// aarch64.cc -- aarch64 target support for gold. // Copyright (C) 2014 Free Software Foundation, Inc. // Written by Jing Yu <jingyu@google.com>. // This file is part of gold. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #include "gold.h" #include <cstring> #include "elfcpp.h" #include "dwarf.h" #include "parameters.h" #include "reloc.h" #include "aarch64.h" #include "object.h" #include "symtab.h" #include "layout.h" #include "output.h" #include "copy-relocs.h" #include "target.h" #include "target-reloc.h" #include "target-select.h" #include "tls.h" #include "freebsd.h" #include "nacl.h" #include "gc.h" #include "icf.h" // The first three .got.plt entries are reserved. const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3; namespace { using namespace gold; template<int size, bool big_endian> class Output_data_plt_aarch64; template<int size, bool big_endian> class Output_data_plt_aarch64_standard; template<int size, bool big_endian> class Target_aarch64; // Output_data_got_aarch64 class. template<int size, bool big_endian> class Output_data_got_aarch64 : public Output_data_got<size, big_endian> { public: typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype; Output_data_got_aarch64(Symbol_table* symtab, Layout* layout) : Output_data_got<size, big_endian>(), layout_(layout) { } protected: // Write out the GOT table. void do_write(Output_file* of) { // The first entry in the GOT is the address of the .dynamic section. gold_assert(this->data_size() >= size / 8); Output_section* dynamic = this->layout_->dynamic_section(); Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address(); this->replace_constant(0, dynamic_addr); Output_data_got<size, big_endian>::do_write(of); } private: // A pointer to the Layout class, so that we can find the .dynamic // section when we write out the GOT section. Layout* layout_; }; // The aarch64 target class. // See the ABI at // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf template<int size, bool big_endian> class Target_aarch64 : public Sized_target<size, big_endian> { public: typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section; typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; Target_aarch64(const Target::Target_info* info = &aarch64_info) : Sized_target<size, big_endian>(info), got_(NULL), plt_(NULL), got_plt_(NULL), global_offset_table_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY) { } // Scan the relocations to determine unreferenced sections for // garbage collection. void gc_process_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols); // Scan the relocations to look for symbol adjustments. void scan_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols); // Finalize the sections. void do_finalize_sections(Layout*, const Input_objects*, Symbol_table*); // Relocate a section. void relocate_section(const Relocate_info<size, big_endian>*, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr view_address, section_size_type view_size, const Reloc_symbol_changes*); // Scan the relocs during a relocatable link. void scan_relocatable_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols, Relocatable_relocs*); // Relocate a section during a relocatable link. void relocate_relocs( const Relocate_info<size, big_endian>*, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section, const Relocatable_relocs*, unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr view_address, section_size_type view_size, unsigned char* reloc_view, section_size_type reloc_view_size); // Return the number of entries in the PLT. unsigned int plt_entry_count() const; //Return the offset of the first non-reserved PLT entry. unsigned int first_plt_entry_offset() const; // Return the size of each PLT entry. unsigned int plt_entry_size() const; private: // The class which scans relocations. class Scan { public: Scan() : issued_non_pic_error_(false) { } static inline int get_reference_flags(unsigned int r_type); inline void local(Symbol_table* symtab, Layout* layout, Target_aarch64* target, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type, const elfcpp::Sym<size, big_endian>& lsym, bool is_discarded); inline void