///////////////////////// ankerl::unordered_dense::{map, set} ///////////////////////// // A fast & densely stored hashmap and hashset based on robin-hood backward shift deletion. // Version 4.4.0 // https://github.com/martinus/unordered_dense // // Licensed under the MIT License <http://opensource.org/licenses/MIT>. // SPDX-License-Identifier: MIT // Copyright (c) 2022-2023 Martin Leitner-Ankerl <martin.ankerl@gmail.com> // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #ifndef ANKERL_UNORDERED_DENSE_H #define ANKERL_UNORDERED_DENSE_H // see https://semver.org/spec/v2.0.0.html #define ANKERL_UNORDERED_DENSE_VERSION_MAJOR 4 // NOLINT(cppcoreguidelines-macro-usage) incompatible API changes #define ANKERL_UNORDERED_DENSE_VERSION_MINOR 4 // NOLINT(cppcoreguidelines-macro-usage) backwards compatible functionality #define ANKERL_UNORDERED_DENSE_VERSION_PATCH 0 // NOLINT(cppcoreguidelines-macro-usage) backwards compatible bug fixes // API versioning with inline namespace, see https://www.foonathan.net/2018/11/inline-namespaces/ // NOLINTNEXTLINE(cppcoreguidelines-macro-usage) #define ANKERL_UNORDERED_DENSE_VERSION_CONCAT1(major, minor, patch) v##major##_##minor##_##patch // NOLINTNEXTLINE(cppcoreguidelines-macro-usage) #define ANKERL_UNORDERED_DENSE_VERSION_CONCAT(major, minor, patch) ANKERL_UNORDERED_DENSE_VERSION_CONCAT1(major, minor, patch) #define ANKERL_UNORDERED_DENSE_NAMESPACE \ ANKERL_UNORDERED_DENSE_VERSION_CONCAT( \ ANKERL_UNORDERED_DENSE_VERSION_MAJOR, ANKERL_UNORDERED_DENSE_VERSION_MINOR, ANKERL_UNORDERED_DENSE_VERSION_PATCH) #if defined(_MSVC_LANG) # define ANKERL_UNORDERED_DENSE_CPP_VERSION _MSVC_LANG #else # define ANKERL_UNORDERED_DENSE_CPP_VERSION __cplusplus #endif #if defined(__GNUC__) // NOLINTNEXTLINE(cppcoreguidelines-macro-usage) # define ANKERL_UNORDERED_DENSE_PACK(decl) decl __attribute__((__packed__)) #elif defined(_MSC_VER) // NOLINTNEXTLINE(cppcoreguidelines-macro-usage) # define ANKERL_UNORDERED_DENSE_PACK(decl) __pragma(pack(push, 1)) decl __pragma(pack(pop)) #endif // exceptions #if defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND) # define ANKERL_UNORDERED_DENSE_HAS_EXCEPTIONS() 1 // NOLINT(cppcoreguidelines-macro-usage) #else # define ANKERL_UNORDERED_DENSE_HAS_EXCEPTIONS() 0 // NOLINT(cppcoreguidelines-macro-usage) #endif #ifdef _MSC_VER # define ANKERL_UNORDERED_DENSE_NOINLINE __declspec(noinline) #else # define ANKERL_UNORDERED_DENSE_NOINLINE __attribute__((noinline)) #endif // defined in unordered_dense.cpp #if !defined(ANKERL_UNORDERED_DENSE_EXPORT) # define ANKERL_UNORDERED_DENSE_EXPORT #endif #if ANKERL_UNORDERED_DENSE_CPP_VERSION < 201703L # error ankerl::unordered_dense requires C++17 or higher #else # include <array> // for array # include <cstdint> // for uint64_t, uint32_t, uint8_t, UINT64_C # include <cstring> // for size_t, memcpy, memset # include <functional> // for equal_to, hash # include <initializer_list> // for initializer_list # include <iterator> // for pair, distance # include <limits> // for numeric_limits # include <memory> // for allocator, allocator_traits, shared_ptr # include <optional> // for optional # include <stdexcept> // for out_of_range # include <string> // for basic_string # include <string_view> // for basic_string_view, hash # include <tuple> // for forward_as_tuple # include <type_traits> // for enable_if_t, declval, conditional_t, ena... # include <utility> // for forward, exchange, pair, as_const, piece... # include <vector> // for vector # if ANKERL_UNORDERED_DENSE_HAS_EXCEPTIONS() == 0 # include <cstdlib> // for abort # endif # if defined(__has_include) # if __has_include(<memory_resource>) # define ANKERL_UNORDERED_DENSE_PMR std::pmr // NOLINT(cppcoreguidelines-macro-usage) # include <memory_resource> // for polymorphic_allocator # elif __has_include(<experimental/memory_resource>) # define ANKERL_UNORDERED_DENSE_PMR std::experimental::pmr // NOLINT(cppcoreguidelines-macro-usage) # include <experimental/memory_resource> // for polymorphic_allocator # endif # endif # if defined(_MSC_VER) && defined(_M_X64) # include <intrin.h> # pragma intrinsic(_umul128) # endif # if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__) # define ANKERL_UNORDERED_DENSE_LIKELY(x) __builtin_expect(x, 1) // NOLINT(cppcoreguidelines-macro-usage) # define ANKERL_UNORDERED_DENSE_UNLIKELY(x) __builtin_expect(x, 0) // NOLINT(cppcoreguidelines-macro-usage) # else # define ANKERL_UNORDERED_DENSE_LIKELY(x) (x) // NOLINT(cppcoreguidelines-macro-usage) # define ANKERL_UNORDERED_DENSE_UNLIKELY(x) (x) // NOLINT(cppcoreguidelines-macro-usage) # endif namespace ankerl::unordered_dense { inline namespace ANKERL_UNORDERED_DENSE_NAMESPACE { namespace detail { # if ANKERL_UNORDERED_DENSE_HAS_EXCEPTIONS() // make sure this is not inlined as it is slow and dramatically enlarges code, thus making other // inlinings more difficult. Throws are also generally the slow path. [[noreturn]] inline ANKERL_UNORDERED_DENSE_NOINLINE void on_error_key_not_found() { throw std::out_of_range("ankerl::unordered_dense::map::at(): key not found"); } [[noreturn]] inline ANKERL_UNORDERED_DENSE_NOINLINE void on_error_bucket_overflow() { throw std::overflow_error("ankerl::unordered_dense: reached max bucket size, cannot increase size"); } [[noreturn]] inline ANKERL_UNORDERED_DENSE_NOINLINE void on_error_too_many_elements() { throw std::out_of_range("ankerl::unordered_dense::map::replace(): too many elements"); } # else [[noreturn]] inline void on_error_key_not_found() { abort(); } [[noreturn]] inline void on_error_bucket_overflow() { abort(); } [[noreturn]] inline void on_error_too_many_elements() { abort(); } # endif } // namespace detail // hash /////////////////////////////////////////////////////////////////////// // This is a stripped-down implementation of wyhash: https://github.com/wangyi-fudan/wyhash // No big-endian support (because different values on different machines don't matter), // hardcodes seed and the secret, reformats the code, and clang-tidy fixes. namespace detail::wyhash { inline void mum(uint64_t* a, uint64_t* b) { # if defined(__SIZEOF_INT128__) __uint128_t r = *a; r *= *b; *a = static_cast<uint64_t>(r); *b = static_cast<uint64_t>(r >> 64U); # elif defined(_MSC_VER) && defined(_M_X64) *a = _umul128(*a, *b, b); # else uint64_t ha = *a >> 32U; uint64_t hb = *b >> 32U; uint64_t la = static_cast<uint32_t>(*a); uint64_t lb = static_cast<uint32_t>(*b); uint64_t hi{}; uint64_t lo{}; uint64_t rh = ha * hb; uint64_t rm0 = ha * lb; uint64_t rm1 = hb * la; uint64_t rl = la * lb; uint64_t t = rl + (rm0 << 32U); auto c = static_cast<uint64_t>(t < rl); lo = t + (rm1 << 32U); c += static_cast<uint64_t>(lo < t); hi = rh + (rm0 >> 32U) + (rm1 >> 32U) + c; *a = lo; *b = hi; # endif } // multiply and xor mix function, aka MUM [[nodiscard]] inline auto mix(uint64_t a, uint64_t b) -> uint64_t { mum(&a, &b); return a ^ b; } // read functions. WARNING: we don't care about endianness, so results are different on big endian! [[nodiscard]] inline auto r8(const uint8_t* p) -> uint64_t { uint64_t v{}; std::memcpy(&v, p, 8U); return v; } [[nodiscard]] inline auto r4(const uint8_t* p) -> uint64_t { uint32_t v{}; std::memcpy(&v, p, 4); return v; } // reads 1, 2, or 3 bytes [[nodiscard]] inline auto r3(const uint8_t* p, size_t k) -> uint64_t { return (static_cast<uint64_t>(p[0]) << 16U) | (static_cast<uint64_t>(p[k >> 1U]) << 8U) | p[k - 1]; } [[maybe_unused]] [[nodiscard]] inline auto hash(void const* key, size_t len) -> uint64_t { static constexpr auto secret = std::array{UINT64_C(0xa0761d6478bd642f), UINT64_C(0xe7037ed1a0b428db), UINT64_C(0x8ebc6af09c88c6e3), UINT64_C(0x589965cc75374cc3)}; auto const* p = static_cast<uint8_t const*>(key); uint64_t seed = secret[0]; uint64_t a{}; uint64_t b{}; if (ANKERL_UNORDERED_DENSE_LIKELY(len <= 16)) { if (ANKERL_UNORDERED_DENSE_LIKELY(len >= 4)) { a = (r4(p) << 32U) | r4(p + ((len >> 3U) << 2U)); b = (r4(p + len - 4) << 32U) | r4(p + len - 4 - ((len >> 3U) << 2U)); } else if (ANKERL_UNORDERED_DENSE_LIKELY(len > 0)) { a = r3(p, len); b = 0; } else { a = 0; b = 0; } } else { size_t i = len; if (ANKERL_UNORDERED_DENSE_UNLIKELY(i > 48)) { uint64_t