// ehframe.h -- handle exception frame sections for gold -*- C++ -*- // Copyright (C) 2006-2015 Free Software Foundation, Inc. // Written by Ian Lance Taylor . // This file is part of gold. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #ifndef GOLD_EHFRAME_H #define GOLD_EHFRAME_H #include #include #include #include "output.h" #include "merge.h" namespace gold { template class Track_relocs; class Eh_frame; // This class manages the .eh_frame_hdr section, which holds the data // for the PT_GNU_EH_FRAME segment. gcc's unwind support code uses // the PT_GNU_EH_FRAME segment to find the list of FDEs. This saves // the time required to register the exception handlers at startup // time and when a shared object is loaded, and the time required to // deregister the exception handlers when a shared object is unloaded. class Eh_frame_hdr : public Output_section_data { public: Eh_frame_hdr(Output_section* eh_frame_section, const Eh_frame*); // Record that we found an unrecognized .eh_frame section. void found_unrecognized_eh_frame_section() { this->any_unrecognized_eh_frame_sections_ = true; } // Record an FDE. void record_fde(section_offset_type fde_offset, unsigned char fde_encoding) { if (!this->any_unrecognized_eh_frame_sections_) this->fde_offsets_.push_back(std::make_pair(fde_offset, fde_encoding)); } protected: // Set the final data size. void set_final_data_size(); // Write the data to the file. void do_write(Output_file*); // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, _("** eh_frame_hdr")); } private: // Write the data to the file with the right endianness. template void do_sized_write(Output_file*); // The data we record for one FDE: the offset of the FDE within the // .eh_frame section, and the FDE encoding. typedef std::pair Fde_offset; // The list of information we record for an FDE. typedef std::vector Fde_offsets; // When writing out the header, we convert the FDE offsets into FDE // addresses. This is a list of pairs of the offset from the header // to the FDE PC and to the FDE itself. template class Fde_addresses { public: typedef typename elfcpp::Elf_types::Elf_Addr Address; typedef typename std::pair Fde_address; typedef typename std::vector Fde_address_list; typedef typename Fde_address_list::iterator iterator; Fde_addresses(unsigned int reserve) : fde_addresses_() { this->fde_addresses_.reserve(reserve); } void push_back(Address pc_address, Address fde_address) { this->fde_addresses_.push_back(std::make_pair(pc_address, fde_address)); } iterator begin() { return this->fde_addresses_.begin(); } iterator end() { return this->fde_addresses_.end(); } private: Fde_address_list fde_addresses_; }; // Compare Fde_address objects. template struct Fde_address_compare { bool operator()(const typename Fde_addresses::Fde_address& f1, const typename Fde_addresses::Fde_address& f2) const { return f1.first < f2.first; } }; // Return the PC to which an FDE refers. template typename elfcpp::Elf_types::Elf_Addr get_fde_pc(typename elfcpp::Elf_types::Elf_Addr eh_frame_address, const unsigned char* eh_frame_contents, section_offset_type fde_offset, unsigned char fde_encoding); // Convert Fde_offsets to Fde_addresses. template void get_fde_addresses(Output_file* of, const Fde_offsets* fde_offsets, Fde_addresses* fde_addresses); // The .eh_frame section. Output_section* eh_frame_section_; // The .eh_frame section data. const Eh_frame* eh_frame_data_; // Data from the FDEs in the .eh_frame sections. Fde_offsets fde_offsets_; // Whether we found any .eh_frame sections which we could not // process. bool any_unrecognized_eh_frame_sections_; }; // This class holds an FDE. class Fde { public: Fde(Relobj* object, unsigned int shndx, section_offset_type input_offset, const unsigned char* contents, size_t length) : object_(object), contents_(reinterpret_cast(contents), length) { this->u_.from_object.shndx = shndx; this->u_.from_object.input_offset = input_offset; } // Create an FDE associated with a PLT. Fde(Output_data* plt, const unsigned char* contents, size_t length, bool post_map) : object_(NULL), contents_(reinterpret_cast(contents), length) { this->u_.from_linker.plt = plt; this->u_.from_linker.post_map = post_map; } // Return the length of this FDE. Add 4 for the length and 4 for // the offset to the CIE. size_t length() const { return this->contents_.length() + 8; } // Add a mapping for this FDE to MERGE_MAP, so that relocations // against