global(Symbol_table* symtab, Layout* layout, Target_aarch64* target, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type, Symbol* gsym); inline bool local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_aarch64<size, big_endian>* , Sized_relobj_file<size, big_endian>* , unsigned int , Output_section* , const elfcpp::Rela<size, big_endian>& , unsigned int r_type, const elfcpp::Sym<size, big_endian>&); inline bool global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_aarch64<size, big_endian>* , Sized_relobj_file<size, big_endian>* , unsigned int , Output_section* , const elfcpp::Rela<size, big_endian>& , unsigned int r_type, Symbol* gsym); private: static void unsupported_reloc_local(Sized_relobj_file<size, big_endian>*, unsigned int r_type); static void unsupported_reloc_global(Sized_relobj_file<size, big_endian>*, unsigned int r_type, Symbol*); inline bool possible_function_pointer_reloc(unsigned int r_type); void check_non_pic(Relobj*, unsigned int r_type); // Whether we have issued an error about a non-PIC compilation. bool issued_non_pic_error_; }; // The class which implements relocation. class Relocate { public: Relocate() { } ~Relocate() { } // Do a relocation. Return false if the caller should not issue // any warnings about this relocation. inline bool relocate(const Relocate_info<size, big_endian>*, Target_aarch64*, Output_section*, size_t relnum, const elfcpp::Rela<size, big_endian>&, unsigned int r_type, const Sized_symbol<size>*, const Symbol_value<size>*, unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr, section_size_type); }; // A class which returns the size required for a relocation type, // used while scanning relocs during a relocatable link. class Relocatable_size_for_reloc { public: unsigned int get_size_for_reloc(unsigned int, Relobj*); }; // Adjust TLS relocation type based on the options and whether this // is a local symbol. static tls::Tls_optimization optimize_tls_reloc(bool is_final, int r_type); // Get the GOT section, creating it if necessary. Output_data_got_aarch64<size, big_endian>* got_section(Symbol_table*, Layout*); // Get the GOT PLT section. Output_data_space* got_plt_section() const { gold_assert(this->got_plt_ != NULL); return this->got_plt_; } // Create the PLT section. void make_plt_section(Symbol_table* symtab, Layout* layout); // Create a PLT entry for a global symbol. void make_plt_entry(Symbol_table*, Layout*, Symbol*); // Get the PLT section. Output_data_plt_aarch64<size, big_endian>* plt_section() const { gold_assert(this->plt_ != NULL); return this->plt_; } // Get the dynamic reloc section, creating it if necessary. Reloc_section* rela_dyn_section(Layout*); // Add a potential copy relocation. void copy_reloc(Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int shndx, Output_section* output_section, Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc) { this->copy_relocs_.copy_reloc(symtab, layout, symtab->get_sized_symbol<size>(sym), object, shndx, output_section, reloc, this->rela_dyn_section(layout)); } // Information about this specific target which we pass to the // general Target structure. static const Target::Target_info aarch64_info; // The types of GOT entries needed for this platform. // These values are exposed to the ABI in an incremental link. // Do not renumber existing values without changing the version // number of the .gnu_incremental_inputs section. enum Got_type { GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair }; // The GOT section. Output_data_got_aarch64<size, big_endian>* got_; // The PLT section. Output_data_plt_aarch64<size, big_endian>* plt_; // The GOT PLT section. Output_data_space* got_plt_; // The _GLOBAL_OFFSET_TABLE_ symbol. Symbol* global_offset_table_; // The dynamic reloc section. Reloc_section* rela_dyn_; // Relocs saved to avoid a COPY reloc. Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_; }; template<> const Target::Target_info Target_aarch64<64, false>::aarch64_info = { 64, // size false, // is_big_endian elfcpp::EM_AARCH64, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/lib/ld.so.1", // program interpreter 0x400000, // default_text_segment_address 0x1000, // abi_pagesize (overridable by -z max-page-size) 0x1000, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL, // attributes_vendor "_start" // entry_symbol_name }; template<> const Target::Target_info Target_aarch64<32, false>::aarch64_info = { 32, // size false, // is_big_endian elfcpp::EM_AARCH64, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/lib/ld.so.1", // program interpreter 0x400000, // default_text_segment_address 0x1000, // abi_pagesize (overridable by -z max-page-size) 0x1000, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL, // attributes_vendor "_start" // entry_symbol_name }; template<> const Target::Target_info Target_aarch64<64, true>::aarch64_info = { 64, // size true, // is_big_endian elfcpp::EM_AARCH64, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/lib/ld.so.1", // program interpreter 0x400000, // default_text_segment_address 0x1000, // abi_pagesize (overridable by -z max-page-size) 0x1000, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL, // attributes_vendor "_start" // entry_symbol_name }; template<> const Target::Target_info Target_aarch64<32, true>::aarch64_info = { 32, // size true, // is_big_endian elfcpp::EM_AARCH64, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/lib/ld.so.1", // program interpreter 0x400000, // default_text_segment_address 0x1000, // abi_pagesize (overridable by -z max-page-size) 0x1000, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL, // attributes_vendor "_start" // entry_symbol_name }; // Get the GOT section, creating it if necessary. template<int size, bool big_endian> Output_data_got_aarch64<size, big_endian>* Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab, Layout* layout) { if (this->got_ == NULL) { gold_assert(symtab != NULL && layout != NULL); // When using -z now, we can treat .got.plt as a relro section. // Without -z now, it is modified after program startup by lazy // PLT relocations. bool is_got_plt_relro = parameters->options().now(); Output_section_order got_order = (is_got_plt_relro ? ORDER_RELRO : ORDER_RELRO_LAST); Output_section_order got_plt_order = (is_got_plt_relro ? ORDER_RELRO : ORDER_NON_RELRO_FIRST); // Layout of .got and .got.plt sections. // .got[0] &_DYNAMIC <-_GLOBAL_OFFSET_TABLE_ // ... // .gotplt[0] reserved for ld.so (&linkmap) <--DT_PLTGOT // .gotplt[1] reserved for ld.so (resolver) // .gotplt[2] reserved // Generate .got section. this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab, layout); layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_, got_order, true); // The first word of GOT is reserved for the address of .dynamic. // We put 0 here now. The value will be replaced later in // Output_data_got_aarch64::do_write. this->got_->add_constant(0); // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT. // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section, // even if there is a .got.plt section. this->global_offset_table_ = symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, Symbol_table::PREDEFINED, this->got_, 0, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); // Generate .got.plt section. this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT"); layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_plt_, got_plt_order, is_got_plt_relro); // The first three entries are reserved. this->got_plt_->set_current_data_size (AARCH64_GOTPLT_RESERVE_COUNT * (size / 8)); if (!is_got_plt_relro) { // Those bytes can go into the relro segment. layout->increase_relro (AARCH64_GOTPLT_RESERVE_COUNT * (size / 8)); } } return this->got_; } // Get the dynamic reloc section, creating it if necessary. template<int size, bool big_endian> typename Target_aarch64<size, big_endian>::Reloc_section* Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout) { if (this->rela_dyn_ == NULL) { gold_assert(layout != NULL); this->rela_dyn_ = new Reloc_section(parameters->options().combreloc()); layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rela_dyn_, ORDER_DYNAMIC_RELOCS, false); } return this->rela_dyn_; } // A class to handle the PLT data. // This is an abstract base class that handles most of the linker details // but does not know the actual contents of PLT entries. The derived // classes below fill in those details. template<int size, bool big_endian> class Output_data_plt_aarch64 : public Output_section_data { public: typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section; typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; Output_data_plt_aarch64(Layout* layout, uint64_t addralign, Output_data_space* got_plt) : Output_section_data(addralign), got_plt_(got_plt), count_(0) { this->init(layout); } // Initialize the PLT section. void init(Layout* layout); // Add an entry to the PLT. void add_entry(Symbol* gsym); // Return the .rela.plt section data. Reloc_section* rela_plt() { return this->rel_; } // Return the number of PLT entries. unsigned int entry_count() const { return this->count_; } // Return the offset of the first non-reserved PLT entry. unsigned int first_plt_entry_offset() { return this->do_first_plt_entry_offset(); } // Return the size of a PLT entry. unsigned int get_plt_entry_size() const { return this->do_get_plt_entry_size(); } protected: // Fill in the first PLT entry. void fill_first_plt_entry(unsigned char* pov, Address got_address, Address plt_address) { this->do_fill_first_plt_entry(pov, got_address, plt_address); } // Fill in a normal PLT entry. void fill_plt_entry(unsigned char* pov, Address got_address, Address plt_address, unsigned int got_offset, unsigned int plt_offset) { this->do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); } virtual unsigned int do_first_plt_entry_offset() const = 0; virtual unsigned int do_get_plt_entry_size() const = 0; virtual void do_fill_first_plt_entry(unsigned char* pov, Address got_addr, Address plt_addr) = 0; virtual void do_fill_plt_entry(unsigned char* pov, Address got_address, Address plt_address, unsigned int got_offset, unsigned int plt_offset) = 0; void do_adjust_output_section(Output_section* os); // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, _("** PLT")); } private: // Set the final size. void set_final_data_size(); // Write out the PLT data. void do_write(Output_file*); // The reloc section. Reloc_section* rel_; // The .got section. Output_data_got_aarch64<size, big_endian>* got_; // The .got.plt section. Output_data_space* got_plt_; // The number of PLT entries. unsigned int count_; }; // Initialize the PLT section. template<int size, bool big_endian> void Output_data_plt_aarch64<size, big_endian>::init(Layout* layout) { this->rel_ = new Reloc_section(false); layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rel_, ORDER_DYNAMIC_PLT_RELOCS, false); } template<int size, bool big_endian> void Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section( Output_section* os) { os->set_entsize(this->get_plt_entry_size()); } // Add an entry to the PLT. template<int size, bool big_endian> void Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol* gsym) { gold_assert(!gsym->has_plt_offset()); //TODO } // Set the final size. template<int size, bool big_endian> void Output_data_plt_aarch64<size, big_endian>::set_final_data_size() { this->set_data_size(this->first_plt_entry_offset() + this->count * this->get_plt_entry_size()); } template<int size, bool big_endian> class Output_data_plt_aarch64_standard : public Output_data_plt_aarch64<size, big_endian> { public: typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; Output_data_plt_aarch64_standard(Layout* layout, Output_data_space* got_plt) : Output_data_plt_aarch64<size, big_endian>(layout, size == 32 ? 4 : 8, got_plt) { } protected: // Return the offset of the first non-reserved PLT entry. virtual unsigned int do_first_plt_entry_offset() const { return this->first_plt_entry_size; } // Return the size of a PLT entry virtual unsigned int do_get_plt_entry_size() const { return this->plt_entry_size; } virtual void do_fill_first_plt_entry(unsigned char* pov, Address got_address, Address plt_address); virtual void do_fill_plt_entry(unsigned char* pov, Address got_address, Address plt_address, unsigned int got_offset, unsigned int plt_offset); private: // The size of the first plt entry size. static const int first_plt_entry_size = 32; // The size of the plt entry size. static const int plt_entry_size = 16; // Template for the first PLT entry. static const uint32_t first_plt_entry[first_plt_entry_size / 4]; // Template for subsequent PLT entries. static const uint32_t plt_entry[plt_entry_size / 4]; }; // The first entry in the PLT