// dynobj.cc -- dynamic object support for gold #include "gold.h" #include #include #include "elfcpp.h" #include "symtab.h" #include "dynobj.h" namespace gold { // Class Dynobj. // Return the string to use in a DT_NEEDED entry. const char* Dynobj::soname() const { if (!this->soname_.empty()) return this->soname_.c_str(); return this->name().c_str(); } // Class Sized_dynobj. template Sized_dynobj::Sized_dynobj( const std::string& name, Input_file* input_file, off_t offset, const elfcpp::Ehdr& ehdr) : Dynobj(name, input_file, offset), elf_file_(this, ehdr) { } // Set up the object. template void Sized_dynobj::setup( const elfcpp::Ehdr& ehdr) { this->set_target(ehdr.get_e_machine(), size, big_endian, ehdr.get_e_ident()[elfcpp::EI_OSABI], ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]); const unsigned int shnum = this->elf_file_.shnum(); this->set_shnum(shnum); } // Find the SHT_DYNSYM section and the various version sections, and // the dynamic section, given the section headers. template void Sized_dynobj::find_dynsym_sections( const unsigned char* pshdrs, unsigned int* pdynsym_shndx, unsigned int* pversym_shndx, unsigned int* pverdef_shndx, unsigned int* pverneed_shndx, unsigned int* pdynamic_shndx) { *pdynsym_shndx = -1U; *pversym_shndx = -1U; *pverdef_shndx = -1U; *pverneed_shndx = -1U; *pdynamic_shndx = -1U; const unsigned int shnum = this->shnum(); const unsigned char* p = pshdrs; for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size) { typename This::Shdr shdr(p); unsigned int* pi; switch (shdr.get_sh_type()) { case elfcpp::SHT_DYNSYM: pi = pdynsym_shndx; break; case elfcpp::SHT_GNU_versym: pi = pversym_shndx; break; case elfcpp::SHT_GNU_verdef: pi = pverdef_shndx; break; case elfcpp::SHT_GNU_verneed: pi = pverneed_shndx; break; case elfcpp::SHT_DYNAMIC: pi = pdynamic_shndx; break; default: pi = NULL; break; } if (pi == NULL) continue; if (*pi != -1U) { fprintf(stderr, _("%s: %s: unexpected duplicate type %u section: %u, %u\n"), program_name, this->name().c_str(), shdr.get_sh_type(), *pi, i); gold_exit(false); } *pi = i; } } // Read the contents of section SHNDX. PSHDRS points to the section // headers. TYPE is the expected section type. LINK is the expected // section link. Store the data in *VIEW and *VIEW_SIZE. The // section's sh_info field is stored in *VIEW_INFO. template void Sized_dynobj::read_dynsym_section( const unsigned char* pshdrs, unsigned int shndx, elfcpp::SHT type, unsigned int link, File_view** view, off_t* view_size, unsigned int* view_info) { if (shndx == -1U) { *view = NULL; *view_size = 0; *view_info = 0; return; } typename This::Shdr shdr(pshdrs + shndx * This::shdr_size); gold_assert(shdr.get_sh_type() == type); if (shdr.get_sh_link() != link) { fprintf(stderr, _("%s: %s: unexpected link in section %u header: %u != %u\n"), program_name, this->name().c_str(), shndx, shdr.get_sh_link(), link); gold_exit(false); } *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size()); *view_size = shdr.get_sh_size(); *view_info = shdr.get_sh_info(); } // Set the soname field if this shared object has a DT_SONAME tag. // PSHDRS points to the section headers. DYNAMIC_SHNDX is the section // index of the SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and // STRTAB_SIZE are the section index and contents of a string table // which may be the one associated with the SHT_DYNAMIC section. template void Sized_dynobj::set_soname(const unsigned char* pshdrs, unsigned int dynamic_shndx, unsigned int strtab_shndx, const unsigned char* strtabu, off_t strtab_size) { typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size); gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC); const off_t dynamic_size = dynamicshdr.get_sh_size(); const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(), dynamic_size); const unsigned int link = dynamicshdr.get_sh_link(); if (link != strtab_shndx) { if (link >= this->shnum()) { fprintf(stderr, _("%s: %s: DYNAMIC section %u link out of range: %u\n"), program_name, this->name().c_str(), dynamic_shndx, link); gold_exit(false); } typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size); if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) { fprintf(stderr, _("%s: %s: DYNAMIC section %u link %u is not a strtab\n"), program_name, this->name().c_str(), dynamic_shndx, link); gold_exit(false); } strtab_size = strtabshdr.get_sh_size(); strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size); } for (const unsigned char* p = pdynamic; p < pdynamic + dynamic_size; p += This::dyn_size) { typename This::Dyn dyn(p); if (dyn.get_d_tag() == elfcpp::DT_SONAME) { off_t val = dyn.get_d_val(); if (val >= strtab_size) { fprintf(stderr, _("%s: %s: DT_SONAME value out of range: " "%lld >= %lld\n"), program_name, this->name().c_str(), static_cast(val), static_cast(strtab_size)); gold_exit(false); } const char* strtab = reinterpret_cast(strtabu); this->set_soname_string(strtab + val); return; } if (dyn.get_d_tag() == elfcpp::DT_NULL) return; } fprintf(stderr, _("%s: %s: missing DT_NULL in dynamic segment\n"), program_name, this->name().c_str()); gold_exit(false); } // Read the symbols and sections from a dynamic object. We read the // dynamic symbols, not the normal symbols. template void Sized_dynobj::do_read_symbols(Read_symbols_data* sd) { this->read_section_data(&this->elf_file_, sd); const unsigned char* const pshdrs = sd->section_headers->data(); unsigned int dynsym_shndx; unsigned int versym_shndx; unsigned int verdef_shndx; unsigned int verneed_shndx; unsigned int dynamic_shndx; this->find_dynsym_sections(pshdrs, &dynsym_shndx, &versym_shndx, &verdef_shndx, &verneed_shndx, &dynamic_shndx); unsigned int strtab_shndx = -1U; if (dynsym_shndx == -1U) { sd->symbols = NULL; sd->symbols_size = 0; sd->symbol_names = NULL; sd->symbol_names_size = 0; } else { // Get the dynamic symbols. typename This::Shdr dynsymshdr(pshdrs + dynsym_shndx * This::shdr_size); gold_assert(dynsymshdr.get_sh_type() == elfcpp::SHT_DYNSYM); sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(), dynsymshdr.get_sh_size()); sd->symbols_size = dynsymshdr.get_sh_size(); // Get the symbol names. strtab_shndx = dynsymshdr.get_sh_link(); if (strtab_shndx >= this->shnum()) { fprintf(stderr, _("%s: %s: invalid dynamic symbol table name index: %u\n"), program_name, this->name().c_str(), strtab_shndx); gold_exit(false); } typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size); if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) { fprintf(stderr, _("%s: %s: dynamic symbol table name section " "has wrong type: %u\n"), program_name, this->name().c_str(), static_cast(strtabshdr.get_sh_type())); gold_exit(false); } sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(), strtabshdr.get_sh_size()); sd->symbol_names_size = strtabshdr.get_sh_size(); // Get the version information. unsigned int dummy; this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym, dynsym_shndx, &sd->versym, &sd->versym_size, &dummy); // We require that the version definition and need section link // to the same string table as the dynamic symbol table. This // is not a technical requirement, but it always happens in // practice. We could change this if necessary. this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef, strtab_shndx, &sd->verdef, &sd->verdef_size, &sd->verdef_info); this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed, strtab_shndx, &sd->verneed, &sd->verneed_size, &sd->verneed_info); } // Read the SHT_DYNAMIC section to find whether this shared object // has a DT_SONAME tag. This doesn't really have anything to do // with reading the symbols, but this is a convenient place to do // it. if (dynamic_shndx != -1U) this->set_soname(pshdrs, dynamic_shndx, strtab_shndx, (sd->symbol_names == NULL ? NULL : sd->symbol_names->data()), sd->symbol_names_size); } // Lay out the input sections for a dynamic object. We don't want to // include sections from a dynamic object, so all that we actually do // here is check for .gnu.warning sections. template void Sized_dynobj::do_layout(const General_options&, Symbol_table* symtab, Layout*, Read_symbols_data* sd) { const unsigned int shnum = this->shnum(); if (shnum == 0) return; // Get the section headers. const unsigned char* pshdrs = sd->section_headers->data(); // Get the section names. const unsigned char* pnamesu = sd->section_names->data(); const char* pnames = reinterpret_cast(pnamesu); // Skip