the FDE are applied to right part of the output file. void add_mapping(section_offset_type output_offset, Output_section_data* output_data) const { if (this->object_ != NULL) this->object_->add_merge_mapping(output_data, this->u_.from_object.shndx, this->u_.from_object.input_offset, this->length(), output_offset); } // Return whether this FDE was added after merge mapping. bool post_map() { return this->object_ == NULL && this->u_.from_linker.post_map; } // Write the FDE to OVIEW starting at OFFSET. FDE_ENCODING is the // encoding, from the CIE. Round up the bytes to ADDRALIGN if // necessary. ADDRESS is the virtual address of OVIEW. Record the // FDE in EH_FRAME_HDR. Return the new offset. template section_offset_type write(unsigned char* oview, section_offset_type output_section_offset, section_offset_type offset, uint64_t address, unsigned int addralign, section_offset_type cie_offset, unsigned char fde_encoding, Eh_frame_hdr* eh_frame_hdr); private: // The object in which this FDE was seen. This will be NULL for a // linker generated FDE. Relobj* object_; union { // These fields are used if the FDE is from an input object (the // object_ field is not NULL). struct { // Input section index for this FDE. unsigned int shndx; // Offset within the input section for this FDE. section_offset_type input_offset; } from_object; // This field is used if the FDE is generated by the linker (the // object_ field is NULL). struct { // The only linker generated FDEs are for PLT sections, and this // points to the PLT section. Output_data* plt; // Set if the FDE was added after merge mapping. bool post_map; } from_linker; } u_; // FDE data. std::string contents_; }; // A FDE plus some info from a CIE to allow later writing of the FDE. struct Post_fde { Post_fde(Fde* f, section_offset_type cie_off, unsigned char encoding) : fde(f), cie_offset(cie_off), fde_encoding(encoding) { } Fde* fde; section_offset_type cie_offset; unsigned char fde_encoding; }; typedef std::vector Post_fdes; // This class holds a CIE. class Cie { public: Cie(Relobj* object, unsigned int shndx, section_offset_type input_offset, unsigned char fde_encoding, const char* personality_name, const unsigned char* contents, size_t length) : object_(object), shndx_(shndx), input_offset_(input_offset), fde_encoding_(fde_encoding), personality_name_(personality_name), fdes_(), contents_(reinterpret_cast(contents), length) { } ~Cie(); // We permit copying a CIE when there are no FDEs. This is // convenient in the code which creates them. Cie(const Cie& cie) : object_(cie.object_), shndx_(cie.shndx_), input_offset_(cie.input_offset_), fde_encoding_(cie.fde_encoding_), personality_name_(cie.personality_name_), fdes_(), contents_(cie.contents_) { gold_assert(cie.fdes_.empty()); } // Add an FDE associated with this CIE. void add_fde(Fde* fde) { this->fdes_.push_back(fde); } // Return the number of FDEs. unsigned int fde_count() const { return this->fdes_.size(); } // Set the output offset of this CIE to OUTPUT_OFFSET. It will be // followed by all its FDEs. ADDRALIGN is the required address // alignment, typically 4 or 8. This updates MERGE_MAP with the // mapping. It returns the new output offset. section_offset_type set_output_offset(section_offset_type output_offset, unsigned int addralign, Output_section_data*); // Write the CIE to OVIEW starting at OFFSET. Round up the bytes to // ADDRALIGN. ADDRESS is the virtual address of OVIEW. // EH_FRAME_HDR is the exception frame header for FDE recording. // POST_FDES stashes FDEs created after mappings were done, for later // writing. Return the new offset. template section_offset_type write(unsigned char* oview, section_offset_type output_section_offset, section_offset_type offset, uint64_t address, unsigned int addralign, Eh_frame_hdr* eh_frame_hdr, Post_fdes* post_fdes); friend bool operator<(const Cie&, const Cie&); friend bool operator==(const Cie&, const Cie&); private: // The class is not assignable. Cie& operator=(const Cie&); // The object in which this CIE was first seen. This will be NULL // for a linker generated CIE. Relobj* object_; // Input section index for this CIE. This will be 0 for a linker // generated CIE. unsigned int shndx_; // Offset within the input section for this CIE. This will be 0 for // a linker generated CIE. section_offset_type input_offset_; // The encoding of the FDE. This is a DW_EH_PE code. unsigned char