// dwarf_reader.h -- parse dwarf2/3 debug information for gold -*- C++ -*- // Copyright 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc. // Written by Ian Lance Taylor . // This file is part of gold. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #ifndef GOLD_DWARF_READER_H #define GOLD_DWARF_READER_H #include #include #include #include #include "elfcpp.h" #include "elfcpp_swap.h" #include "dwarf.h" #include "reloc.h" namespace gold { class Dwarf_info_reader; struct LineStateMachine; // This class is used to extract the section index and offset of // the target of a relocation for a given offset within the section. class Elf_reloc_mapper { public: Elf_reloc_mapper() { } virtual ~Elf_reloc_mapper() { } // Initialize the relocation tracker for section RELOC_SHNDX. bool initialize(unsigned int reloc_shndx, unsigned int reloc_type) { return this->do_initialize(reloc_shndx, reloc_type); } // Return the next reloc_offset. off_t next_offset() { return this->do_next_offset(); } // Advance to the next relocation past OFFSET. void advance(off_t offset) { this->do_advance(offset); } // Return the section index and offset within the section of the target // of the relocation for RELOC_OFFSET in the referring section. unsigned int get_reloc_target(off_t reloc_offset, off_t* target_offset) { return this->do_get_reloc_target(reloc_offset, target_offset); } // Checkpoint the current position in the reloc section. uint64_t checkpoint() const { return this->do_checkpoint(); } // Reset the current position to the CHECKPOINT. void reset(uint64_t checkpoint) { this->do_reset(checkpoint); } protected: virtual bool do_initialize(unsigned int, unsigned int) = 0; // Return the next reloc_offset. virtual off_t do_next_offset() = 0; // Advance to the next relocation past OFFSET. virtual void do_advance(off_t offset) = 0; virtual unsigned int do_get_reloc_target(off_t reloc_offset, off_t* target_offset) = 0; // Checkpoint the current position in the reloc section. virtual uint64_t do_checkpoint() const = 0; // Reset the current position to the CHECKPOINT. virtual void do_reset(uint64_t checkpoint) = 0; }; template class Sized_elf_reloc_mapper : public Elf_reloc_mapper { public: Sized_elf_reloc_mapper(Object* object, const unsigned char* symtab, off_t symtab_size) : object_(object), symtab_(symtab), symtab_size_(symtab_size), reloc_type_(0), track_relocs_() { } protected: bool do_initialize(unsigned int reloc_shndx, unsigned int reloc_type); // Return the next reloc_offset. virtual off_t do_next_offset() { return this->track_relocs_.next_offset(); } // Advance to the next relocation past OFFSET. virtual void do_advance(off_t offset) { this->track_relocs_.advance(offset); } unsigned int do_get_reloc_target(off_t reloc_offset, off_t* target_offset); // Checkpoint the current position in the reloc section. uint64_t do_checkpoint() const { return this->track_relocs_.checkpoint(); } // Reset the current position to the CHECKPOINT. void do_reset(uint64_t checkpoint) { this->track_relocs_.reset(checkpoint); } private: typedef typename elfcpp::Elf_types::Elf_Addr Address; // Return the section index of symbol SYMNDX, and copy its value to *VALUE. // Set *IS_ORDINARY true if the section index is an ordinary section index. unsigned int symbol_section(unsigned int symndx, Address* value, bool* is_ordinary); // The object file. Object* object_; // The ELF symbol table. const unsigned char* symtab_; // The size of the ELF symbol table. off_t symtab_size_; // Type of the relocation section (SHT_REL or SHT_RELA). unsigned int reloc_type_; // Relocations for the referring section. Track_relocs track_relocs_; }; // This class is used to read the abbreviations table from the // .debug_abbrev section of the object file. class Dwarf_abbrev_table { public: // An attribute list entry. struct Attribute { Attribute(unsigned int a, unsigned int f) : attr(a), form(f) { } unsigned int attr; unsigned int form; }; // An abbrev code entry. struct Abbrev_code { Abbrev_code(unsigned int t, bool hc) : tag(t), has_children(hc), has_sibling_attribute(false), attributes() { this->attributes.reserve(10); } void add_attribute(unsigned int attr, unsigned int form) { this->attributes.push_back(Attribute(attr, form)); } // The