see1 = seed; uint64_t see2 = seed; do { seed = mix(r8(p) ^ secret[1], r8(p + 8) ^ seed); see1 = mix(r8(p + 16) ^ secret[2], r8(p + 24) ^ see1); see2 = mix(r8(p + 32) ^ secret[3], r8(p + 40) ^ see2); p += 48; i -= 48; } while (ANKERL_UNORDERED_DENSE_LIKELY(i > 48)); seed ^= see1 ^ see2; } while (ANKERL_UNORDERED_DENSE_UNLIKELY(i > 16)) { seed = mix(r8(p) ^ secret[1], r8(p + 8) ^ seed); i -= 16; p += 16; } a = r8(p + i - 16); b = r8(p + i - 8); } return mix(secret[1] ^ len, mix(a ^ secret[1], b ^ seed)); } [[nodiscard]] inline auto hash(uint64_t x) -> uint64_t { return detail::wyhash::mix(x, UINT64_C(0x9E3779B97F4A7C15)); } } /* namespace detail::wyhash */ ANKERL_UNORDERED_DENSE_EXPORT template <typename T, typename Enable = void> struct hash { auto operator()(T const& obj) const noexcept(noexcept(std::declval<std::hash<T>>().operator()(std::declval<T const&>()))) -> uint64_t { return std::hash<T>{}(obj); } }; template <typename CharT> struct hash<std::basic_string<CharT>> { using is_avalanching = void; auto operator()(std::basic_string<CharT> const& str) const noexcept -> uint64_t { return detail::wyhash::hash(str.data(), sizeof(CharT) * str.size()); } }; template <typename CharT> struct hash<std::basic_string_view<CharT>> { using is_avalanching = void; auto operator()(std::basic_string_view<CharT> const& sv) const noexcept -> uint64_t { return detail::wyhash::hash(sv.data(), sizeof(CharT) * sv.size()); } }; template <class T> struct hash<T*> { using is_avalanching = void; auto operator()(T* ptr) const noexcept -> uint64_t { // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) return detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr)); } }; template <class T> struct hash<std::unique_ptr<T>> { using is_avalanching = void; auto operator()(std::unique_ptr<T> const& ptr) const noexcept -> uint64_t { // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) return detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr.get())); } }; template <class T> struct hash<std::shared_ptr<T>> { using is_avalanching = void; auto operator()(std::shared_ptr<T> const& ptr) const noexcept -> uint64_t { // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) return detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr.get())); } }; template <typename Enum> struct hash<Enum, typename std::enable_if<std::is_enum<Enum>::value>::type> { using is_avalanching = void; auto operator()(Enum e) const noexcept -> uint64_t { using underlying = typename std::underlying_type_t<Enum>; return detail::wyhash::hash(static_cast<underlying>(e)); } }; template <typename... Args> struct tuple_hash_helper { // Converts the value into 64bit. If it is an integral type, just cast it. Mixing is doing the rest. // If it isn't an integral we need to hash it. template <typename Arg> [[nodiscard]] constexpr static auto to64(Arg const& arg) -> uint64_t { if constexpr (std::is_integral_v<Arg> || std::is_enum_v<Arg>) { return static_cast<uint64_t>(arg); } else { return hash<Arg>{}(arg); } } [[nodiscard]] static auto mix64(uint64_t state, uint64_t v) -> uint64_t { return detail::wyhash::mix(state + v, uint64_t{0x9ddfea08eb382d69}); } // Creates a buffer that holds all the data from each element of the tuple. If possible we memcpy the data directly. If // not, we hash the object and use this for the array. Size of the array is known at compile time, and memcpy is optimized // away, so filling the buffer is highly efficient. Finally, call wyhash with this buffer. template <typename T, std::size_t... Idx> [[nodiscard]] static auto calc_hash(T const& t, std::index_sequence<Idx...>) noexcept -> uint64_t { auto h = uint64_t{}; ((h = mix64(h, to64(std::get<Idx>(t)))), ...); return h; } }; template <typename... Args> struct hash<std::tuple<Args...>> : tuple_hash_helper<Args...> { using is_avalanching = void; auto operator()(std::tuple<Args...> const& t) const noexcept -> uint64_t { return tuple_hash_helper<Args...>::calc_hash(t, std::index_sequence_for<Args...>{}); } }; template <typename A, typename B> struct hash<std::pair<A, B>> : tuple_hash_helper<A, B> { using is_avalanching = void; auto operator()(std::pair<A, B> const& t) const noexcept -> uint64_t { return tuple_hash_helper<A, B>::calc_hash(t, std::index_sequence_for<A, B>{}); } }; // NOLINTNEXTLINE(cppcoreguidelines-macro-usage) # define ANKERL_UNORDERED_DENSE_HASH_STATICCAST(T) \ template <> \ struct hash<T> { \ using is_avalanching = void; \ auto operator()(T const& obj) const noexcept -> uint64_t { \ return detail::wyhash::hash(static_cast<uint64_t>(obj)); \ } \ } # if defined(__GNUC__) && !defined(__clang__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wuseless-cast" # endif // see https://en.cppreference.com/w/cpp/utility/hash ANKERL_UNORDERED_DENSE_HASH_STATICCAST(bool); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(signed char); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned char); # if ANKERL_UNORDERED_DENSE_CPP_VERSION >= 202002L && defined(__cpp_char8_t) ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char8_t); # endif ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char16_t); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char32_t); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(wchar_t); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(short); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned short); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(int); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned int); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(long); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(long long); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned long); ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned long long); # if defined(__GNUC__) && !defined(__clang__) # pragma GCC diagnostic pop # endif // bucket_type ////////////////////////////////////////////////////////// namespace bucket_type { struct standard { static constexpr uint32_t dist_inc = 1U << 8U; // skip 1 byte fingerprint static constexpr uint32_t fingerprint_mask = dist_inc - 1; // mask for 1 byte of fingerprint uint32_t m_dist_and_fingerprint; // upper 3 byte: distance to original bucket. lower byte: fingerprint from hash uint32_t m_value_idx; // index into the m_values vector. }; ANKERL_UNORDERED_DENSE_PACK(struct big { static constexpr uint32_t dist_inc = 1U << 8U; // skip 1 byte fingerprint static constexpr uint32_t fingerprint_mask = dist_inc - 1; // mask for 1 byte of fingerprint uint32_t m_dist_and_fingerprint; // upper 3 byte: distance to original bucket. lower byte: fingerprint from hash size_t m_value_idx; // index into the m_values vector. }); } /* namespace bucket_type */ namespace detail { struct nonesuch {}; template <class Default, class AlwaysVoid, template <class...> class Op, class... Args> struct detector { using value_t = std::false_type; using type = Default; }; template <class Default, template <class...> class Op, class... Args> struct detector<Default, std::void_t<Op<Args...>>, Op, Args...> { using value_t = std::true_type; using type = Op<Args...>; }; template <template <class...> class Op, class... Args> using is_detected = typename detail::detector<detail::nonesuch, void, Op, Args...>::value_t; template <template <class...> class Op, class... Args> constexpr bool is_detected_v = is_detected<Op, Args...