fde_encoding_; // The name of the personality routine. This will be the name of a // global symbol, or will be the empty string. std::string personality_name_; // List of FDEs. std::vector fdes_; // CIE data. std::string contents_; }; extern bool operator<(const Cie&, const Cie&); extern bool operator==(const Cie&, const Cie&); // This class manages .eh_frame sections. It discards duplicate // exception information. class Eh_frame : public Output_section_data { public: Eh_frame(); // Record the associated Eh_frame_hdr, if any. void set_eh_frame_hdr(Eh_frame_hdr* hdr) { this->eh_frame_hdr_ = hdr; } // Add the input section SHNDX in OBJECT. SYMBOLS is the contents // of the symbol table section (size SYMBOLS_SIZE), SYMBOL_NAMES is // the symbol names section (size SYMBOL_NAMES_SIZE). RELOC_SHNDX // is the relocation section if any (0 for none, -1U for multiple). // RELOC_TYPE is the type of the relocation section if any. This // returns whether the section was incorporated into the .eh_frame // data. template bool add_ehframe_input_section(Sized_relobj_file* object, const unsigned char* symbols, section_size_type symbols_size, const unsigned char* symbol_names, section_size_type symbol_names_size, unsigned int shndx, unsigned int reloc_shndx, unsigned int reloc_type); // Add a CIE and an FDE for a PLT section, to permit unwinding // through a PLT. The FDE data should start with 8 bytes of zero, // which will be replaced by a 4 byte PC relative reference to the // address of PLT and a 4 byte size of PLT. void add_ehframe_for_plt(Output_data* plt, const unsigned char* cie_data, size_t cie_length, const unsigned char* fde_data, size_t fde_length); // Return the number of FDEs. unsigned int fde_count() const; protected: // Set the final data size. void set_final_data_size(); // Return the output address for an input address. bool do_output_offset(const Relobj*, unsigned int shndx, section_offset_type offset, section_offset_type* poutput) const; // Write the data to the file. void do_write(Output_file*); // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, _("** eh_frame")); } private: // The comparison routine for the CIE map. struct Cie_less { bool operator()(const Cie* cie1, const Cie* cie2) const { return *cie1 < *cie2; } }; // A set of unique CIEs. typedef std::set Cie_offsets; // A list of unmergeable CIEs. typedef std::vector Unmergeable_cie_offsets; // A mapping from offsets to CIEs. This is used while reading an // input section. typedef std::map Offsets_to_cie; // A list of CIEs, and a bool indicating whether the CIE is // mergeable. typedef std::vector > New_cies; // Skip an LEB128. static bool skip_leb128(const unsigned char**, const unsigned char*); // The implementation of add_ehframe_input_section. template bool do_add_ehframe_input_section(Sized_relobj_file* object, const unsigned char* symbols, section_size_type symbols_size, const unsigned char* symbol_names, section_size_type symbol_names_size, unsigned int shndx, unsigned int reloc_shndx, unsigned int reloc_type, const unsigned char* pcontents, section_size_type contents_len, New_cies*); // Read a CIE. template bool read_cie(Sized_relobj_file* object, unsigned int shndx, const unsigned char* symbols, section_size_type symbols_size, const unsigned char* symbol_names, section_size_type symbol_names_size, const unsigned char* pcontents, const unsigned char* pcie, const unsigned char* pcieend, Track_relocs* relocs, Offsets_to_cie* cies, New_cies* new_cies); // Read an FDE. template bool read_fde(Sized_relobj_file* object, unsigned int shndx, const unsigned char* symbols, section_size_type symbols_size, const unsigned char* pcontents, unsigned int offset, const unsigned char* pfde, const unsigned char* pfdeend, Track_relocs* relocs, Offsets_to_cie* cies); // Template version of write function. template void do_sized_write(unsigned char* oview); // The exception frame header, if any. Eh_frame_hdr* eh_frame_hdr_; // A mapping from all unique CIEs to their offset in the output // file. Cie_offsets cie_offsets_; // A mapping from unmergeable CIEs to their offset in the output // file. Unmergeable_cie_offsets unmergeable_cie_offsets_; // Whether we have created the mappings to the output section. bool mappings_are_done_; // The final data size. This is only set if mappings_are_done_ is // true. section_size_type final_data_size_; }; } // End namespace gold. #endif // !defined(GOLD_EHFRAME_H)