DWARF tag. unsigned int tag; // True if the DIE has children. bool has_children : 1; // True if the DIE has a sibling attribute. bool has_sibling_attribute : 1; // The list of attributes and forms. std::vector attributes; }; Dwarf_abbrev_table() : abbrev_shndx_(0), abbrev_offset_(0), buffer_(NULL), buffer_end_(NULL), owns_buffer_(false), buffer_pos_(NULL), high_abbrev_codes_() { memset(this->low_abbrev_codes_, 0, sizeof(this->low_abbrev_codes_)); } ~Dwarf_abbrev_table() { if (this->owns_buffer_ && this->buffer_ != NULL) delete[] this->buffer_; this->clear_abbrev_codes(); } // Read the abbrev table from an object file. bool read_abbrevs(Relobj* object, unsigned int abbrev_shndx, off_t abbrev_offset) { // If we've already read this abbrev table, return immediately. if (this->abbrev_shndx_ > 0 && this->abbrev_shndx_ == abbrev_shndx && this->abbrev_offset_ == abbrev_offset) return true; return this->do_read_abbrevs(object, abbrev_shndx, abbrev_offset); } // Return the abbrev code entry for CODE. This is a fast path for // abbrev codes that are in the direct lookup table. If not found // there, we call do_get_abbrev() to do the hard work. const Abbrev_code* get_abbrev(unsigned int code) { if (code < this->low_abbrev_code_max_ && this->low_abbrev_codes_[code] != NULL) return this->low_abbrev_codes_[code]; return this->do_get_abbrev(code); } private: // Read the abbrev table from an object file. bool do_read_abbrevs(Relobj* object, unsigned int abbrev_shndx, off_t abbrev_offset); // Lookup the abbrev code entry for CODE. const Abbrev_code* do_get_abbrev(unsigned int code); // Store an abbrev code entry for CODE. void store_abbrev(unsigned int code, const Abbrev_code* entry) { if (code < this->low_abbrev_code_max_) this->low_abbrev_codes_[code] = entry; else this->high_abbrev_codes_[code] = entry; } // Clear the abbrev code table and release the memory it uses. void clear_abbrev_codes(); typedef Unordered_map Abbrev_code_table; // The section index of the current abbrev table. unsigned int abbrev_shndx_; // The offset within the section of the current abbrev table. off_t abbrev_offset_; // The buffer containing the .debug_abbrev section. const unsigned char* buffer_; const unsigned char* buffer_end_; // True if this object owns the buffer and needs to delete it. bool owns_buffer_; // Pointer to the current position in the buffer. const unsigned char* buffer_pos_; // The table of abbrev codes. // We use a direct-lookup array for low abbrev codes, // and store the rest in a hash table. static const unsigned int low_abbrev_code_max_ = 256; const Abbrev_code* low_abbrev_codes_[low_abbrev_code_max_]; Abbrev_code_table high_abbrev_codes_; }; // A DWARF range list. The start and end offsets are relative // to the input section SHNDX. Each range must lie entirely // within a single section. class Dwarf_range_list { public: struct Range { Range(unsigned int a_shndx, off_t a_start, off_t a_end) : shndx(a_shndx), start(a_start), end(a_end) { } unsigned int shndx; off_t start; off_t end; }; Dwarf_range_list() : range_list_() { } void add(unsigned int shndx, off_t start, off_t end) { this->range_list_.push_back(Range(shndx, start, end)); } size_t size() const { return this->range_list_.size(); } const Range& operator[](off_t i) const { return this->range_list_[i]; } private: std::vector range_list_; }; // This class is used to read the ranges table from the // .debug_ranges section of the object file. class Dwarf_ranges_table { public: Dwarf_ranges_table(Dwarf_info_reader* dwinfo) : dwinfo_(dwinfo), ranges_shndx_(0), ranges_buffer_(NULL), ranges_buffer_end_(NULL), owns_ranges_buffer_(false), ranges_reloc_mapper_(NULL), reloc_type_(0), output_section_offset_(0) { } ~Dwarf_ranges_table() { if (this->owns_ranges_buffer_ && this->ranges_buffer_ != NULL) delete[] this->ranges_buffer_; if (this->ranges_reloc_mapper_ != NULL) delete this->ranges_reloc_mapper_; } // Read the ranges table from an object file. bool read_ranges_table(Relobj* object, const unsigned char* symtab, off_t symtab_size, unsigned int ranges_shndx); // Read the range table from an object file. Dwarf_range_list* read_range_list(Relobj* object, const unsigned char* symtab, off_t symtab_size, unsigned int