>::value; template <typename T> using detect_avalanching = typename T::is_avalanching; template <typename T> using detect_is_transparent = typename T::is_transparent; template <typename T> using detect_iterator = typename T::iterator; template <typename T> using detect_reserve = decltype(std::declval<T&>().reserve(size_t{})); // enable_if helpers template <typename Mapped> constexpr bool is_map_v = !std::is_void_v<Mapped>; // clang-format off template <typename Hash, typename KeyEqual> constexpr bool is_transparent_v = is_detected_v<detect_is_transparent, Hash> && is_detected_v<detect_is_transparent, KeyEqual>; // clang-format on template <typename From, typename To1, typename To2> constexpr bool is_neither_convertible_v = !std::is_convertible_v<From, To1> && !std::is_convertible_v<From, To2>; template <typename T> constexpr bool has_reserve = is_detected_v<detect_reserve, T>; // base type for map has mapped_type template <class T> struct base_table_type_map { using mapped_type = T; }; // base type for set doesn't have mapped_type struct base_table_type_set {}; } /* namespace detail */ // Very much like std::deque, but faster for indexing (in most cases). As of now this doesn't implement the full std::vector // API, but merely what's necessary to work as an underlying container for ankerl::unordered_dense::{map, set}. // It allocates blocks of equal size and puts them into the m_blocks vector. That means it can grow simply by adding a new // block to the back of m_blocks, and doesn't double its size like an std::vector. The disadvantage is that memory is not // linear and thus there is one more indirection necessary for indexing. template <typename T, typename Allocator = std::allocator<T>, size_t MaxSegmentSizeBytes = 4096> class segmented_vector { template <bool IsConst> class iter_t; public: using allocator_type = Allocator; using pointer = typename std::allocator_traits<allocator_type>::pointer; using const_pointer = typename std::allocator_traits<allocator_type>::const_pointer; using difference_type = typename std::allocator_traits<allocator_type>::difference_type; using value_type = T; using size_type = std::size_t; using reference = T&; using const_reference = T const&; using iterator = iter_t<false>; using const_iterator = iter_t<true>; private: using vec_alloc = typename std::allocator_traits<Allocator>::template rebind_alloc<pointer>; std::vector<pointer, vec_alloc> m_blocks{}; size_t m_size{}; // Calculates the maximum number for x in (s << x) <= max_val static constexpr auto num_bits_closest(size_t max_val, size_t s) -> size_t { auto f = size_t{0}; while (s << (f + 1) <= max_val) { ++f; } return f; } using self_t = segmented_vector<T, Allocator, MaxSegmentSizeBytes>; static constexpr auto num_bits = num_bits_closest(MaxSegmentSizeBytes, sizeof(T)); static constexpr auto num_elements_in_block = 1U << num_bits; static constexpr auto mask = num_elements_in_block - 1U; /** * Iterator class doubles as const_iterator and iterator */ template <bool IsConst> class iter_t { using ptr_t = typename std::conditional_t<IsConst, segmented_vector::const_pointer const*, segmented_vector::pointer*>; ptr_t m_data{}; size_t m_idx{}; template <bool B> friend class iter_t; public: using difference_type = segmented_vector::difference_type; using value_type = T; using reference = typename std::conditional_t<IsConst, value_type const&, value_type&>; using pointer = typename std::conditional_t<IsConst, segmented_vector::const_pointer, segmented_vector::pointer>; using iterator_category = std::forward_iterator_tag; iter_t() noexcept = default; template <bool OtherIsConst, typename = typename std::enable_if<IsConst && !OtherIsConst>::type> // NOLINTNEXTLINE(google-explicit-constructor,hicpp-explicit-conversions) constexpr iter_t(iter_t<OtherIsConst> const& other) noexcept : m_data(other.m_data) , m_idx(other.m_idx) {} constexpr iter_t(ptr_t data, size_t idx) noexcept : m_data(data) , m_idx(idx) {} template <bool OtherIsConst, typename = typename std::enable_if<IsConst && !OtherIsConst>::type> constexpr auto operator=(iter_t<OtherIsConst> const& other) noexcept -> iter_t& { m_data = other.m_data; m_idx = other.m_idx; return *this; } constexpr auto operator++() noexcept -> iter_t& { ++m_idx; return *this; } constexpr auto operator+(difference_type diff) noexcept -> iter_t { return {m_data, static_cast<size_t>(static_cast<difference_type>(m_idx) + diff)}; } template <bool OtherIsConst> constexpr auto operator-(iter_t<OtherIsConst> const& other) noexcept -> difference_type { return static_cast<difference_type>(m_idx) - static_cast<difference_type>(other.m_idx); } constexpr auto operator*() const noexcept -> reference { return m_data[m_idx >> num_bits][m_idx & mask]; } constexpr auto operator->() const noexcept -> pointer { return &m_data[m_idx >> num_bits][m_idx & mask]; } template <bool O> constexpr auto operator==(iter_t<O> const& o) const noexcept -> bool { return m_idx == o.m_idx; } template <bool O> constexpr auto operator!=(iter_t<O> const& o) const noexcept -> bool { return !(*this == o); } }; // slow path: need to allocate a new segment every once in a while void increase_capacity() { auto ba = Allocator(m_blocks.get_allocator()); pointer block = std::allocator_traits<Allocator>::allocate(ba, num_elements_in_block); m_blocks.push_back(block); } // Moves everything from other void append_everything_from(segmented_vector&& other) { reserve(size() + other.size()); for (auto&& o : other) { emplace_back(std::move(o)); } } // Copies everything from other void append_everything_from(segmented_vector const& other) { reserve(size() + other.size()); for (auto const& o : other) { emplace_back(o); } } void dealloc() { auto ba = Allocator(m_blocks.get_allocator()); for (auto ptr : m_blocks) { std::allocator_traits<Allocator>::deallocate(ba, ptr, num_elements_in_block); } } [[nodiscard]] static constexpr auto calc_num_blocks_for_capacity(size_t capacity) { return (capacity + num_elements_in_block - 1U) / num_elements_in_block; } public: segmented_vector() = default; // NOLINTNEXTLINE(google-explicit-constructor,hicpp-explicit-conversions) segmented_vector(Allocator alloc) : m_blocks(vec_alloc(alloc)) {} segmented_vector(segmented_vector&& other, Allocator alloc) : segmented_vector(alloc) { *this = std::move(other); } segmented_vector(segmented_vector const& other, Allocator alloc) : m_blocks(vec_alloc(alloc)) { append_everything_from(other); } segmented_vector(segmented_vector&& other) noexcept : segmented_vector(std::move(other), get_allocator()) {} segmented_vector(segmented_vector const& other) { append_everything_from(other); } auto operator=(segmented_vector const& other) -> segmented_vector& { if (this == &other) { return *this; } clear(); append_everything_from(other); return *this; } auto operator=(segmented_vector&& other) noexcept -> segmented_vector& { clear(); dealloc(); if (other.get_allocator() == get_allocator()) { m_blocks = std::move(other.m_blocks); m_size = std::exchange(other.m_size, {}); } else { // make sure to construct with other's allocator! m_blocks = std::vector<pointer, vec_alloc>(vec_alloc(other.get_allocator())); append_everything_from(std::move(other)); } return *this; } ~segmented_vector() { clear(); dealloc(); } [[nodiscard]] constexpr auto size() const -> size_t { return m_size; } [[nodiscard]] constexpr auto capacity() const -> size_t { return m_blocks.size() * num_elements_in_block; } // Indexing is highly performance critical [[nodiscard]] constexpr auto operator[](size_t i) const noexcept -> T const& { return m_blocks[i >> num_bits][i & mask]; } [[nodiscard]] constexpr auto operator[](size_t i) noexcept -> T& { return m_blocks[i >> num_bits][i & mask]; } [[nodiscard]] constexpr auto begin() -> iterator { return {m_blocks.data(), 0U}; } [[nodiscard]] constexpr auto begin() const -> const_iterator { return {m_blocks.data(), 0U}; } [[nodiscard]] constexpr auto cbegin() const -> const_iterator { return {m_blocks.data(), 0U}; } [[nodiscard]] constexpr auto end() -> iterator { return {m_blocks.data(), m_size}; } [[nodiscard]] constexpr auto end() const -> const_iterator { return {m_blocks.data(), m_size}; } [[nodiscard]] constexpr auto cend() const -> const_iterator { return {m_blocks.data(), m_size}; } [[nodiscard]] constexpr auto back() -> reference { return operator[](m_size - 1); } [[nodiscard]] constexpr auto back() const -> const_reference { return operator[](m_size - 1); } void pop_back() { back().~T(); --m_size; } [[nodiscard]] auto empty() const { return 0 == m_size; } void reserve(size_t new_capacity) { m_blocks.reserve(calc_num_blocks_for_capacity(new_capacity)); while (new_capacity > capacity()) { increase_capacity(); } } [[nodiscard]] auto get_allocator() const -> allocator_type { return allocator_type{m_blocks.get_allocator()}; } template <class... Args> auto emplace_back(Args&&... args) -> reference { if (m_size == capacity()) { increase_capacity(); } auto* ptr = static_cast<void*>(&operator[](m_size)); auto& ref = *new (ptr) T(std::forward<Args>(args)...); ++m_size; return ref; } void clear() { if constexpr (!std::is_trivially_destructible_v<T>) { for (size_t i = 0, s = size(); i < s; ++i) { operator[](i).