the first, dummy, section. pshdrs += This::shdr_size; for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size) { typename This::Shdr shdr(pshdrs); if (shdr.get_sh_name() >= sd->section_names_size) { fprintf(stderr, _("%s: %s: bad section name offset for section %u: %lu\n"), program_name, this->name().c_str(), i, static_cast(shdr.get_sh_name())); gold_exit(false); } const char* name = pnames + shdr.get_sh_name(); this->handle_gnu_warning_section(name, i, symtab); } delete sd->section_headers; sd->section_headers = NULL; delete sd->section_names; sd->section_names = NULL; } // Add an entry to the vector mapping version numbers to version // strings. template void Sized_dynobj::set_version_map( Version_map* version_map, unsigned int ndx, const char* name) const { gold_assert(ndx < version_map->size()); if ((*version_map)[ndx] != NULL) { fprintf(stderr, _("%s: %s: duplicate definition for version %u\n"), program_name, this->name().c_str(), ndx); gold_exit(false); } (*version_map)[ndx] = name; } // Create a vector mapping version numbers to version strings. template void Sized_dynobj::make_version_map( Read_symbols_data* sd, Version_map* version_map) const { if (sd->verdef == NULL && sd->verneed == NULL) return; // First find the largest version index. unsigned int maxver = 0; if (sd->verdef != NULL) { const unsigned char* pverdef = sd->verdef->data(); off_t verdef_size = sd->verdef_size; const unsigned int count = sd->verdef_info; const unsigned char* p = pverdef; for (unsigned int i = 0; i < count; ++i) { elfcpp::Verdef verdef(p); const unsigned int vd_ndx = verdef.get_vd_ndx(); // The GNU linker clears the VERSYM_HIDDEN bit. I'm not // sure why. if (vd_ndx > maxver) maxver = vd_ndx; const unsigned int vd_next = verdef.get_vd_next(); if ((p - pverdef) + vd_next >= verdef_size) { fprintf(stderr, _("%s: %s: verdef vd_next field out of range: %u\n"), program_name, this->name().c_str(), vd_next); gold_exit(false); } p += vd_next; } } if (sd->verneed != NULL) { const unsigned char* pverneed = sd->verneed->data(); off_t verneed_size = sd->verneed_size; const unsigned int count = sd->verneed_info; const unsigned char* p = pverneed; for (unsigned int i = 0; i < count; ++i) { elfcpp::Verneed verneed(p); const unsigned int vn_aux = verneed.get_vn_aux(); if ((p - pverneed) + vn_aux >= verneed_size) { fprintf(stderr, _("%s: %s: verneed vn_aux field out of range: %u\n"), program_name, this->name().c_str(), vn_aux); gold_exit(false); } const unsigned int vn_cnt = verneed.get_vn_cnt(); const unsigned char* pvna = p + vn_aux; for (unsigned int j = 0; j < vn_cnt; ++j) { elfcpp::Vernaux vernaux(pvna); const unsigned int vna_other = vernaux.get_vna_other(); if (vna_other > maxver) maxver = vna_other; const unsigned int vna_next = vernaux.get_vna_next(); if ((pvna - pverneed) + vna_next >= verneed_size) { fprintf(stderr, _("%s: %s: verneed vna_next field " "out of range: %u\n"), program_name, this->name().c_str(), vna_next); gold_exit(false); } pvna += vna_next; } const unsigned int vn_next = verneed.get_vn_next(); if ((p - pverneed) + vn_next >= verneed_size) { fprintf(stderr, _("%s: %s: verneed vn_next field out of range: %u\n"), program_name, this->name().c_str(), vn_next); gold_exit(false); } p += vn_next; } } // Now MAXVER is the largest version index we have seen. version_map->resize(maxver + 1); const char* names = reinterpret_cast(sd->symbol_names->data()); off_t names_size = sd->symbol_names_size; if (sd->verdef != NULL) { const unsigned char* pverdef = sd->verdef->data(); off_t verdef_size = sd->verdef_size; const unsigned int count = sd->verdef_info; const unsigned char* p = pverdef; for (unsigned int i = 0; i < count; ++i) { elfcpp::Verdef verdef(p); const unsigned int vd_cnt = verdef.get_vd_cnt(); if (vd_cnt < 1) { fprintf(stderr, _("%s: %s: verdef vd_cnt field too small: %u\n"), program_name, this->name().c_str(), vd_cnt); gold_exit(false); } const unsigned int vd_aux = verdef.get_vd_aux(); if ((p - pverdef) + vd_aux >= verdef_size) { fprintf(stderr, _("%s: %s: verdef vd_aux field out of range: %u\n"), program_name, this->name().c_str(), vd_aux); gold_exit(false); } const unsigned char* pvda = p + vd_aux; elfcpp::Verdaux