address_size, unsigned int ranges_shndx, off_t ranges_offset); // Look for a relocation at offset OFF in the range table, // and return the section index and offset of the target. unsigned int lookup_reloc(off_t off, off_t* target_off); private: // The Dwarf_info_reader, for reading data. Dwarf_info_reader* dwinfo_; // The section index of the ranges table. unsigned int ranges_shndx_; // The buffer containing the .debug_ranges section. const unsigned char* ranges_buffer_; const unsigned char* ranges_buffer_end_; // True if this object owns the buffer and needs to delete it. bool owns_ranges_buffer_; // Relocation mapper for the .debug_ranges section. Elf_reloc_mapper* ranges_reloc_mapper_; // Type of the relocation section (SHT_REL or SHT_RELA). unsigned int reloc_type_; // For incremental update links, this will hold the offset of the // input section within the output section. Offsets read from // relocated data will be relative to the output section, and need // to be corrected before reading data from the input section. uint64_t output_section_offset_; }; // This class is used to read the pubnames and pubtypes tables from the // .debug_pubnames and .debug_pubtypes sections of the object file. class Dwarf_pubnames_table { public: Dwarf_pubnames_table(Dwarf_info_reader* dwinfo, bool is_pubtypes) : dwinfo_(dwinfo), buffer_(NULL), buffer_end_(NULL), owns_buffer_(false), offset_size_(0), pinfo_(NULL), is_pubtypes_(is_pubtypes), output_section_offset_(0) { } ~Dwarf_pubnames_table() { if (this->owns_buffer_ && this->buffer_ != NULL) delete[] this->buffer_; } // Read the pubnames section SHNDX from the object file. bool read_section(Relobj* object, unsigned int shndx); // Read the header for the set at OFFSET. bool read_header(off_t offset); // Read the next name from the set. const char* next_name(); private: // The Dwarf_info_reader, for reading data. Dwarf_info_reader* dwinfo_; // The buffer containing the .debug_ranges section. const unsigned char* buffer_; const unsigned char* buffer_end_; // True if this object owns the buffer and needs to delete it. bool owns_buffer_; // The size of a DWARF offset for the current set. unsigned int offset_size_; // The current position within the buffer. const unsigned char* pinfo_; // TRUE if this is a .debug_pubtypes section. bool is_pubtypes_; // For incremental update links, this will hold the offset of the // input section within the output section. Offsets read from // relocated data will be relative to the output section, and need // to be corrected before reading data from the input section. uint64_t output_section_offset_; }; // This class represents a DWARF Debug Info Entry (DIE). class Dwarf_die { public: // An attribute value. struct Attribute_value { unsigned int attr; unsigned int form; union { int64_t intval; uint64_t uintval; const char* stringval; const unsigned char* blockval; off_t refval; } val; union { // Section index for reference forms. unsigned int shndx; // Block length for block forms. unsigned int blocklen; // Attribute offset for DW_FORM_strp. unsigned int attr_off; } aux; }; // A list of attribute values. typedef std::vector Attributes; Dwarf_die(Dwarf_info_reader* dwinfo, off_t die_offset, Dwarf_die* parent); // Return the DWARF tag for this DIE. unsigned int tag() const { if (this->abbrev_code_ == NULL) return 0; return this->abbrev_code_->tag; } // Return true if this DIE has children. bool has_children() const { gold_assert(this->abbrev_code_ != NULL); return this->abbrev_code_->has_children; } // Return true if this DIE has a sibling attribute. bool has_sibling_attribute() const { gold_assert(this->abbrev_code_ != NULL); return this->abbrev_code_->has_sibling_attribute; } // Return the value of attribute ATTR. const Attribute_value* attribute(unsigned int attr); // Return the value of the DW_AT_name attribute. const char* name() { if (this->name_ == NULL) this->set_name(); return this->name_; } // Return the value of the DW_AT_linkage_name // or DW_AT_MIPS_linkage_name attribute. const char* linkage_name() { if (this->linkage_name_ == NULL) this->set_linkage_name(); return this->linkage_name_; } // Return the value of the DW_AT_specification attribute. off_t specification() { if (!this->attributes_read_) this->read_attributes(); return this->specification_; } // Return the value of the DW_AT_abstract_origin attribute. off_t abstract_origin() { if (!this->attributes_read_) this->read_attributes(); return this->abstract_origin_; } // Return the value of attribute ATTR as a string. const char* string_attribute(unsigned int attr); // Return the value of attribute ATTR as an integer. int64_t int_attribute(unsigned int attr); // Return the value of attribute ATTR as an unsigned integer. uint64_t uint_attribute(unsigned int attr); // Return the value of attribute ATTR as a reference. off_t ref_attribute(unsigned int attr, unsigned int* shndx); // Return the value of attribute ATTR as a address. off_t address_attribute(unsigned int attr, unsigned int* shndx); // Return the value of attribute ATTR as a flag. bool flag_attribute(unsigned int attr) { return this->int_attribute(attr) != 0; } // Return true if this DIE is a declaration. bool is_declaration() { return this->flag_attribute(elfcpp::DW_AT_declaration); } // Return the parent of this DIE. Dwarf_die* parent() const { return this->parent_; } // Return the offset of this DIE. off_t offset() const { return this->die_offset_; } // Return the offset of this DIE's first child. off_t child_offset(); // Set the offset of this DIE's next sibling. void set_sibling_offset(off_t sibling_offset) { this->sibling_offset_ = sibling_offset; } // Return the offset of this DIE's next sibling. off_t sibling_offset(); private: typedef Dwarf_abbrev_table::Abbrev_code Abbrev_code; // Read all the attributes of the DIE. bool read_attributes(); // Set the name of the DIE if present. void set_name(); // Set the linkage name if present. void set_linkage_name(); // Skip all the attributes of the DIE and return the offset // of the next DIE. off_t skip_attributes(); // The Dwarf_info_reader, for reading attributes. Dwarf_info_reader* dwinfo_; // The parent of this DIE. Dwarf_die* parent_; // Offset of this DIE within its compilation unit. off_t die_offset_; // Offset of the first attribute, relative to the beginning of the DIE. off_t attr_offset_; // Offset of the first child, relative to the compilation unit. off_t child_offset_; // Offset of the next sibling, relative to the compilation unit. off_t sibling_offset_; // The abbreviation table entry. const Abbrev_code* abbrev_code_; // The list of attributes. Attributes attributes_; // True if the attributes have been read. bool attributes_read_; // The following fields hold common attributes to avoid a linear // search through the attribute list. // The DIE name (DW_AT_name). const char* name_; // Offset of the name in the string table (for DW_FORM_strp). off_t name_off_; // The linkage name (DW_AT_linkage_name or DW_AT_MIPS_linkage_name). const char* linkage_name_; // Offset of the linkage name in the string table (for DW_FORM_strp). off_t linkage_name_off_; // Section index of the string table (for DW_FORM_strp). unsigned int string_shndx_; // The value of a DW_AT_specification attribute. off_t specification_; // The value of a DW_AT_abstract_origin attribute. off_t abstract_origin_; }; // This class is used to read the debug info from the .debug_info // or .debug_types sections. This is a base class that implements // the generic parsing of the compilation unit header and DIE // structure. The parse() method parses the entire section, and // calls the various visit_xxx() methods for each header. Clients // should derive a new class from this one and implement the // visit_compilation_unit() and visit_type_unit() functions. class Dwarf_info_reader { public: Dwarf_info_reader(bool is_type_unit, Relobj* object, const unsigned char* symtab, off_t symtab_size, unsigned int shndx, unsigned int reloc_shndx, unsigned int reloc_type) : is_type_unit_(is_type_unit), object_(object), symtab_(symtab), symtab_size_(symtab_size), shndx_(shndx), reloc_shndx_(reloc_shndx), reloc_type_(reloc_type), abbrev_shndx_(0), string_shndx_(0), buffer_(NULL), buffer_end_(NULL), cu_offset_(0), cu_length_(0), offset_size_(0), address_size_(0), cu_version_(0), type_signature_(0), type_offset_(0), abbrev_table_(), ranges_table_(this), reloc_mapper_(NULL), string_buffer_(NULL), string_buffer_end_(NULL), owns_string_buffer_(false), string_output_section_offset_(0) { } virtual ~Dwarf_info_reader() { if (this->reloc_mapper_ != NULL) delete this->reloc_mapper_; if (this->owns_string_buffer_ && this->string_buffer_ != NULL) delete[] this->string_buffer_; } // Begin parsing the debug info. This calls visit_compilation_unit() // or visit_type_unit() for each compilation or type unit found in the // section, and visit_die() for each top-level DIE. void parse(); // Return the abbrev code entry for a CODE. const Dwarf_abbrev_table::Abbrev_code* get_abbrev(unsigned int code) { return this->abbrev_table_.get_abbrev(code); } // Return a pointer to the DWARF info buffer at OFFSET. const unsigned char* buffer_at_offset(off_t offset) const { const unsigned char* p = this->buffer_ + this->cu_offset_ + offset; if (this->check_buffer(p + 1)) return p; return NULL; } // Read a possibly unaligned integer of SIZE. template inline typename elfcpp::Valtype_base::Valtype read_from_pointer(const unsigned char* source); // Read a possibly unaligned integer of SIZE. Update SOURCE after read. template inline typename elfcpp::Valtype_base::Valtype read_from_pointer(const unsigned char** source); // Look for a relocation at offset ATTR_OFF in the dwarf info, // and return the section index and offset of the target. unsigned int lookup_reloc(off_t attr_off, off_t* target_off); // Return a string from the DWARF string table. const char* get_string(off_t str_off, unsigned int string_shndx); // Return the size of a DWARF offset. unsigned int offset_size() const { return this->offset_size_; } // Return the size of an address. unsigned int address_size() const { return this->address_size_; } // Set the section index of the .debug_abbrev section. // We use this if there are no relocations for the .debug_info section. // If not set, the code parse() routine will search for the section by name. void set_abbrev_shndx(unsigned int abbrev_shndx) { this->abbrev_shndx_ = abbrev_shndx; } protected: // Begin parsing the debug info. This calls visit_compilation_unit() // or visit_type_unit() for each compilation or type unit found in the // section, and visit_die() for each top-level DIE. template void do_parse(); // The following methods are hooks that are meant to be implemented // by a derived class. A default, do-nothing, implementation of // each is provided for this base class. // Visit a compilation unit. virtual void visit_compilation_unit(off_t cu_offset, off_t cu_length, Dwarf_die* root_die); // Visit a type unit. virtual void visit_type_unit(off_t tu_offset, off_t tu_length, off_t type_offset, uint64_t signature, Dwarf_die* root_die); // Read the range table. Dwarf_range_list* read_range_list(unsigned int ranges_shndx, off_t ranges_offset) { return this->ranges_table_.read_range_list(this->object_, this->symtab_, this->symtab_size_, this->address_size_, ranges_shndx, ranges_offset); } // Return the object. Relobj* object() const { return this->object_; } // Return a pointer to the object file's ELF symbol table. const unsigned char* symtab() const { return this->symtab_; } // Return the size of the object file's ELF symbol table. off_t symtab_size() const { return this->symtab_size_; } // Checkpoint the relocation tracker. uint64_t get_reloc_checkpoint() const { return this->reloc_mapper_->checkpoint(); } // Reset the relocation tracker to the CHECKPOINT. void reset_relocs(uint64_t checkpoint) { this->reloc_mapper_->reset(checkpoint); } private: // Print a warning about a corrupt debug section. void warn_corrupt_debug_section() const; // Check that P is within the bounds of the current section. bool check_buffer(const unsigned char* p) const { if (p > this->buffer_ + this->cu_offset_ + this->cu_length_) { this->warn_corrupt_debug_section(); return false; } return true; } // Read the DWARF string table. bool read_string_table(unsigned int string_shndx) { // If we've already read this string table, return immediately. if (this->string_shndx_ > 0 && this->string_shndx_ == string_shndx) return true; if (string_shndx == 0 && this->string_shndx_ > 0) return true; return this->do_read_string_table(string_shndx); } bool do_read_string_table(unsigned int string_shndx); // True if this is a type unit; false for a compilation