~T(); } } m_size = 0; } void shrink_to_fit() { auto ba = Allocator(m_blocks.get_allocator()); auto num_blocks_required = calc_num_blocks_for_capacity(m_size); while (m_blocks.size() > num_blocks_required) { std::allocator_traits<Allocator>::deallocate(ba, m_blocks.back(), num_elements_in_block); m_blocks.pop_back(); } m_blocks.shrink_to_fit(); } }; namespace detail { // This is it, the table. Doubles as map and set, and uses `void` for T when its used as a set. template <class Key, class T, // when void, treat it as a set. class Hash, class KeyEqual, class AllocatorOrContainer, class Bucket, bool IsSegmented> class table : public std::conditional_t<is_map_v<T>, base_table_type_map<T>, base_table_type_set> { using underlying_value_type = typename std::conditional_t<is_map_v<T>, std::pair<Key, T>, Key>; using underlying_container_type = std::conditional_t<IsSegmented, segmented_vector<underlying_value_type, AllocatorOrContainer>, std::vector<underlying_value_type, AllocatorOrContainer>>; public: using value_container_type = std:: conditional_t<is_detected_v<detect_iterator, AllocatorOrContainer>, AllocatorOrContainer, underlying_container_type>; private: using bucket_alloc = typename std::allocator_traits<typename value_container_type::allocator_type>::template rebind_alloc<Bucket>; using bucket_alloc_traits = std::allocator_traits<bucket_alloc>; static constexpr uint8_t initial_shifts = 64 - 2; // 2^(64-m_shift) number of buckets static constexpr float default_max_load_factor = 0.8F; public: using key_type = Key; using value_type = typename value_container_type::value_type; using size_type = typename value_container_type::size_type; using difference_type = typename value_container_type::difference_type; using hasher = Hash; using key_equal = KeyEqual; using allocator_type = typename value_container_type::allocator_type; using reference = typename value_container_type::reference; using const_reference = typename value_container_type::const_reference; using pointer = typename value_container_type::pointer; using const_pointer = typename value_container_type::const_pointer; using const_iterator = typename value_container_type::const_iterator; using iterator = std::conditional_t<is_map_v<T>, typename value_container_type::iterator, const_iterator>; using bucket_type = Bucket; private: using value_idx_type = decltype(Bucket::m_value_idx); using dist_and_fingerprint_type = decltype(Bucket::m_dist_and_fingerprint); static_assert(std::is_trivially_destructible_v<Bucket>, "assert there's no need to call destructor / std::destroy"); static_assert(std::is_trivially_copyable_v<Bucket>, "assert we can just memset / memcpy"); value_container_type m_values{}; // Contains all the key-value pairs in one densely stored container. No holes. using bucket_pointer = typename std::allocator_traits<bucket_alloc>::pointer; bucket_pointer m_buckets{}; size_t m_num_buckets = 0; size_t m_max_bucket_capacity = 0; float m_max_load_factor = default_max_load_factor; Hash m_hash{}; KeyEqual m_equal{}; uint8_t m_shifts = initial_shifts; [[nodiscard]] auto next(value_idx_type bucket_idx) const -> value_idx_type { return ANKERL_UNORDERED_DENSE_UNLIKELY(bucket_idx + 1U == m_num_buckets) ? 0 : static_cast<value_idx_type>(bucket_idx + 1U); } // Helper to access bucket through pointer types [[nodiscard]] static constexpr auto at(bucket_pointer bucket_ptr, size_t offset) -> Bucket& { return *(bucket_ptr + static_cast<typename std::allocator_traits<bucket_alloc>::difference_type>(offset)); } // use the dist_inc and dist_dec functions so that uint16_t types work without warning [[nodiscard]] static constexpr auto dist_inc(dist_and_fingerprint_type x) -> dist_and_fingerprint_type { return static_cast<dist_and_fingerprint_type>(x + Bucket::dist_inc); } [[nodiscard]] static constexpr auto dist_dec(dist_and_fingerprint_type x) -> dist_and_fingerprint_type { return static_cast<dist_and_fingerprint_type>(x - Bucket::dist_inc); } // The goal of mixed_hash is to always produce a high quality 64bit hash. template <typename K> [[nodiscard]] constexpr auto mixed_hash(K const& key) const -> uint64_t { if constexpr (is_detected_v<detect_avalanching, Hash>) { // we know that the hash is good because is_avalanching. if constexpr (sizeof(decltype(m_hash(key))) < sizeof(uint64_t)) { // 32bit hash and is_avalanching => multiply with a constant to avalanche bits upwards return m_hash(key) * UINT64_C(0x9ddfea08eb382d69); } else { // 64bit and is_avalanching => only use the hash itself. return m_hash(key); } } else { // not is_avalanching => apply wyhash return wyhash::hash(m_hash(key)); } } [[nodiscard]] constexpr auto dist_and_fingerprint_from_hash(uint64_t hash) const -> dist_and_fingerprint_type { return Bucket::dist_inc | (static_cast<dist_and_fingerprint_type>(hash) & Bucket::fingerprint_mask); } [[nodiscard]] constexpr auto bucket_idx_from_hash(uint64_t hash) const -> value_idx_type { return static_cast<value_idx_type>(hash >> m_shifts); } [[nodiscard]] static constexpr auto get_key(value_type const& vt) -> key_type const& { if constexpr (is_map_v<T>) { return vt.first; } else { return vt; } } template <typename K> [[nodiscard]] auto next_while_less(K const& key) const -> Bucket { auto hash = mixed_hash(key); auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash); auto bucket_idx = bucket_idx_from_hash(hash); while (dist_and_fingerprint < at(m_buckets, bucket_idx).m_dist_and_fingerprint) { dist_and_fingerprint = dist_inc(dist_and_fingerprint); bucket_idx = next(bucket_idx); } return {dist_and_fingerprint, bucket_idx}; } void place_and_shift_up(Bucket bucket, value_idx_type place) { while (0 != at(m_buckets, place).m_dist_and_fingerprint) { bucket = std::exchange(at(m_buckets, place), bucket); bucket.m_dist_and_fingerprint = dist_inc(bucket.m_dist_and_fingerprint); place = next(place); } at(m_buckets, place) = bucket; } [[nodiscard]] static constexpr auto calc_num_buckets(uint8_t shifts) -> size_t { return (std::min)(max_bucket_count(), size_t{1} << (64U - shifts)); } [[nodiscard]] constexpr auto calc_shifts_for_size(size_t s) const -> uint8_t { auto shifts = initial_shifts; while (shifts > 0 && static_cast<size_t>(static_cast<float>(calc_num_buckets(shifts)) * max_load_factor()) < s) { --shifts; } return shifts; } // assumes m_values has data, m_buckets=m_buckets_end=nullptr, m_shifts is INITIAL_SHIFTS void copy_buckets(table const& other) { // assumes m_values has already the correct data copied over. if (empty()) { // when empty, at least allocate an initial buckets and clear them. allocate_buckets_from_shift(); clear_buckets(); } else { m_shifts = other.m_shifts; allocate_buckets_from_shift(); std::memcpy(m_buckets, other.m_buckets, sizeof(Bucket) * bucket_count()); } } /** * True when no element can be added any more without increasing the size */ [[nodiscard]] auto is_full() const -> bool { return size() > m_max_bucket_capacity; } void deallocate_buckets() { auto ba = bucket_alloc(m_values.get_allocator()); if (nullptr != m_buckets) { bucket_alloc_traits::deallocate(ba, m_buckets, bucket_count()); m_buckets = nullptr; } m_num_buckets = 0; m_max_bucket_capacity = 0; } void allocate_buckets_from_shift() { auto ba = bucket_alloc(m_values.get_allocator()); m_num_buckets = calc_num_buckets(m_shifts); m_buckets = bucket_alloc_traits::allocate(ba, m_num_buckets); if (m_num_buckets == max_bucket_count()) { // reached the maximum, make sure we can use each bucket m_max_bucket_capacity = max_bucket_count(); } else { m_max_bucket_capacity = static_cast<value_idx_type>(static_cast<float>(m_num_buckets) * max_load_factor()); } } void clear_buckets() { if (m_buckets != nullptr) { std::memset(&*m_buckets, 0, sizeof(Bucket) * bucket_count()); } } void clear_and_fill_buckets_from_values() { clear_buckets(); for (value_idx_type value_idx = 0, end_idx = static_cast<value_idx_type>(m_values.size()); value_idx < end_idx; ++value_idx) { auto const& key = get_key(m_values[value_idx]); auto [dist_and_fingerprint, bucket] = next_while_less(key); // we know for certain that key has not yet been inserted, so no need to check it. place_and_shift_up({dist_and_fingerprint, value_idx}, bucket); } } void increase_size() { if (m_max_bucket_capacity == max_bucket_count()) { // remove the value again, we can't add it! m_values.pop_back(); on_error_bucket_overflow(); } --m_shifts; deallocate_buckets(); allocate_buckets_from_shift(); clear_and_fill_buckets_from_values(); } template <typename Op> void do_erase(value_idx_type bucket_idx, Op handle_erased_value) { auto const value_idx_to_remove = at(m_buckets, bucket_idx).m_value_idx; // shift down until either empty or an element with correct spot is found auto next_bucket_idx = next(bucket_idx); while (at(m_buckets, next_bucket_idx).m_dist_and_fingerprint >= Bucket::dist_inc * 2) { at(m_buckets, bucket_idx) = {dist_dec(at(m_buckets, next_bucket_idx).m_dist_and_fingerprint), at(m_buckets, next_bucket_idx).m_value_idx}; bucket_idx = std::exchange(next_bucket_idx, next(next_bucket_idx)); } at(m_buckets, bucket_idx) = {}; handle_erased_value(std::move(m_values[value_idx_to_remove])); // update m_values if (value_idx_to_remove != m_values.size() - 1) { // no luck, we'll have to replace the value with the last one and update the index accordingly auto& val = m_values[value_idx_to_remove]; val = std::move(m_values.back()); // update the values_idx of the moved entry. No need to play the info game, just look until we find the values_idx auto mh = mixed_hash(get_key(val)); bucket_idx = bucket_idx_from_hash(mh); auto const values_idx_back = static_cast<value_idx_type>(m_values.size() - 1); while (values_idx_back != at(m_buckets, bucket_idx).m_value_idx) { bucket_idx = next(bucket_idx); } at(m_buckets, bucket_idx).m_value_idx = value_idx_to_remove; } m_values.pop_back(); } template <typename K, typename Op> auto do_erase_key(K&& key, Op handle_erased_value) -> size_t { if (empty()) { return 0; } auto [dist_and_fingerprint, bucket_idx] = next_while_less(key); while (dist_and_fingerprint == at(m_buckets, bucket_idx).m_dist_and_fingerprint && !m_equal(key, get_key(m_values[at(m_buckets, bucket_idx).m_value_idx]))) { dist_and_fingerprint = dist_inc(dist_and_fingerprint); bucket_idx = next(bucket_idx); } if (dist_and_fingerprint != at(m_buckets, bucket_idx).m_dist_and_fingerprint) { return 0; } do_erase(bucket_idx, handle_erased_value); return 1; } template <class K, class M> auto do_insert_or_assign(K&& key, M&& mapped) -> std::pair<iterator, bool> { auto it_isinserted = try_emplace(std::forward<K>(key), std::forward<M>(mapped)); if (!it_isinserted.second) { it_isinserted.first->second = std::forward<M>(mapped); } return it_isinserted; } template <typename... Args> auto do_place_element(dist_and_fingerprint_type dist_and_fingerprint, value_idx_type bucket_idx, Args&&... args) -> std::pair<iterator, bool> { // emplace the new value. If that throws an exception, no harm done; index is still in a valid state m_values.emplace_back(std::forward<Args>(args)...); auto value_idx = static_cast<value_idx_type>(m_values.size() - 1); if (ANKERL_UNORDERED_DENSE_UNLIKELY(is_full())) { increase_size(); } else { place_and_shift_up({dist_and_fingerprint, value_idx}, bucket_idx); } // place element and shift up until we find an empty spot return {begin() + static_cast<difference_type>(value_idx), true}; } template <typename K, typename... Args> auto do_try_emplace(K&& key, Args&&... args) -> std::pair<iterator, bool> { auto hash = mixed_hash(key); auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash); auto bucket_idx = bucket_idx_from_hash(hash); while (true) { auto* bucket = &at(m_buckets, bucket_idx); if (dist_and_fingerprint == bucket->m_dist_and_fingerprint) { if (m_equal(key, get_key(m_values[bucket->m_value_idx]))) { return {begin() + static_cast<difference_type>(bucket->m_value_idx), false}; } } else if (dist_and_fingerprint > bucket->m_dist_and_fingerprint) { return do_place_element(dist_and_fingerprint, bucket_idx, std::piecewise_construct, std::forward_as_tuple(std::forward<K>(key)), std::forward_as_tuple(std::forward<Args>(args)...)); } dist_and_fingerprint = dist_inc(dist_and_fingerprint); bucket_idx = next(bucket_idx); } } template <typename K> auto do_find(K const& key) -> iterator { if (ANKERL_UNORDERED_DENSE_UNLIKELY(empty())) { return end(); } auto mh = mixed_hash(key); auto dist_and_fingerprint = dist_and_fingerprint_from_hash(mh); auto bucket_idx = bucket_idx_from_hash(mh); auto* bucket = &at(m_buckets, bucket_idx); // unrolled loop. *Always* check a few directly, then enter the loop. This is faster. if (dist_and_fingerprint == bucket->m_dist_and_fingerprint && m_equal(key, get_key(m_values[bucket->m_value_idx]))) { return begin() + static_cast<difference_type>(bucket->m_value_idx); } dist_and_fingerprint = dist_inc(dist_and_fingerprint); bucket_idx = next(bucket_idx); bucket = &at(m_buckets, bucket_idx); if (dist_and_fingerprint == bucket->m_dist_and_fingerprint && m_equal(key, get_key(m_values[bucket->m_value_idx]))) { return begin() + static_cast<difference_type>(bucket->m_value_idx); } dist_and_fingerprint = dist_inc(dist_and_fingerprint); bucket_idx = next(bucket_idx); bucket = &at(m_buckets, bucket_idx); while (true) { if (dist_and_fingerprint == bucket->m_dist_and_fingerprint) { if (m_equal(key, get_key(m_values[bucket->m_value_idx]))) { return begin() + static_cast<difference_type>(bucket->m_value_idx); } } else if (dist_and_fingerprint > bucket->m_dist_and_fingerprint) { return end(); } dist_and_fingerprint = dist_inc(dist_and_fingerprint); bucket_idx = next(bucket_idx); bucket = &at(m_buckets, bucket_idx); } } template <typename K> auto do_find(K const& key) const -> const_iterator { return const_cast<table*>(this)->do_find(key); // NOLINT(cppcoreguidelines-pro-type-const-cast) } template <typename K, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> auto do_at(K const& key) -> Q& { if (auto it = find(key); ANKERL_UNORDERED_DENSE_LIKELY(end() != it)) { return it->second; } on_error_key_not_found(); } template <typename K, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> auto do_at(K const& key) const -> Q const& { return const_cast<table*>(this)->at(key); // NOLINT(cppcoreguidelines-pro-type-const-cast) } public: explicit table(size_t bucket_count, Hash const& hash = Hash(), KeyEqual const& equal = KeyEqual(), allocator_type const& alloc_or_container = allocator_type()) : m_values(alloc_or_container) , m_hash(hash) , m_equal(equal) { if (0 != bucket_count) { reserve(bucket_count); } else { allocate_buckets_from_shift(); clear_buckets(); } } table() : table(0) {} table(size_t bucket_count, allocator_type const& alloc) : table(bucket_count, Hash(), KeyEqual(), alloc) {} table(size_t bucket_count, Hash const& hash, allocator_type const& alloc) : table(bucket_count, hash, KeyEqual(), alloc) {} explicit table(allocator_type const& alloc) : table(0, Hash(), KeyEqual(), alloc) {} template <class InputIt> table(InputIt first, InputIt last, size_type bucket_count = 0, Hash const& hash = Hash(), KeyEqual const& equal = KeyEqual(), allocator_type const& alloc = allocator_type()) : table(bucket_count, hash, equal, alloc) { insert(first, last); } template <class InputIt> table(InputIt first, InputIt last, size_type bucket_count, allocator_type const& alloc) : table(first, last, bucket_count, Hash(), KeyEqual(), alloc) {} template <class InputIt> table(InputIt first, InputIt last, size_type bucket_count, Hash const& hash, allocator_type const& alloc) : table(first, last, bucket_count, hash, KeyEqual(), alloc) {} table(table const& other) : table(other, other.m_values.get_allocator()) {} table(table const& other, allocator_type const& alloc) : m_values(other.m_values, alloc) , m_max_load_factor(other.m_max_load_factor) , m_hash(other.m_hash) , m_equal(other.m_equal) { copy_buckets(other); } table(table&& other) noexcept : table(std::move(other), other.m_values.get_allocator()) {} table(table&& other, allocator_type const& alloc) noexcept : m_values(alloc) { *this = std::move(other); } table(std::initializer_list<value_type> ilist, size_t bucket_count = 0, Hash const& hash = Hash(), KeyEqual const& equal = KeyEqual(), allocator_type const& alloc = allocator_type()) : table(bucket_count, hash, equal, alloc) { insert(ilist); } table(std::initializer_list<value_type> ilist, size_type bucket_count, allocator_type const& alloc) : table(ilist, bucket_count, Hash(), KeyEqual(), alloc) {} table(std::initializer_list<value_type> init, size_type bucket_count, Hash const& hash, allocator_type const& alloc) : table(init, bucket_count, hash, KeyEqual(), alloc) {} ~table() { if (nullptr != m_buckets) { auto ba = bucket_alloc(m_values.get_allocator()); bucket_alloc_traits::deallocate(ba, m_buckets, bucket_count()); } } auto operator=(table const& other) -> table& { if (&other != this) { deallocate_buckets(); // deallocate before m_values is set (might have another allocator) m_values = other.m_values; m_max_load_factor = other.m_max_load_factor; m_hash = other.m_hash; m_equal = other.m_equal; m_shifts = initial_shifts; copy_buckets(other); } return *this; } auto operator=(table&& other) noexcept(noexcept(std::is_nothrow_move_assignable_v<value_container_type> && std::is_nothrow_move_assignable_v<Hash> && std::is_nothrow_move_assignable_v<KeyEqual>)) -> table& { if (&other != this) { deallocate_buckets(); // deallocate before m_values is set (might have another allocator) m_values = std::move(other.m_values); other.m_values.clear(); // we can only reuse m_buckets when both maps have the same allocator! if (get_allocator() == other.get_allocator()) { m_buckets = std::exchange(other.m_buckets, nullptr); m_num_buckets = std::exchange(other.m_num_buckets, 0); m_max_bucket_capacity = std::exchange(other.m_max_bucket_capacity, 0); m_shifts = std::exchange(other.m_shifts, initial_shifts); m_max_load_factor = std::exchange(other.m_max_load_factor, default_max_load_factor); m_hash = std::exchange(other.m_hash, {}); m_equal = std::exchange(other.m_equal, {}); other.allocate_buckets_from_shift(); other.clear_buckets(); } else { // set max_load_factor *before* copying the other's buckets, so we have the same // behavior m_max_load_factor = other.m_max_load_factor; // copy_buckets sets m_buckets, m_num_buckets, m_max_bucket_capacity, m_shifts copy_buckets(other); // clear's the other's buckets so other is now already usable. other.clear_buckets(); m_hash = other.m_hash; m_equal = other.m_equal; } // map "other" is now already usable, it's empty. } return *this; } auto operator=(std::initializer_list<value_type> ilist) -> table& { clear(); insert(ilist); return *this; } auto get_allocator() const noexcept -> allocator_type { return m_values.get_allocator(); } // iterators ////////////////////////////////////////////////////////////// auto begin() noexcept -> iterator { return m_values.begin(); } auto begin() const noexcept -> const_iterator { return m_values.begin(); } auto cbegin() const noexcept -> const_iterator { return m_values.cbegin(); } auto end() noexcept -> iterator { return m_values.end(); } auto cend() const noexcept -> const_iterator { return m_values.cend(); } auto end() const noexcept -> const_iterator { return m_values.end(); } // capacity /////////////////////////////////////////////////////////////// [[nodiscard]] auto empty() const noexcept -> bool { return m_values.empty(); } [[nodiscard]] auto size() const noexcept -> size_t { return m_values.size(); } [[nodiscard]] static constexpr auto max_size() noexcept -> size_t { if constexpr ((std::numeric_limits<value_idx_type>::max)() == (std::numeric_limits<size_t>::max)()) { return size_t{1} << (sizeof(value_idx_type) * 8 - 1); } else { return size_t{1} << (sizeof(value_idx_type) * 8); } } // modifiers ////////////////////////////////////////////////////////////// void clear() { m_values.clear(); clear_buckets(); } auto insert(value_type const& value) -> std::pair<iterator, bool> { return emplace(value); } auto insert(value_type&& value) -> std::pair<iterator, bool> { return emplace(std::move(value)); } template <class P, std::enable_if_t<std::is_constructible_v<value_type, P&&>, bool> = true> auto insert(P&& value) -> std::pair<iterator, bool> { return emplace(std::forward<P>(value)); } auto insert(const_iterator /*hint*/, value_type const& value) -> iterator { return insert(value).first; } auto insert(const_iterator /*hint*/, value_type&& value) -> iterator { return insert(std::move(value)).first; } template <class P, std::enable_if_t<std::is_constructible_v<value_type, P&&>, bool> = true> auto insert(const_iterator /*hint*/, P&& value) -> iterator { return insert(std::forward<P>(value)).first; } template <class InputIt> void insert(InputIt first, InputIt last) { while (first != last) { insert(*first); ++first; } } void insert(std::initializer_list<value_type> ilist) { insert(ilist.begin(), ilist.end()); } // nonstandard API: *this is emptied. // Also see "A Standard flat_map" https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0429r9.pdf auto extract() && -> value_container_type { return std::move(m_values); } // nonstandard API: // Discards the internally held container and replaces it with the one passed. Erases non-unique elements. auto replace(value_container_type&& container) { if (ANKERL_UNORDERED_DENSE_UNLIKELY(container.size() > max_size())) { on_error_too_many_elements(); } auto shifts = calc_shifts_for_size(container.size()); if (0 == m_num_buckets || shifts < m_shifts || container.get_allocator() != m_values.get_allocator()) { m_shifts = shifts; deallocate_buckets(); allocate_buckets_from_shift(); } clear_buckets(); m_values = std::move(container); // can't use clear_and_fill_buckets_from_values() because container elements might not be unique auto value_idx = value_idx_type{}; // loop until we reach the end of the container. duplicated entries will be replaced with back(). while (value_idx != static_cast<value_idx_type>(m_values.size())) { auto const& key = get_key(m_values[value_idx]); auto hash = mixed_hash(key); auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash); auto bucket_idx = bucket_idx_from_hash(hash); bool key_found = false; while (true) { auto const& bucket = at(m_buckets, bucket_idx); if (dist_and_fingerprint > bucket.m_dist_and_fingerprint) { break; } if (dist_and_fingerprint == bucket.m_dist_and_fingerprint && m_equal(key, get_key(m_values[bucket.m_value_idx]))) { key_found = true; break; } dist_and_fingerprint = dist_inc(dist_and_fingerprint); bucket_idx = next(bucket_idx); } if (key_found) { if (value_idx != static_cast<value_idx_type>(m_values.size() - 1)) { m_values[value_idx] = std::move(m_values.back()); } m_values.pop_back(); } else { place_and_shift_up({dist_and_fingerprint, value_idx}, bucket_idx); ++value_idx; } } } template <class M, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> auto insert_or_assign(Key const& key, M&& mapped) -> std::pair<iterator, bool> { return do_insert_or_assign(key, std::forward<M>(mapped)); } template <class M, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> auto insert_or_assign(Key&& key, M&& mapped) -> std::pair<iterator, bool> { return do_insert_or_assign(std::move(key), std::forward<M>(mapped)); } template <typename K, typename M, typename Q = T, typename H = Hash, typename KE = KeyEqual, std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE>, bool> = true> auto insert_or_assign(K&& key, M&& mapped) -> std::pair<iterator, bool> { return do_insert_or_assign(std::forward<K>(key), std::forward<M>(mapped)); } template <class M, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> auto insert_or_assign(const_iterator /*hint*/, Key const& key, M&& mapped) -> iterator { return do_insert_or_assign(key, std::forward<M>(mapped)).first; } template <class M, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> auto insert_or_assign(const_iterator /*hint*/, Key&& key, M&& mapped) -> iterator { return do_insert_or_assign(std::move(key), std::forward<M>(mapped)).first; } template <typename K, typename M, typename Q = T, typename H = Hash, typename KE = KeyEqual, std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE>, bool> = true> auto