for an executable. template<> const uint32_t Output_data_plt_aarch64_standard<32, false>:: first_plt_entry[first_plt_entry_size / 4] = { 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */ 0x90000010, /* adrp x16, PLT_GOT+0x8 */ 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */ 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */ 0xd61f0220, /* br x17 */ 0xd503201f, /* nop */ 0xd503201f, /* nop */ 0xd503201f, /* nop */ }; template<> const uint32_t Output_data_plt_aarch64_standard<32, true>:: first_plt_entry[first_plt_entry_size / 4] = { 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */ 0x90000010, /* adrp x16, PLT_GOT+0x8 */ 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */ 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */ 0xd61f0220, /* br x17 */ 0xd503201f, /* nop */ 0xd503201f, /* nop */ 0xd503201f, /* nop */ }; template<> const uint32_t Output_data_plt_aarch64_standard<64, false>:: first_plt_entry[first_plt_entry_size / 4] = { 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */ 0x90000010, /* adrp x16, PLT_GOT+16 */ 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */ 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */ 0xd61f0220, /* br x17 */ 0xd503201f, /* nop */ 0xd503201f, /* nop */ 0xd503201f, /* nop */ }; template<> const uint32_t Output_data_plt_aarch64_standard<64, true>:: first_plt_entry[first_plt_entry_size / 4] = { 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */ 0x90000010, /* adrp x16, PLT_GOT+16 */ 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */ 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */ 0xd61f0220, /* br x17 */ 0xd503201f, /* nop */ 0xd503201f, /* nop */ 0xd503201f, /* nop */ }; template<> const uint32_t Output_data_plt_aarch64_standard<32, false>:: plt_entry[plt_entry_size / 4] = { 0x90000010, /* adrp x16, PLTGOT + n * 4 */ 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */ 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */ 0xd61f0220, /* br x17. */ }; template<> const uint32_t Output_data_plt_aarch64_standard<32, true>:: plt_entry[plt_entry_size / 4] = { 0x90000010, /* adrp x16, PLTGOT + n * 4 */ 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */ 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */ 0xd61f0220, /* br x17. */ }; template<> const uint32_t Output_data_plt_aarch64_standard<64, false>:: plt_entry[plt_entry_size / 4] = { 0x90000010, /* adrp x16, PLTGOT + n * 8 */ 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */ 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */ 0xd61f0220, /* br x17. */ }; template<> const uint32_t Output_data_plt_aarch64_standard<64, true>:: plt_entry[plt_entry_size / 4] = { 0x90000010, /* adrp x16, PLTGOT + n * 8 */ 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */ 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */ 0xd61f0220, /* br x17. */ }; template<int size, bool big_endian> void Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry( unsigned char* pov, Address /* got_address */, Address /* plt_address */) { // PLT0 of the small PLT looks like this in ELF64 - // stp x16, x30, [sp, #-16]! Save the reloc and lr on stack. // adrp x16, PLT_GOT + 16 Get the page base of the GOTPLT // ldr x17, [x16, #:lo12:PLT_GOT+16] Load the address of the // symbol resolver // add x16, x16, #:lo12:PLT_GOT+16 Load the lo12 bits of the // GOTPLT entry for this. // br x17 // PLT0 will be slightly different in ELF32 due to different got entry // size. memcpy(pov, this->first_plt_entry, this->first_plt_entry_size); // TODO } // Subsequent entries in the PLT for an executable. template<int size, bool big_endian> void Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry( unsigned char* pov, Address /* got_address*/, Address /* plt_address */, unsigned int /* got_offset */, unsigned int /* plt_offset */) { memcpy(pov, this->plt_entry, this->plt_entry_size); //TODO } // Write out the PLT. This uses the hand-coded instructions above, // and adjusts them as needed. This is specified by the AMD64 ABI. template<int size, bool big_endian> void Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of) { const off_t offset = this->offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(offset, oview_size); const off_t got_file_offset = this->got_plt_->offset(); const section_size_type got_size = convert_to_section_size_type(this->got_plt_->data_size()); unsigned char* const got_view = of->get_output_view(got_file_offset, got_size); unsigned char* pov = oview; // The base address of the .plt section. typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address(); // The base address of the .got section. typename elfcpp::Elf_types<size>::Elf_Addr got_base = this->got_->address(); // The base address of the PLT portion of the .got section. typename elfcpp::Elf_types<size>::Elf_Addr got_address = this->got_plt_->address(); this->fill_first_plt_entry(pov, got_address, plt_address); pov += this->first_plt_entry_offset(); // The first three entries in .got.plt are reserved. unsigned char* got_pov = got_view; memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT); got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT; unsigned int plt_offset = this->first_plt_entry_offset(); unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT; const unsigned int count = this->count_; for (unsigned int plt_index = 0; plt_index < count; ++plt_index, pov += this->get_plt_entry_size(), got_pov += size / 8, plt_offset += this->get_plt_entry_size(), got_offset += size / 8) { // Set and adjust the PLT entry itself. this->fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); // Set the entry in the GOT. elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address + plt_offset); } gold_assert(static_cast<section_size_type>(pov - oview) == oview_size); gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size); of->write_output_view(offset, oview_size, oview); of->write_output_view(got_file_offset, got_size, got_view); } // Return the number of entries in the PLT. template<int size, bool big_endian> unsigned int Target_aarch64<size, big_endian>::plt_entry_count() const { if (this->plt_ == NULL) return 0; return this->plt_->entry_count(); } // Return the offset of the first non-reserved PLT entry. template<int size, bool big_endian> unsigned int Target_aarch64<size, big_endian>::first_plt_entry_offset() const { return this->plt_->first_plt_entry_offset(); } // Return the size of each PLT entry. template<int size, bool big_endian> unsigned int Target_aarch64<size, big_endian>::plt_entry_size() const { return this->plt_->get_plt_entry_size(); } // Optimize the TLS relocation type based on what we know about the // symbol. IS_FINAL is true if the final address of this symbol is // known at link time. template<int size, bool big_endian> tls::Tls_optimization Target_aarch64<size, big_endian>::optimize_tls_reloc(bool /* is_final */, int /* r_type */) { //TODO return tls::TLSOPT_NONE; } // Get the Reference_flags for a particular relocation. template<int size, bool big_endian> int Target_aarch64<size, big_endian>::Scan::get_reference_flags(unsigned int r_type) { switch (r_type) { case elfcpp::R_AARCH64_NONE: // No symbol reference. return 0; //TODO default: // Not expected. We will give an error later. return 0; } } // Returns true if this relocation type could be that of a function pointer. template<int size, bool big_endian> inline bool Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc( unsigned int r_type) { switch (r_type) { case elfcpp::R_AARCH64_ABS64: //TODO { return true; } } return false; } // For safe ICF, scan a relocation for a local symbol to check if it // corresponds to a function pointer being taken. In that case mark // the function whose pointer was taken as not foldable. template<int size, bool big_endian> inline bool Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer( Symbol_table* , Layout* , Target_aarch64<size, big_endian>* , Sized_relobj_file<size, big_endian>* , unsigned int , Output_section* , const elfcpp::Rela<size, big_endian>& , unsigned int r_type, const elfcpp::Sym<size, big_endian>&) { // When building a shared library, do not fold any local symbols as it is // not possible to distinguish pointer taken versus a call by looking at // the relocation types. return (parameters->options().shared() || possible_function_pointer_reloc(r_type)); } // For safe ICF, scan a relocation for a global symbol to check if it // corresponds to a function pointer being taken. In