unit. bool is_type_unit_; // The object containing the .debug_info or .debug_types input section. Relobj* object_; // The ELF symbol table. const unsigned char* symtab_; // The size of the ELF symbol table. off_t symtab_size_; // Index of the .debug_info or .debug_types section. unsigned int shndx_; // Index of the relocation section. unsigned int reloc_shndx_; // Type of the relocation section (SHT_REL or SHT_RELA). unsigned int reloc_type_; // Index of the .debug_abbrev section (0 if not known). unsigned int abbrev_shndx_; // Index of the .debug_str section. unsigned int string_shndx_; // The buffer for the debug info. const unsigned char* buffer_; const unsigned char* buffer_end_; // Offset of the current compilation unit. off_t cu_offset_; // Length of the current compilation unit. off_t cu_length_; // Size of a DWARF offset for the current compilation unit. unsigned int offset_size_; // Size of an address for the target architecture. unsigned int address_size_; // Compilation unit version number. unsigned int cu_version_; // Type signature (for a type unit). uint64_t type_signature_; // Offset from the type unit header to the type DIE (for a type unit). off_t type_offset_; // Abbreviations table for current compilation unit. Dwarf_abbrev_table abbrev_table_; // Ranges table for the current compilation unit. Dwarf_ranges_table ranges_table_; // Relocation mapper for the section. Elf_reloc_mapper* reloc_mapper_; // The buffer for the debug string table. const char* string_buffer_; const char* string_buffer_end_; // True if this object owns the buffer and needs to delete it. bool owns_string_buffer_; // For incremental update links, this will hold the offset of the // input .debug_str section within the output section. Offsets read // from relocated data will be relative to the output section, and need // to be corrected before reading data from the input section. uint64_t string_output_section_offset_; }; // We can't do better than to keep the offsets in a sorted vector. // Here, offset is the key, and file_num/line_num is the value. struct Offset_to_lineno_entry { off_t offset; int header_num; // which file-list to use (i.e. which .o file are we in) // A pointer into files_. unsigned int file_num : sizeof(int) * CHAR_BIT - 1; // True if this was the last entry for the current offset, meaning // it's the line that actually applies. unsigned int last_line_for_offset : 1; // The line number in the source file. -1 to indicate end-of-function. int line_num; // This sorts by offsets first, and then puts the correct line to // report for a given offset at the beginning of the run of equal // offsets (so that asking for 1 line gives the best answer). This // is not a total ordering. bool operator<(const Offset_to_lineno_entry& that) const { if (this->offset != that.offset) return this->offset < that.offset; // Note the '>' which makes this sort 'true' first. return this->last_line_for_offset > that.last_line_for_offset; } }; // This class is used to read the line information from the debugging // section of an object file. class Dwarf_line_info { public: Dwarf_line_info() { } virtual ~Dwarf_line_info() { } // Given a section number and an offset, returns the associated // file and line-number, as a string: "file:lineno". If unable // to do the mapping, returns the empty string. You must call // read_line_mappings() before calling this function. If // 'other_lines' is non-NULL, fills that in with other line // numbers assigned to the same offset. std::string addr2line(unsigned int shndx, off_t offset, std::vector* other_lines) { return this->do_addr2line(shndx, offset, other_lines); } // A helper function for a single addr2line lookup. It also keeps a // cache of the last CACHE_SIZE Dwarf_line_info objects it created; // set to 0 not to cache at all. The larger CACHE_SIZE is, the more // chance this routine won't have to re-create a Dwarf_line_info // object for its addr2line computation; such creations are slow. // NOTE: Not thread-safe, so only call from one thread at a time. static std::string one_addr2line(Object* object, unsigned int shndx, off_t offset, size_t cache_size, std::vector* other_lines); // This reclaims all the memory that one_addr2line may have cached. // Use