insert_or_assign(const_iterator /*hint*/, K&& key, M&& mapped) -> iterator { return do_insert_or_assign(std::forward<K>(key), std::forward<M>(mapped)).first; } // Single arguments for unordered_set can be used without having to construct the value_type template <class K, typename Q = T, typename H = Hash, typename KE = KeyEqual, std::enable_if_t<!is_map_v<Q> && is_transparent_v<H, KE>, bool> = true> auto emplace(K&& key) -> std::pair<iterator, bool> { auto hash = mixed_hash(key); auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash); auto bucket_idx = bucket_idx_from_hash(hash); while (dist_and_fingerprint <= at(m_buckets, bucket_idx).m_dist_and_fingerprint) { if (dist_and_fingerprint == at(m_buckets, bucket_idx).m_dist_and_fingerprint && m_equal(key, m_values[at(m_buckets, bucket_idx).m_value_idx])) { // found it, return without ever actually creating anything return {begin() + static_cast<difference_type>(at(m_buckets, bucket_idx).m_value_idx), false}; } dist_and_fingerprint = dist_inc(dist_and_fingerprint); bucket_idx = next(bucket_idx); } // value is new, insert element first, so when exception happens we are in a valid state return do_place_element(dist_and_fingerprint, bucket_idx, std::forward<K>(key)); } template <class... Args> auto emplace(Args&&... args) -> std::pair<iterator, bool> { // we have to instantiate the value_type to be able to access the key. // 1. emplace_back the object so it is constructed. 2. If the key is already there, pop it later in the loop. auto& key = get_key(m_values.emplace_back(std::forward<Args>(args)...)); auto hash = mixed_hash(key); auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash); auto bucket_idx = bucket_idx_from_hash(hash); while (dist_and_fingerprint <= at(m_buckets, bucket_idx).m_dist_and_fingerprint) { if (dist_and_fingerprint == at(m_buckets, bucket_idx).m_dist_and_fingerprint && m_equal(key, get_key(m_values[at(m_buckets, bucket_idx).m_value_idx]))) { m_values.pop_back(); // value was already there, so get rid of it return {begin() + static_cast<difference_type>(at(m_buckets, bucket_idx).m_value_idx), false}; } dist_and_fingerprint = dist_inc(dist_and_fingerprint); bucket_idx = next(bucket_idx); } // value is new, place the bucket and shift up until we find an empty spot auto value_idx = static_cast<value_idx_type>(m_values.size() - 1); if (ANKERL_UNORDERED_DENSE_UNLIKELY(is_full())) { // increase_size just rehashes all the data we have in m_values increase_size(); } else { // place element and shift up until we find an empty spot place_and_shift_up({dist_and_fingerprint, value_idx}, bucket_idx); } return {begin() + static_cast<difference_type>(value_idx), true}; } template <class... Args> auto emplace_hint(const_iterator /*hint*/, Args&&... args) -> iterator { return emplace(std::forward<Args>(args)...).first; } template <class... Args, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> auto try_emplace(Key const& key, Args&&... args) -> std::pair<iterator, bool> { return do_try_emplace(key, std::forward<Args>(args)...); } template <class... Args, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> auto try_emplace(Key&& key, Args&&... args) -> std::pair<iterator, bool> { return do_try_emplace(std::move(key), std::forward<Args>(args)...); } template <class... Args, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> auto try_emplace(const_iterator /*hint*/, Key const& key, Args&&... args) -> iterator { return do_try_emplace(key, std::forward<Args>(args)...).first; } template <class... Args, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> auto try_emplace(const_iterator /*hint*/, Key&& key, Args&&... args) -> iterator { return do_try_emplace(std::move(key), std::forward<Args>(args)...).first; } template < typename K, typename... Args, typename Q = T, typename H = Hash, typename KE = KeyEqual, std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE> && is_neither_convertible_v<K&&, iterator, const_iterator>, bool> = true> auto try_emplace(K&& key, Args&&... args) -> std::pair<iterator, bool> { return do_try_emplace(std::forward<K>(key), std::forward<Args>(args)...); } template < typename K, typename... Args, typename Q = T, typename H = Hash, typename KE = KeyEqual, std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE> && is_neither_convertible_v<K&&, iterator, const_iterator>, bool> = true> auto try_emplace(const_iterator /*hint*/, K&& key, Args&&... args) -> iterator { return do_try_emplace(std::forward<K>(key), std::forward<Args>(args)...).first; } auto erase(iterator it) -> iterator { auto hash = mixed_hash(get_key(*it)); auto bucket_idx = bucket_idx_from_hash(hash); auto const value_idx_to_remove = static_cast<value_idx_type>(it - cbegin()); while (at(m_buckets, bucket_idx).m_value_idx != value_idx_to_remove) { bucket_idx = next(bucket_idx); } do_erase(bucket_idx, [](value_type&& /*unused*/) { }); return begin() + static_cast<difference_type>(value_idx_to_remove); } auto extract(iterator it) -> value_type { auto hash = mixed_hash(get_key(*it)); auto bucket_idx = bucket_idx_from_hash(hash); auto const value_idx_to_remove = static_cast<value_idx_type>(it - cbegin()); while (at(m_buckets, bucket_idx).m_value_idx != value_idx_to_remove) { bucket_idx = next(bucket_idx); } auto tmp = std::optional<value_type>{}; do_erase(bucket_idx, [&tmp](value_type&& val) { tmp = std::move(val); }); return std::move(tmp).value(); } template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> auto erase(const_iterator it) -> iterator { return erase(begin() + (it - cbegin())); } template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> auto extract(const_iterator it) -> value_type { return extract(begin() + (it - cbegin())); } auto erase(const_iterator first, const_iterator last) -> iterator { auto const idx_first = first - cbegin(); auto const idx_last = last - cbegin(); auto const first_to_last = std::distance(first, last); auto const last_to_end = std::distance(last, cend()); // remove elements from left to right which moves elements from the end back auto const mid = idx_first + (std::min)(first_to_last, last_to_end); auto idx = idx_first; while (idx != mid) { erase(begin() + idx); ++idx; } // all elements from the right are moved, now remove the last element until all done idx = idx_last; while (idx != mid) { --idx; erase(begin() + idx); } return begin() + idx_first; } auto erase(Key const& key) -> size_t { return do_erase_key(key, [](value_type&& /*unused*/) { }); } auto extract(Key const& key) -> std::optional<value_type> { auto tmp = std::optional<value_type>{}; do_erase_key(key, [&tmp](value_type&& val) { tmp = std::move(val); }); return tmp; } template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> auto erase(K&& key) -> size_t { return do_erase_key(std::forward<K>(key), [](value_type&& /*unused*/) { }); } template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> auto extract(K&& key) -> std::optional<value_type> { auto tmp = std::optional<value_type>{}; do_erase_key(std::forward<K>(key), [&tmp](value_type&& val) { tmp = std::move(val); }); return tmp; } void swap(table& other) noexcept(noexcept(std::is_nothrow_swappable_v<value_container_type> && std::is_nothrow_swappable_v<Hash> && std::is_nothrow_swappable_v<KeyEqual>)) { using std::swap; swap(other, *this); } // lookup ///////////////////////////////////////////////////////////////// template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> auto at(key_type const& key) -> Q& { return do_at(key); } template <typename K, typename Q = T, typename H = Hash, typename KE = KeyEqual, std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE>, bool> = true> auto at(K const& key) -> Q& { return do_at(key); } template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> auto at(key_type const& key) const -> Q const& { return do_at(key); } template <typename K, typename Q = T, typename H = Hash, typename KE = KeyEqual, std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE>, bool> = true> auto at(K const& key) const -> Q const& { return do_at(key); } template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> auto operator[](Key const& key) -> Q& { return try_emplace(key).first->second; } template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> auto operator[](Key&& key) -> Q& { return try_emplace(std::move(key)).first->second; } template <typename K, typename Q = T, typename H = Hash, typename KE = KeyEqual, std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE>, bool> = true> auto operator[](K&& key) -> Q& { return try_emplace(std::forward<K>(key)).first->second; } auto count(Key const& key) const -> size_t { return find(key) == end() ? 