verdaux(pvda); const unsigned int vda_name = verdaux.get_vda_name(); if (vda_name >= names_size) { fprintf(stderr, _("%s: %s: verdaux vda_name field out of range: %u\n"), program_name, this->name().c_str(), vda_name); gold_exit(false); } this->set_version_map(version_map, verdef.get_vd_ndx(), names + vda_name); const unsigned int vd_next = verdef.get_vd_next(); if ((p - pverdef) + vd_next >= verdef_size) { fprintf(stderr, _("%s: %s: verdef vd_next field out of range: %u\n"), program_name, this->name().c_str(), vd_next); gold_exit(false); } p += vd_next; } } if (sd->verneed != NULL) { const unsigned char* pverneed = sd->verneed->data(); const unsigned int count = sd->verneed_info; const unsigned char* p = pverneed; for (unsigned int i = 0; i < count; ++i) { elfcpp::Verneed verneed(p); const unsigned int vn_aux = verneed.get_vn_aux(); const unsigned int vn_cnt = verneed.get_vn_cnt(); const unsigned char* pvna = p + vn_aux; for (unsigned int j = 0; j < vn_cnt; ++j) { elfcpp::Vernaux vernaux(pvna); const unsigned int vna_name = vernaux.get_vna_name(); if (vna_name >= names_size) { fprintf(stderr, _("%s: %s: vernaux vna_name field " "out of range: %u\n"), program_name, this->name().c_str(), vna_name); gold_exit(false); } this->set_version_map(version_map, vernaux.get_vna_other(), names + vna_name); pvna += vernaux.get_vna_next(); } p += verneed.get_vn_next(); } } } // Add the dynamic symbols to the symbol table. template void Sized_dynobj::do_add_symbols(Symbol_table* symtab, Read_symbols_data* sd) { if (sd->symbols == NULL) { gold_assert(sd->symbol_names == NULL); gold_assert(sd->versym == NULL && sd->verdef == NULL && sd->verneed == NULL); return; } const int sym_size = This::sym_size; const size_t symcount = sd->symbols_size / sym_size; if (symcount * sym_size != sd->symbols_size) { fprintf(stderr, _("%s: %s: size of dynamic symbols is not " "multiple of symbol size\n"), program_name, this->name().c_str()); gold_exit(false); } Version_map version_map; this->make_version_map(sd, &version_map); const char* sym_names = reinterpret_cast(sd->symbol_names->data()); symtab->add_from_dynobj(this, sd->symbols->data(), symcount, sym_names, sd->symbol_names_size, (sd->versym == NULL ? NULL : sd->versym->data()), sd->versym_size, &version_map); delete sd->symbols; sd->symbols = NULL; delete sd->symbol_names; sd->symbol_names = NULL; if (sd->versym != NULL) { delete sd->versym; sd->versym = NULL; } if (sd->verdef != NULL) { delete sd->verdef; sd->verdef = NULL; } if (sd->verneed != NULL) { delete sd->verneed; sd->verneed = NULL; } } // Given a vector of hash codes, compute the number of hash buckets to // use. unsigned int Dynobj::compute_bucket_count(const std::vector& hashcodes, bool for_gnu_hash_table) { // FIXME: Implement optional hash table optimization. // Array used to determine the number of hash table buckets to use // based on the number of symbols there are. If there are fewer // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 // buckets, fewer than 37 we use 17 buckets, and so forth. We never // use more than 32771 buckets. This is straight from the old GNU // linker. static const unsigned int buckets[] = { 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, 16411, 32771 }; const int buckets_count = sizeof buckets / sizeof buckets[0]; unsigned int symcount = hashcodes.size(); unsigned int ret = 1; for (int i = 0; i < buckets_count; ++i) { if (symcount < buckets[i]) break; ret = buckets[i]; } if (for_gnu_hash_table && ret < 2) ret = 2; return ret; } // The standard ELF hash function. This hash function must not // change, as the dynamic linker uses it also. uint32_t Dynobj::elf_hash(const char* name) { const unsigned char* nameu = reinterpret_cast(name); uint32_t h = 0; unsigned char c; while ((c = *nameu++) != '\0') { h = (h << 4) + c; uint32_t g = h & 0xf0000000; if (g != 0) { h ^= g >> 24; // The ELF ABI says h &= ~g, but using xor is equivalent in // this case (since g was set from h) and may save one // instruction. h ^= g; } } return h; } // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN. // DYNSYMS is a vector with all the global dynamic symbols. // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic // symbol table. void Dynobj::create_elf_hash_table(const Target* target, const std::vector& dynsyms, unsigned int local_dynsym_count, unsigned char** pphash, unsigned int* phashlen) { unsigned int dynsym_count = dynsyms.size(); // Get the hash values for all the symbols. std::vector dynsym_hashvals(dynsym_count); for (unsigned int i = 0; i < dynsym_count; ++i) dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name()); const unsigned int bucketcount = Dynobj::compute_bucket_count(dynsym_hashvals, false); std::vector bucket(bucketcount); std::vector chain(local_dynsym_count + dynsym_count); for (unsigned int i = 0; i < dynsym_count; ++i) { unsigned int dynsym_index = dynsyms[i]->dynsym_index(); unsigned int bucketpos = dynsym_hashvals[i] % bucketcount; chain[dynsym_index] = bucket[bucketpos]; bucket[bucketpos] = dynsym_index; } unsigned int hashlen = ((2 + bucketcount + local_dynsym_count + dynsym_count) * 4); unsigned char* phash = new unsigned char[hashlen]; if (target->is_big_endian()) Dynobj::sized_create_elf_hash_table(bucket, chain, phash, hashlen); else Dynobj::sized_create_elf_hash_table(bucket, chain, phash, hashlen); *pphash = phash; *phashlen = hashlen; } // Fill in an ELF hash table. template void Dynobj::sized_create_elf_hash_table(const std::vector& bucket, const std::vector& chain, unsigned char* phash, unsigned int hashlen) { unsigned char* p = phash; const unsigned int bucketcount = bucket.size(); const unsigned int chaincount = chain.size(); elfcpp::Swap<32, big_endian>::writeval(p, bucketcount); p += 4; elfcpp::Swap<32, big_endian>::writeval(p, chaincount); p += 4; for (unsigned int i = 0; i < bucketcount; ++i) { elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]); p += 4; } for (unsigned int i = 0; i < chaincount; ++i) { elfcpp::Swap<32, big_endian>::writeval(p, chain[i]); p += 4; } gold_assert(static_cast(p - phash) == hashlen); } // The hash function used for the GNU hash table. This hash function // must not change, as the dynamic linker uses it also. uint32_t Dynobj::gnu_hash(const char* name) { const unsigned char* nameu = reinterpret_cast(name); uint32_t h = 5381; unsigned char c; while ((c = *nameu++) != '\0') h = (h << 5) + h + c; return h; } // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash // tables are an extension to ELF which are recognized by the GNU // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH. // TARGET is the target. DYNSYMS is a vector with all the global // symbols which will be going into the dynamic symbol table. // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic // symbol table. void Dynobj::create_gnu_hash_table(const Target* target, const std::vector& dynsyms, unsigned int local_dynsym_count, unsigned char** pphash, unsigned int* phashlen) { const unsigned int count = dynsyms.size(); // Sort the dynamic symbols into two vectors. Symbols which we do // not want to put into the hash table we store into // UNHASHED_DYNSYMS. Symbols which we do want to store we put into // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS, // and records the hash codes. std::vector unhashed_dynsyms; unhashed_dynsyms.reserve(count); std::vector hashed_dynsyms; hashed_dynsyms.reserve(count); std::vector dynsym_hashvals; dynsym_hashvals.reserve(count); for (unsigned int i = 0; i < count; ++i) { Symbol* sym = dynsyms[i]; // FIXME: Should put on unhashed_dynsyms if the symbol is // hidden. if (sym->is_undefined()) unhashed_dynsyms.push_back(sym); else { hashed_dynsyms.push_back(sym); dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name())); } } // Put the unhashed symbols at the start of the global portion of // the dynamic symbol table. const unsigned int unhashed_count = unhashed_dynsyms.size(); unsigned int unhashed_dynsym_index = local_dynsym_count; for (unsigned int i = 0; i < unhashed_count; ++i) { unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index); ++unhashed_dynsym_index; } // For the actual data generation we call out to a templatized // function. int size = target->get_size(); bool big_endian = target->is_big_endian(); if (size == 32) { if (big_endian) Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms, dynsym_hashvals, unhashed_dynsym_index, pphash, phashlen); else Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms, dynsym_hashvals, unhashed_dynsym_index, pphash, phashlen); } else if (size == 64) { if (big_endian) Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms, dynsym_hashvals, unhashed_dynsym_index, pphash, phashlen); else Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms, dynsym_hashvals, unhashed_dynsym_index, pphash, phashlen); } else gold_unreachable(); } // Create the actual data for a GNU hash table. This is just a copy // of the code from the old GNU linker. template void Dynobj::sized_create_gnu_hash_table( const std::vector& hashed_dynsyms, const std::vector& dynsym_hashvals, unsigned int unhashed_dynsym_count, unsigned char** pphash, unsigned int* phashlen) { if (hashed_dynsyms.empty()) { // Special case for the empty hash table. unsigned int hashlen = 5 * 4 + size / 8; unsigned char* phash = new unsigned char[hashlen]; // One empty bucket. elfcpp::Swap<32, big_endian>::writeval(phash, 1); // Symbol index above unhashed symbols. elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count); // One word for bitmask. elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1); // Only bloom filter. elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0); // No valid hashes. elfcpp::Swap::writeval(phash + 16, 0); // No hashes in only bucket. elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0); *phashlen = hashlen; *pphash = phash; return; } const unsigned int bucketcount = Dynobj::compute_bucket_count(dynsym_hashvals, true); const unsigned int nsyms = hashed_dynsyms.size(); uint32_t maskbitslog2 = 1; uint32_t x = nsyms >> 1; while (x != 0) { ++maskbitslog2; x >>= 1; } if (maskbitslog2 < 3) maskbitslog2 = 5; else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0) maskbitslog2 += 3; else maskbitslog2 += 2; uint32_t shift1; if (size == 32) shift1 = 5; else { if (maskbitslog2 == 5) maskbitslog2 = 6; shift1 = 6; } uint32_t mask = (1U << shift1) - 1U; uint32_t shift2 = maskbitslog2; uint32_t maskbits = 1U << maskbitslog2; uint32_t maskwords = 1U << (maskbitslog2 - shift1); typedef typename elfcpp::Elf_types::Elf_WXword Word; std::vector bitmask(maskwords); std::vector counts(bucketcount); std::vector indx(bucketcount); uint32_t symindx = unhashed_dynsym_count; // Count the number of times each hash bucket is used. for (unsigned int i = 0; i < nsyms; ++i) ++counts[dynsym_hashvals[i] % bucketcount]; unsigned int cnt = symindx; for (unsigned int i = 0; i < bucketcount; ++i) { indx[i] = cnt; cnt += counts[i]; } unsigned int hashlen = (4 + bucketcount + nsyms) * 4; hashlen += maskbits / 8; unsigned char* phash = new unsigned char[hashlen]; elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount); elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx); elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords); elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2); unsigned char* p = phash + 16 + maskbits / 8; for (unsigned int i = 0; i < bucketcount; ++i) { if (counts[i] == 0) elfcpp::Swap<32, big_endian>::writeval(p, 0); else elfcpp::Swap<32, big_endian>::writeval(p, indx[i]); p += 4; } for (unsigned int i = 0; i < nsyms; ++i) { Symbol* sym = hashed_dynsyms[i]; uint32_t hashval = dynsym_hashvals[i]; unsigned int bucket = hashval % bucketcount; unsigned int val = ((hashval >> shift1) & ((maskbits >> shift1) - 1)); bitmask[val] |= (static_cast(1U)) << (hashval & mask); bitmask[val] |= (static_cast(1U)) << ((hashval >> shift2) & mask); val = hashval & ~ 1U; if (counts[bucket] == 1) { // Last element terminates the chain. val |= 1; } elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4, val); --counts[bucket]; sym->set_dynsym_index(indx[bucket]); ++indx[bucket]; } p = phash + 16; for (unsigned int i = 0; i < maskwords; ++i) { elfcpp::Swap::writeval(p, bitmask[i]); p += size / 8; } *phashlen = hashlen; *pphash = phash; } // Instantiate the templates we need. We could use the configure // script to restrict this to only the ones for implemented targets. template class Sized_dynobj<32, false>; template class Sized_dynobj<32, true>; template class Sized_dynobj<64, false>; template class Sized_dynobj<64, true>; } // End namespace gold.