that case mark // the function whose pointer was taken as not foldable. template<int size, bool big_endian> inline bool Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer( Symbol_table* , Layout* , Target_aarch64<size, big_endian>* , Sized_relobj_file<size, big_endian>* , unsigned int , Output_section* , const elfcpp::Rela<size, big_endian>& , unsigned int r_type, Symbol* gsym) { // When building a shared library, do not fold symbols whose visibility // is hidden, internal or protected. return ((parameters->options().shared() && (gsym->visibility() == elfcpp::STV_INTERNAL || gsym->visibility() == elfcpp::STV_PROTECTED || gsym->visibility() == elfcpp::STV_HIDDEN)) || possible_function_pointer_reloc(r_type)); } // Report an unsupported relocation against a local symbol. template<int size, bool big_endian> void Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local( Sized_relobj_file<size, big_endian>* object, unsigned int r_type) { gold_error(_("%s: unsupported reloc %u against local symbol"), object->name().c_str(), r_type); } // We are about to emit a dynamic relocation of type R_TYPE. If the // dynamic linker does not support it, issue an error. template<int size, bool big_endian> void Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object, unsigned int r_type) { gold_assert(r_type != elfcpp::R_AARCH64_NONE); switch (r_type) { // These are the relocation types supported by glibc for AARCH64. case elfcpp::R_AARCH64_NONE: case elfcpp::R_AARCH64_COPY: case elfcpp::R_AARCH64_GLOB_DAT: case elfcpp::R_AARCH64_JUMP_SLOT: case elfcpp::R_AARCH64_RELATIVE: case elfcpp::R_AARCH64_TLS_DTPREL64: case elfcpp::R_AARCH64_TLS_DTPMOD64: case elfcpp::R_AARCH64_TLS_TPREL64: case elfcpp::R_AARCH64_TLSDESC: case elfcpp::R_AARCH64_IRELATIVE: case elfcpp::R_AARCH64_ABS32: case elfcpp::R_AARCH64_ABS64: return; default: break; } // This prevents us from issuing more than one error per reloc // section. But we can still wind up issuing more than one // error per object file. if (this->issued_non_pic_error_) return; gold_assert(parameters->options().output_is_position_independent()); object->error(_("requires unsupported dynamic reloc; " "recompile with -fPIC")); this->issued_non_pic_error_ = true; return; } // Scan a relocation for a local symbol. template<int size, bool big_endian> inline void Target_aarch64<size, big_endian>::Scan::local( Symbol_table* /* symtab */, Layout* /* layout */, Target_aarch64<size, big_endian>* /* target */, Sized_relobj_file<size, big_endian>* /* object */, unsigned int /* data_shndx */, Output_section* /* output_section */, const elfcpp::Rela<size, big_endian>& /* reloc */, unsigned int r_type, const elfcpp::Sym<size, big_endian>& /* lsym */, bool is_discarded) { if (is_discarded) return; switch (r_type) { case elfcpp::R_AARCH64_NONE: break; //TODO } } // Report an unsupported relocation against a global symbol. template<int size, bool big_endian> void Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global( Sized_relobj_file<size, big_endian>* object, unsigned int r_type, Symbol* gsym) { gold_error(_("%s: unsupported reloc %u against global symbol %s"), object->name().c_str(), r_type, gsym->demangled_name().c_str()); } template<int size, bool big_endian> inline void Target_aarch64<size, big_endian>::Scan::global( Symbol_table* /* symtab */, Layout* /* layout */, Target_aarch64<size, big_endian>* /* target */, Sized_relobj_file<size, big_endian>* /* object */, unsigned int /* data_shndx */, Output_section* /* output_section */, const elfcpp::Rela<size, big_endian>& /* reloc */, unsigned int /* r_type */, Symbol* /* gsym */) { //TODO return; } template<int size, bool big_endian> void Target_aarch64<size, big_endian>::gc_process_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols) { if (sh_type == elfcpp::SHT_REL) { return; } gold::gc_process_relocs<size, big_endian, Target_aarch64<size, big_endian>, elfcpp::SHT_RELA, typename Target_aarch64<size, big_endian>::Scan, typename Target_aarch64<size, big_endian>::Relocatable_size_for_reloc>( symtab, layout, this, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols); } // Scan relocations for a section. template<int size, bool big_endian> void