh_frame", src_section_name.c_str()))) { is_icf_tracked = true; Section_id src_id(src_obj, src_indx); Icf::Reloc_info* reloc_info = &symtab->icf()->reloc_info_list()[src_id]; secvec = &reloc_info->section_info; symvec = &reloc_info->symbol_info; addendvec = &reloc_info->addend_info; offsetvec = &reloc_info->offset_info; reloc_addend_size_vec = &reloc_info->reloc_addend_size_info; } check_section_for_function_pointers = symtab->icf()->check_section_for_function_pointers(src_section_name, target); for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size) { Reltype reloc(prelocs); unsigned int r_sym = Classify_reloc::get_r_sym(&reloc); unsigned int r_type = Classify_reloc::get_r_type(&reloc); typename elfcpp::Elf_types<size>::Elf_Swxword addend = Classify_reloc::get_r_addend(&reloc); Relobj* dst_obj; unsigned int dst_indx; typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; Address dst_off; if (r_sym < local_count) { gold_assert(plocal_syms != NULL); typename elfcpp::Sym<size, big_endian> lsym(plocal_syms + r_sym * sym_size); dst_indx = lsym.get_st_shndx(); bool is_ordinary; dst_indx = src_obj->adjust_sym_shndx(r_sym, dst_indx, &is_ordinary); dst_obj = src_obj; dst_off = lsym.get_st_value() + addend; if (is_icf_tracked) { Address symvalue = dst_off - addend; if (is_ordinary) (*secvec).push_back(Section_id(src_obj, dst_indx)); else (*secvec).push_back(Section_id(NULL, 0)); // If the target of the relocation is an STT_SECTION symbol, // make a note of that by storing -1 in the symbol vector. if (lsym.get_st_type() == elfcpp::STT_SECTION) (*symvec).push_back(reinterpret_cast<Symbol*>(-1)); else (*symvec).push_back(NULL); (*addendvec).push_back(std::make_pair( static_cast<long long>(symvalue), static_cast<long long>(addend))); uint64_t reloc_offset = convert_to_section_size_type(reloc.get_r_offset()); (*offsetvec).push_back(reloc_offset); (*reloc_addend_size_vec).push_back( get_embedded_addend_size<Classify_reloc>(r_type, src_obj)); } // When doing safe folding, check to see if this relocation is that // of a function pointer being taken. if (is_ordinary && check_section_for_function_pointers && lsym.get_st_type() != elfcpp::STT_OBJECT && scan.local_reloc_may_be_function_pointer(symtab, NULL, target, src_obj, src_indx, NULL, reloc, r_type, lsym)) symtab->icf()->set_section_has_function_pointers( src_obj, lsym.get_st_shndx()); if (!is_ordinary || dst_indx == src_indx) continue; } else { Symbol* gsym = src_obj->global_symbol(r_sym); gold_assert(gsym != NULL); if (gsym->is_forwarder()) gsym = symtab->resolve_forwards(gsym); dst_obj = NULL; dst_indx = 0; bool is_ordinary = false; if (gsym->source() == Symbol::FROM_OBJECT && !gsym->object()->is_dynamic()) { dst_obj = static_cast<Relobj*>(gsym->object()); dst_indx = gsym->shndx(&is_ordinary); } dst_off = static_cast<const Sized_symbol<size>*>(gsym)->value(); dst_off += addend; // When doing safe folding, check to see if this relocation is that // of a function pointer being taken. if (gsym->source() == Symbol::FROM_OBJECT && gsym->type() == elfcpp::STT_FUNC && check_section_for_function_pointers && dst_obj != NULL && (!is_ordinary || scan.global_reloc_may_be_function_pointer( symtab, NULL, target, src_obj, src_indx, NULL, reloc, r_type, gsym))) symtab->icf()->set_section_has_function_pointers(dst_obj, dst_indx); // If the symbol name matches '__start_XXX' then the section with // the C identifier like name 'XXX' should not be garbage collected. // A similar treatment to symbols with the name '__stop_XXX'. if (is_prefix_of(cident_section_start_prefix, gsym->name())) { cident_section_name = (gsym->name() + strlen(cident_section_start_prefix)); } else if (is_prefix_of(cident_section_stop_prefix, gsym->name())) { cident_section_name = (gsym->name() + strlen(cident_section_stop_prefix)); } if (is_icf_tracked) { Address symvalue = dst_off - addend; if (is_ordinary && dst_obj != NULL) (*secvec).push_back(Section_id(dst_obj, dst_indx)); else (*secvec).push_back(Section_id(NULL, 0)); (*symvec).push_back(gsym); (*addendvec).push_back(std::make_pair( static_cast<long long>(symvalue), static_cast<long long>(addend))); uint64_t reloc_offset = convert_to_section_size_type(reloc.get_r_offset()); (*offsetvec).push_back(reloc_offset); (*reloc_addend_size_vec).push_back( get_embedded_addend_size<Classify_reloc>(r_type, src_obj)); } if (dst_obj == NULL) continue; if (!is_ordinary) continue; } if (parameters->options().gc_sections()) { symtab->gc()->add_reference(src_obj, src_indx, dst_obj, dst_indx); parameters->sized_target<size, big_endian>() ->gc_add_reference(symtab, src_obj, src_indx, dst_obj, dst_indx, dst_off); if (cident_section_name != NULL) { Garbage_collection::Cident_section_map::iterator ele = symtab->gc()->cident_sections()->find(std::string(cident_section_name)); if (ele == symtab->gc()->cident_sections()->end()) continue; Section_id src_id(src_obj, src_indx); Garbage_collection::Sections_reachable& v(symtab->gc()->section_reloc_map()[src_id]); Garbage_collection::Sections_reachable& cident_secn(ele->second); for (Garbage_collection::Sections_reachable::iterator it_v = cident_secn.begin(); it_v != cident_secn.end(); ++it_v) { v.insert(*it_v); } } } } return; } } // End of namespace gold. #endif