this when you know you will not be calling one_addr2line again. static void clear_addr2line_cache(); private: virtual std::string do_addr2line(unsigned int shndx, off_t offset, std::vector* other_lines) = 0; }; template class Sized_dwarf_line_info : public Dwarf_line_info { public: // Initializes a .debug_line reader for a given object file. // If SHNDX is specified and non-negative, only read the debug // information that pertains to the specified section. Sized_dwarf_line_info(Object* object, unsigned int read_shndx = -1U); virtual ~Sized_dwarf_line_info() { if (this->buffer_start_ != NULL) delete[] this->buffer_start_; } private: std::string do_addr2line(unsigned int shndx, off_t offset, std::vector* other_lines); // Formats a file and line number to a string like "dirname/filename:lineno". std::string format_file_lineno(const Offset_to_lineno_entry& lineno) const; // Start processing line info, and populates the offset_map_. // If SHNDX is non-negative, only store debug information that // pertains to the specified section. void read_line_mappings(unsigned int shndx); // Reads the relocation section associated with .debug_line and // stores relocation information in reloc_map_. void read_relocs(); // Reads the DWARF2/3 header for this line info. Each takes as input // a starting buffer position, and returns the ending position. const unsigned char* read_header_prolog(const unsigned char* lineptr); const unsigned char* read_header_tables(const unsigned char* lineptr); // Reads the DWARF2/3 line information. If shndx is non-negative, // discard all line information that doesn't pertain to the given // section. const unsigned char* read_lines(const unsigned char* lineptr, unsigned int shndx); // Process a single line info opcode at START using the state // machine at LSM. Return true if we should define a line using the // current state of the line state machine. Place the length of the // opcode in LEN. bool process_one_opcode(const unsigned char* start, struct LineStateMachine* lsm, size_t* len); // Some parts of processing differ depending on whether the input // was a .o file or not. bool input_is_relobj(); // If we saw anything amiss while parsing, we set this to false. // Then addr2line will always fail (rather than return possibly- // corrupt data). bool data_valid_; // A DWARF2/3 line info header. This is not the same size as in the // actual file, as the one in the file may have a 32 bit or 64 bit // lengths. struct Dwarf_line_infoHeader { off_t total_length; int version; off_t prologue_length; int min_insn_length; // insn stands for instructin bool default_is_stmt; // stmt stands for statement signed char line_base; int line_range; unsigned char opcode_base; std::vector std_opcode_lengths; int offset_size; } header_; // buffer is the buffer for our line info, starting at exactly where // the line info to read is. const unsigned char* buffer_; const unsigned char* buffer_end_; // If the buffer was allocated temporarily, and therefore must be // deallocated in the dtor, this contains a pointer to the start // of the buffer. const unsigned char* buffer_start_; // This has relocations that point into buffer. Sized_elf_reloc_mapper* reloc_mapper_; // The type of the reloc section in track_relocs_--SHT_REL or SHT_RELA. unsigned int track_relocs_type_; // This is used to figure out what section to apply a relocation to. const unsigned char* symtab_buffer_; section_size_type symtab_buffer_size_; // Holds the directories and files as we see them. We have an array // of directory-lists, one for each .o file we're reading (usually // there will just be one, but there may be more if input is a .so). std::vector > directories_; // The first part is an index into directories_, the second the filename. std::vector > > files_; // An index into the current directories_ and files_ vectors. int current_header_index_; // A sorted map from offset of the relocation target to the shndx // and addend for the relocation. typedef std::map > Reloc_map; Reloc_map reloc_map_; // We have a vector of offset->lineno entries for every input section. typedef Unordered_map > Lineno_map; Lineno_map line_number_map_; }; } // End namespace gold. #endif // !defined(GOLD_DWARF_READER_H)