Target_aarch64<size, big_endian>::scan_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols) { if (sh_type == elfcpp::SHT_REL) { gold_error(_("%s: unsupported REL reloc section"), object->name().c_str()); return; } gold::scan_relocs<size, big_endian, Target_aarch64<size, big_endian>, elfcpp::SHT_RELA, typename Target_aarch64<size, big_endian>::Scan>( symtab, layout, this, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols); } // Finalize the sections. template<int size, bool big_endian> void Target_aarch64<size, big_endian>::do_finalize_sections( Layout* /* layout */, const Input_objects*, Symbol_table* /* symtab */) { //TODO return; } // Perform a relocation. template<int size, bool big_endian> inline bool Target_aarch64<size, big_endian>::Relocate::relocate( const Relocate_info<size, big_endian>* /* relinfo */, Target_aarch64<size, big_endian>* /* target */, Output_section* , size_t /* relnum */, const elfcpp::Rela<size, big_endian>& /* rela */, unsigned int /* r_type */, const Sized_symbol<size>* /* gsym */, const Symbol_value<size>* /* psymval */, unsigned char* /* view */, typename elfcpp::Elf_types<size>::Elf_Addr /* address */, section_size_type /* view_size */) { //TODO return true; } // Relocate section data. template<int size, bool big_endian> void Target_aarch64<size, big_endian>::relocate_section( const Relocate_info<size, big_endian>* /* relinfo */, unsigned int sh_type, const unsigned char* /* prelocs */, size_t /* reloc_count */, Output_section* /* output_section */, bool /*needs_special_offset_handling */, unsigned char* /* view */, typename elfcpp::Elf_types<size>::Elf_Addr /* address */, section_size_type /* view_size */, const Reloc_symbol_changes* /* reloc_symbol_changes */) { //TODO gold_assert(sh_type == elfcpp::SHT_RELA); } // Return the size of a relocation while scanning during a relocatable // link. template<int size, bool big_endian> unsigned int Target_aarch64<size, big_endian>::Relocatable_size_for_reloc:: get_size_for_reloc( unsigned int , Relobj* ) { // We will never support SHT_REL relocations. gold_unreachable(); return 0; } // Scan the relocs during a relocatable link. template<int size, bool big_endian> void Target_aarch64<size, big_endian>::scan_relocatable_relocs( Symbol_table* /* symtab */, Layout* /* layout */, Sized_relobj_file<size, big_endian>* /* object */, unsigned int /* data_shndx */, unsigned int sh_type, const unsigned char* /* prelocs */, size_t /* reloc_count */, Output_section* /* output_section */, bool /* needs_special_offset_handling */, size_t /* local_symbol_count */, const unsigned char* /* plocal_symbols */, Relocatable_relocs* /* rr */) { //TODO gold_assert(sh_type == elfcpp::SHT_RELA); } // Relocate a section during a relocatable link. template<int size, bool big_endian> void Target_aarch64<size, big_endian>::relocate_relocs( const Relocate_info<size, big_endian>* /* relinfo */, unsigned int sh_type, const unsigned char* /* prelocs */, size_t /* reloc_count */, Output_section* /* output_section */, typename elfcpp::Elf_types<size>::Elf_Off /* offset_in_output_section */, const Relocatable_relocs* /* rr */, unsigned char* /* view */, typename elfcpp::Elf_types<size>::Elf_Addr /* view_address */, section_size_type /* view_size */, unsigned char* /* reloc_view */, section_size_type /* reloc_view_size */) { //TODO gold_assert(sh_type == elfcpp::SHT_RELA); } // The selector for aarch64 object files. template<int size, bool big_endian> class Target_selector_aarch64 : public Target_selector { public: Target_selector_aarch64() : Target_selector(elfcpp::EM_AARCH64, size, big_endian, (size == 64 ? (big_endian ? "elf64-bigaarch64" : "elf64-littleaarch64") : (big_endian ? "elf32-bigaarch64" : "elf32-littleaarch64")), (size == 64 ? (big_endian ? "aarch64_elf64_be_vec" : "aarch64_elf64_le_vec") : (big_endian ? "aarch64_elf32_be_vec" : "aarch64_elf32_le_vec"))) { } virtual Target* do_instantiate_target() { return new Target_aarch64<size, big_endian>(); } }; Target_selector_aarch64<32, true> target_selector_aarch64elf32b; Target_selector_aarch64<32, false> target_selector_aarch64elf32; Target_selector_aarch64<64, true> target_selector_aarch64elfb; Target_selector_aarch64<64, false> target_selector_aarch64elf; } // End anonymous namespace.