// dynobj.cc -- dynamic object support for gold #include "gold.h" #include #include #include "symtab.h" #include "dynobj.h" namespace gold { // Class Sized_dynobj. template Sized_dynobj::Sized_dynobj( const std::string& name, Input_file* input_file, off_t offset, const elfcpp::Ehdr& ehdr) : Dynobj(name, input_file, offset), elf_file_(this, ehdr), soname_() { } // Set up the object. template void Sized_dynobj::setup( const elfcpp::Ehdr& ehdr) { this->set_target(ehdr.get_e_machine(), size, big_endian, ehdr.get_e_ident()[elfcpp::EI_OSABI], ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]); const unsigned int shnum = this->elf_file_.shnum(); this->set_shnum(shnum); } // Find the SHT_DYNSYM section and the various version sections, and // the dynamic section, given the section headers. template void Sized_dynobj::find_dynsym_sections( const unsigned char* pshdrs, unsigned int* pdynsym_shndx, unsigned int* pversym_shndx, unsigned int* pverdef_shndx, unsigned int* pverneed_shndx, unsigned int* pdynamic_shndx) { *pdynsym_shndx = -1U; *pversym_shndx = -1U; *pverdef_shndx = -1U; *pverneed_shndx = -1U; *pdynamic_shndx = -1U; const unsigned int shnum = this->shnum(); const unsigned char* p = pshdrs; for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size) { typename This::Shdr shdr(p); unsigned int* pi; switch (shdr.get_sh_type()) { case elfcpp::SHT_DYNSYM: pi = pdynsym_shndx; break; case elfcpp::SHT_GNU_versym: pi = pversym_shndx; break; case elfcpp::SHT_GNU_verdef: pi = pverdef_shndx; break; case elfcpp::SHT_GNU_verneed: pi = pverneed_shndx; break; case elfcpp::SHT_DYNAMIC: pi = pdynamic_shndx; break; default: pi = NULL; break; } if (pi == NULL) continue; if (*pi != -1U) { fprintf(stderr, _("%s: %s: unexpected duplicate type %u section: %u, %u\n"), program_name, this->name().c_str(), shdr.get_sh_type(), *pi, i); gold_exit(false); } *pi = i; } } // Read the contents of section SHNDX. PSHDRS points to the section // headers. TYPE is the expected section type. LINK is the expected // section link. Store the data in *VIEW and *VIEW_SIZE. The // section's sh_info field is stored in *VIEW_INFO. template void Sized_dynobj::read_dynsym_section( const unsigned char* pshdrs, unsigned int shndx, elfcpp::SHT type, unsigned int link, File_view** view, off_t* view_size, unsigned int* view_info) { if (shndx == -1U) { *view = NULL; *view_size = 0; *view_info = 0; return; } typename This::Shdr shdr(pshdrs + shndx * This::shdr_size); assert(shdr.get_sh_type() == type); if (shdr.get_sh_link() != link) { fprintf(stderr, _("%s: %s: unexpected link in section %u header: %u != %u\n"), program_name, this->name().c_str(), shndx, shdr.get_sh_link(), link); gold_exit(false); } *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size()); *view_size = shdr.get_sh_size(); *view_info = shdr.get_sh_info(); } // Set soname_ if this shared object has a DT_SONAME tag. PSHDRS // points to the section headers. DYNAMIC_SHNDX is the section index // of the SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE // are the section index and contents of a string table which may be // the one associated with the SHT_DYNAMIC section. template void Sized_dynobj::set_soname(const unsigned char* pshdrs, unsigned int dynamic_shndx, unsigned int strtab_shndx, const unsigned char* strtabu, off_t strtab_size) { typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size); assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC); const off_t dynamic_size = dynamicshdr.get_sh_size(); const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(), dynamic_size); const unsigned int link = dynamicshdr.get_sh_link(); if (link != strtab_shndx) { if (link >= this->shnum()) { fprintf(stderr, _("%s: %s: DYNAMIC section %u link out of range: %u\n"), program_name, this->name().c_str(), dynamic_shndx, link); gold_exit(false); } typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size); if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) { fprintf(stderr, _("%s: %s: DYNAMIC section %u link %u is not a strtab\n"), program_name, this->name().c_str(), dynamic_shndx, link); gold_exit(false); } strtab_size = strtabshdr.get_sh_size(); strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size); } for (const unsigned char* p = pdynamic; p < pdynamic + dynamic_size; p += This::dyn_size) { typename This::Dyn dyn(p); if (dyn.get_d_tag() == elfcpp::DT_SONAME) { off_t val = dyn.get_d_val(); if (val >= strtab_size) { fprintf(stderr, _("%s: %s: DT_SONAME value out of range: " "%lld >= %lld\n"), program_name, this->name().c_str(), static_cast(val), static_cast(strtab_size)); gold_exit(false); } const char* strtab = reinterpret_cast(strtabu); this->soname_ = std::string(strtab + val); return; } if (dyn.get_d_tag() == elfcpp::DT_NULL) return; } fprintf(stderr, _("%s: %s: missing DT_NULL in dynamic segment\n"), program_name, this->name().c_str()); gold_exit(false); } // Read the symbols and sections from a dynamic object. We read the // dynamic symbols, not the normal symbols. template void Sized_dynobj::do_read_symbols(Read_symbols_data* sd) { this->read_section_data(&this->elf_file_, sd); const unsigned char* const pshdrs = sd->section_headers->data(); unsigned int dynsym_shndx; unsigned int versym_shndx; unsigned int verdef_shndx; unsigned int verneed_shndx; unsigned int dynamic_shndx; this->find_dynsym_sections(pshdrs, &dynsym_shndx, &versym_shndx, &verdef_shndx, &verneed_shndx, &dynamic_shndx); unsigned int strtab_shndx = -1U; if (dynsym_shndx == -1U) { sd->symbols = NULL; sd->symbols_size = 0; sd->symbol_names = NULL; sd->symbol_names_size = 0; } else { // Get the dynamic symbols. typename This::Shdr dynsymshdr(pshdrs + dynsym_shndx * This::shdr_size); assert(dynsymshdr.get_sh_type() == elfcpp::SHT_DYNSYM); sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(), dynsymshdr.get_sh_size()); sd->symbols_size = dynsymshdr.get_sh_size(); // Get the symbol names. strtab_shndx = dynsymshdr.get_sh_link(); if (strtab_shndx >= this->shnum()) { fprintf(stderr, _("%s: %s: invalid dynamic symbol table name index: %u\n"), program_name, this->name().c_str(), strtab_shndx); gold_exit(false); } typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size); if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) { fprintf(stderr, _("%s: %s: dynamic symbol table name section " "has wrong type: %u\n"), program_name, this->name().c_str(), static_cast(strtabshdr.get_sh_type())); gold_exit(false); } sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(), strtabshdr.get_sh_size()); sd->symbol_names_size = strtabshdr.get_sh_size(); // Get the version information. unsigned int dummy; this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym, dynsym_shndx, &sd->versym, &sd->versym_size, &dummy); // We require that the version definition and need section link // to the same string table as the dynamic symbol table. This // is not a technical requirement, but it always happens in // practice. We could change this if necessary. this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef, strtab_shndx, &sd->verdef, &sd->verdef_size, &sd->verdef_info); this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed, strtab_shndx, &sd->verneed, &sd->verneed_size, &sd->verneed_info); } // Read the SHT_DYNAMIC section to find whether this shared object // has a DT_SONAME tag. This doesn't really have anything to do // with reading the symbols, but this is a convenient place to do // it. if (dynamic_shndx != -1U) this->set_soname(pshdrs, dynamic_shndx, strtab_shndx, (sd->symbol_names == NULL ? NULL : sd->symbol_names->data()), sd->symbol_names_size); } // Lay out the input