0 : 1; } template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> auto count(K const& key) const -> size_t { return find(key) == end() ? 0 : 1; } auto find(Key const& key) -> iterator { return do_find(key); } auto find(Key const& key) const -> const_iterator { return do_find(key); } template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> auto find(K const& key) -> iterator { return do_find(key); } template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> auto find(K const& key) const -> const_iterator { return do_find(key); } auto contains(Key const& key) const -> bool { return find(key) != end(); } template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> auto contains(K const& key) const -> bool { return find(key) != end(); } auto equal_range(Key const& key) -> std::pair<iterator, iterator> { auto it = do_find(key); return {it, it == end() ? end() : it + 1}; } auto equal_range(const Key& key) const -> std::pair<const_iterator, const_iterator> { auto it = do_find(key); return {it, it == end() ? end() : it + 1}; } template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> auto equal_range(K const& key) -> std::pair<iterator, iterator> { auto it = do_find(key); return {it, it == end() ? end() : it + 1}; } template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> auto equal_range(K const& key) const -> std::pair<const_iterator, const_iterator> { auto it = do_find(key); return {it, it == end() ? end() : it + 1}; } // bucket interface /////////////////////////////////////////////////////// auto bucket_count() const noexcept -> size_t { // NOLINT(modernize-use-nodiscard) return m_num_buckets; } static constexpr auto max_bucket_count() noexcept -> size_t { // NOLINT(modernize-use-nodiscard) return max_size(); } // hash policy //////////////////////////////////////////////////////////// [[nodiscard]] auto load_factor() const -> float { return bucket_count() ? static_cast<float>(size()) / static_cast<float>(bucket_count()) : 0.0F; } [[nodiscard]] auto max_load_factor() const -> float { return m_max_load_factor; } void max_load_factor(float ml) { m_max_load_factor = ml; if (m_num_buckets != max_bucket_count()) { m_max_bucket_capacity = static_cast<value_idx_type>(static_cast<float>(bucket_count()) * max_load_factor()); } } void rehash(size_t count) { count = (std::min)(count, max_size()); auto shifts = calc_shifts_for_size((std::max)(count, size())); if (shifts != m_shifts) { m_shifts = shifts; deallocate_buckets(); m_values.shrink_to_fit(); allocate_buckets_from_shift(); clear_and_fill_buckets_from_values(); } } void reserve(size_t capa) { capa = (std::min)(capa, max_size()); if constexpr (has_reserve<value_container_type>) { // std::deque doesn't have reserve(). Make sure we only call when available m_values.reserve(capa); } auto shifts = calc_shifts_for_size((std::max)(capa, size())); if (0 == m_num_buckets || shifts < m_shifts) { m_shifts = shifts; deallocate_buckets(); allocate_buckets_from_shift(); clear_and_fill_buckets_from_values(); } } // observers ////////////////////////////////////////////////////////////// auto hash_function() const -> hasher { return m_hash; } auto key_eq() const -> key_equal { return m_equal; } // nonstandard API: expose the underlying values container [[nodiscard]] auto values() const noexcept -> value_container_type const& { return m_values; } // non-member functions /////////////////////////////////////////////////// friend auto operator==(table const& a, table const& b) -> bool { if (&a == &b) { return true; } if (a.size() != b.size()) { return false; } for (auto const& b_entry : b) { auto it = a.find(get_key(b_entry)); if constexpr (is_map_v<T>) { // map: check that key is here, then also check that value is the same if (a.end() == it || !(b_entry.second == it->second)) { return false; } } else { // set: only check that the key is here if (a.end() == it) { return false; } } } return true; } friend auto operator!=(table const& a, table const& b) -> bool { return !(a == b); } }; } /* namespace detail */ ANKERL_UNORDERED_DENSE_EXPORT template <class Key, class T, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>, class AllocatorOrContainer = std::allocator<std::pair<Key, T>>, class Bucket = bucket_type::standard> using map = detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, false>; ANKERL_UNORDERED_DENSE_EXPORT template <class Key, class T, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>, class AllocatorOrContainer = std::allocator<std::pair<Key, T>>, class Bucket = bucket_type::standard> using segmented_map = detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, true>; ANKERL_UNORDERED_DENSE_EXPORT template <class Key, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>, class AllocatorOrContainer = std::allocator<Key>, class Bucket = bucket_type::standard> using set = detail::table<Key, void, Hash, KeyEqual, AllocatorOrContainer, Bucket, false>; ANKERL_UNORDERED_DENSE_EXPORT template <class Key, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>, class AllocatorOrContainer = std::allocator<Key>, class Bucket = bucket_type::standard> using segmented_set = detail::table<Key, void, Hash, KeyEqual, AllocatorOrContainer, Bucket, true>; # if defined(ANKERL_UNORDERED_DENSE_PMR) namespace pmr { ANKERL_UNORDERED_DENSE_EXPORT template <class Key, class T, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>, class Bucket = bucket_type::standard> using map = detail::table<Key, T, Hash, KeyEqual, ANKERL_UNORDERED_DENSE_PMR::polymorphic_allocator<std::pair<Key, T>>, Bucket, false>; ANKERL_UNORDERED_DENSE_EXPORT template <class Key, class T, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>, class Bucket = bucket_type::standard> using segmented_map = detail::table<Key, T, Hash, KeyEqual, ANKERL_UNORDERED_DENSE_PMR::polymorphic_allocator<std::pair<Key, T>>, Bucket, true>; ANKERL_UNORDERED_DENSE_EXPORT template <class Key, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>, class Bucket = bucket_type::standard> using set = detail::table<Key, void, Hash, KeyEqual, ANKERL_UNORDERED_DENSE_PMR::polymorphic_allocator<Key>, Bucket, false>; ANKERL_UNORDERED_DENSE_EXPORT template <class Key, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>, class Bucket = bucket_type::standard> using segmented_set = detail::table<Key, void, Hash, KeyEqual, ANKERL_UNORDERED_DENSE_PMR::polymorphic_allocator<Key>, Bucket, true>; } /* namespace pmr */ # endif // deduction guides /////////////////////////////////////////////////////////// // deduction guides for alias templates are only possible since C++20 // see https://en.cppreference.com/w/cpp/language/class_template_argument_deduction } /* namespace ANKERL_UNORDERED_DENSE_NAMESPACE */ } /* namespace ankerl::unordered_dense */ // std extensions ///////////////////////////////////////////////////////////// namespace std { // NOLINT(cert-dcl58-cpp) ANKERL_UNORDERED_DENSE_EXPORT template <class Key, class T, class Hash, class KeyEqual, class AllocatorOrContainer, class Bucket, class Pred, bool IsSegmented> // NOLINTNEXTLINE(cert-dcl58-cpp) auto erase_if(ankerl::unordered_dense::detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, IsSegmented>& map, Pred pred) -> size_t { using map_t = ankerl::unordered_dense::detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, IsSegmented>; // going back to front because erase() invalidates the end iterator auto const old_size = map.size(); auto idx = old_size; while (idx) { --idx; auto it = map.begin() + static_cast<typename map_t::difference_type>(idx); if (pred(*it)) { map.erase(it); } } return old_size - map.size(); } } /* namespace std */ #endif #endif