sections for a dynamic object. We don't want to // include sections from a dynamic object, so all that we actually do // here is check for .gnu.warning sections. template void Sized_dynobj::do_layout(const General_options&, Symbol_table* symtab, Layout*, Read_symbols_data* sd) { const unsigned int shnum = this->shnum(); if (shnum == 0) return; // Get the section headers. const unsigned char* pshdrs = sd->section_headers->data(); // Get the section names. const unsigned char* pnamesu = sd->section_names->data(); const char* pnames = reinterpret_cast(pnamesu); // Skip the first, dummy, section. pshdrs += This::shdr_size; for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size) { typename This::Shdr shdr(pshdrs); if (shdr.get_sh_name() >= sd->section_names_size) { fprintf(stderr, _("%s: %s: bad section name offset for section %u: %lu\n"), program_name, this->name().c_str(), i, static_cast(shdr.get_sh_name())); gold_exit(false); } const char* name = pnames + shdr.get_sh_name(); this->handle_gnu_warning_section(name, i, symtab); } delete sd->section_headers; sd->section_headers = NULL; delete sd->section_names; sd->section_names = NULL; } // Add an entry to the vector mapping version numbers to version // strings. template void Sized_dynobj::set_version_map( Version_map* version_map, unsigned int ndx, const char* name) const { assert(ndx < version_map->size()); if ((*version_map)[ndx] != NULL) { fprintf(stderr, _("%s: %s: duplicate definition for version %u\n"), program_name, this->name().c_str(), ndx); gold_exit(false); } (*version_map)[ndx] = name; } // Create a vector mapping version numbers to version strings. template void Sized_dynobj::make_version_map( Read_symbols_data* sd, Version_map* version_map) const { if (sd->verdef == NULL && sd->verneed == NULL) return; // First find the largest version index. unsigned int maxver = 0; if (sd->verdef != NULL) { const unsigned char* pverdef = sd->verdef->data(); off_t verdef_size = sd->verdef_size; const unsigned int count = sd->verdef_info; const unsigned char* p = pverdef; for (unsigned int i = 0; i < count; ++i) { elfcpp::Verdef verdef(p); const unsigned int vd_ndx = verdef.get_vd_ndx(); // The GNU linker clears the VERSYM_HIDDEN bit. I'm not // sure why. if (vd_ndx > maxver) maxver = vd_ndx; const unsigned int vd_next = verdef.get_vd_next(); if ((p - pverdef) + vd_next >= verdef_size) { fprintf(stderr, _("%s: %s: verdef vd_next field out of range: %u\n"), program_name, this->name().c_str(), vd_next); gold_exit(false); } p += vd_next; } } if (sd->verneed != NULL) { const unsigned char* pverneed = sd->verneed->data(); off_t verneed_size = sd->verneed_size; const unsigned int count = sd->verneed_info; const unsigned char* p = pverneed; for (unsigned int i = 0; i < count; ++i) { elfcpp::Verneed verneed(p); const unsigned int vn_aux = verneed.get_vn_aux(); if ((p - pverneed) + vn_aux >= verneed_size) { fprintf(stderr, _("%s: %s: verneed vn_aux field out of range: %u\n"), program_name, this->name().c_str(), vn_aux); gold_exit(false); } const unsigned int vn_cnt = verneed.get_vn_cnt(); const unsigned char* pvna = p + vn_aux; for (unsigned int j = 0; j < vn_cnt; ++j) { elfcpp::Vernaux vernaux(pvna); const unsigned int vna_other = vernaux.get_vna_other(); if (vna_other > maxver) maxver = vna_other; const unsigned int vna_next = vernaux.get_vna_next(); if ((pvna - pverneed) + vna_next >= verneed_size) { fprintf(stderr, _("%s: %s: verneed vna_next field " "out of range: %u\n"), program_name, this->name().c_str(), vna_next); gold_exit(false); } pvna += vna_next; } const unsigned int vn_next = verneed.get_vn_next(); if ((p - pverneed) + vn_next >= verneed_size) { fprintf(stderr, _("%s: %s: verneed vn_next field out of range: %u\n"), program_name, this->name().c_str(), vn_next); gold_exit(false); } p += vn_next; } } // Now MAXVER is the largest version index we have seen. version_map->resize(maxver + 1); const char* names = reinterpret_cast(sd->symbol_names->data()); off_t names_size = sd->symbol_names_size; if (sd->verdef != NULL) { const unsigned char* pverdef = sd->verdef->data(); off_t verdef_size = sd->verdef_size; const unsigned int count = sd->verdef_info; const unsigned char* p = pverdef; for (unsigned int i = 0; i < count; ++i) { elfcpp::Verdef verdef(p); const unsigned int vd_cnt = verdef.get_vd_cnt(); if (vd_cnt < 1) { fprintf(stderr, _("%s: %s: verdef vd_cnt field too small: %u\n"), program_name, this->name().c_str(), vd_cnt); gold_exit(false); } const unsigned int vd_aux = verdef.get_vd_aux(); if ((p - pverdef) + vd_aux >= verdef_size) { fprintf(stderr, _("%s: %s: verdef vd_aux field out of range: %u\n"), program_name, this->name().c_str(), vd_aux); gold_exit(false); } const unsigned char* pvda = p + vd_aux; elfcpp::Verdaux verdaux(pvda); const unsigned int vda_name = verdaux.get_vda_name(); if (vda_name >= names_size) { fprintf(stderr, _("%s: %s: verdaux vda_name field out of range: %u\n"), program_name, this->name().c_str(), vda_name); gold_exit(false); } this->set_version_map(version_map, verdef.get_vd_ndx(), names + vda_name); const unsigned int vd_next = verdef.get_vd_next(); if ((p - pverdef) + vd_next >= verdef_size) { fprintf(stderr, _("%s: %s: verdef vd_next field out of range: %u\n"), program_name, this->name().c_str(), vd_next); gold_exit(false); } p += vd_next; } } if (sd->verneed != NULL) { const unsigned char* pverneed = sd->verneed->data(); const unsigned int count = sd->verneed_info; const unsigned char* p = pverneed; for (unsigned int i = 0; i < count; ++i) { elfcpp::Verneed verneed(p); const unsigned int vn_aux = verneed.get_vn_aux(); const unsigned int vn_cnt = verneed.get_vn_cnt(); const unsigned char* pvna = p + vn_aux; for (unsigned int j = 0; j < vn_cnt; ++j) { elfcpp::Vernaux vernaux(pvna); const unsigned int vna_name = vernaux.get_vna_name(); if (vna_name >= names_size) { fprintf(stderr, _("%s: %s: vernaux vna_name field " "out of range: %u\n"), program_name, this->name().c_str(), vna_name); gold_exit(false); } this->set_version_map(version_map, vernaux.get_vna_other(), names + vna_name); pvna += vernaux.get_vna_next(); } p += verneed.get_vn_next(); } } } // Add the dynamic symbols to the symbol table. template void Sized_dynobj::do_add_symbols(Symbol_table* symtab, Read_symbols_data* sd) { if (sd->symbols == NULL) { assert(sd->symbol_names == NULL); assert(sd->versym == NULL && sd->verdef == NULL && sd->verneed == NULL); return; } const int sym_size = This::sym_size; const size_t symcount = sd->symbols_size / sym_size; if (symcount * sym_size != sd->symbols_size) { fprintf(stderr, _("%s: %s: size of dynamic symbols is not " "multiple of symbol size\n"), program_name, this->name().c_str()); gold_exit(false); } Version_map version_map; this->make_version_map(sd, &version_map); const char* sym_names = reinterpret_cast(sd->symbol_names->data()); symtab->add_from_dynobj(this, sd->symbols->data(), symcount, sym_names, sd->symbol_names_size, (sd->versym == NULL ? NULL : sd->versym->data()), sd->versym_size, &version_map); delete sd->symbols; sd->symbols = NULL; delete sd->symbol_names; sd->symbol_names = NULL; if (sd->versym != NULL) { delete sd->versym; sd->versym = NULL; } if (sd->verdef != NULL) { delete sd->verdef; sd->verdef = NULL; } if (sd->verneed != NULL) { delete sd->verneed; sd->verneed = NULL; } } // Instantiate the templates we need. We could use the configure // script to restrict this to only the ones for implemented targets. template class Sized_dynobj<32, false>; template class Sized_dynobj<32, true>; template class Sized_dynobj<64, false>; template class Sized_dynobj<64, true>; } // End namespace gold.