/* Intrusive double linked list for GDB, the GNU debugger.
Copyright (C) 2021-2023 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
#ifndef GDBSUPPORT_INTRUSIVE_LIST_H
#define GDBSUPPORT_INTRUSIVE_LIST_H
#define INTRUSIVE_LIST_UNLINKED_VALUE ((T *) -1)
/* A list node. The elements put in an intrusive_list either inherit
from this, or have a field of this type. */
template
class intrusive_list_node
{
public:
bool is_linked () const
{
return next != INTRUSIVE_LIST_UNLINKED_VALUE;
}
private:
T *next = INTRUSIVE_LIST_UNLINKED_VALUE;
T *prev = INTRUSIVE_LIST_UNLINKED_VALUE;
template
friend struct intrusive_list_iterator;
template
friend struct intrusive_list_reverse_iterator;
template
friend struct intrusive_list;
};
/* Follows a couple types used by intrusive_list as template parameter to find
the intrusive_list_node for a given element. One for lists where the
elements inherit intrusive_list_node, and another for elements that keep the
node as member field. */
/* For element types that inherit from intrusive_list_node. */
template
struct intrusive_base_node
{
static intrusive_list_node *as_node (T *elem)
{ return elem; }
};
/* For element types that keep the node as member field. */
template T::*MemberNode>
struct intrusive_member_node
{
static intrusive_list_node *as_node (T *elem)
{ return &(elem->*MemberNode); }
};
/* Common code for forward and reverse iterators. */
template
struct intrusive_list_base_iterator
{
using self_type = SelfType;
using iterator_category = std::bidirectional_iterator_tag;
using value_type = T;
using pointer = T *;
using const_pointer = const T *;
using reference = T &;
using const_reference = const T &;
using difference_type = ptrdiff_t;
using size_type = size_t;
using node_type = intrusive_list_node;
/* Create an iterator pointing to ELEM. */
explicit intrusive_list_base_iterator (pointer elem)
: m_elem (elem)
{}
/* Create a past-the-end iterator. */
intrusive_list_base_iterator ()
: m_elem (nullptr)
{}
reference operator* () const
{ return *m_elem; }
pointer operator-> () const
{ return m_elem; }
bool operator== (const self_type &other) const
{ return m_elem == other.m_elem; }
bool operator!= (const self_type &other) const
{ return m_elem != other.m_elem; }
protected:
static node_type *as_node (pointer elem)
{ return AsNode::as_node (elem); }
/* A past-end-the iterator points to the list's head. */
pointer m_elem;
};
/* Forward iterator for an intrusive_list. */
template>
struct intrusive_list_iterator
: public intrusive_list_base_iterator
>
{
using base = intrusive_list_base_iterator
>;
using self_type = typename base::self_type;
using node_type = typename base::node_type;
/* Inherit constructor and M_NODE visibility from base. */
using base::base;
using base::m_elem;
self_type &operator++ ()
{
node_type *node = this->as_node (m_elem);
m_elem = node->next;
return *this;
}
self_type operator++ (int)
{
self_type temp = *this;
node_type *node = this->as_node (m_elem);
m_elem = node->next;
return temp;
}
self_type &operator-- ()
{
node_type *node = this->as_node (m_elem);
m_elem = node->prev;
return *this;
}
self_type operator-- (int)
{
self_type temp = *this;
node_type *node = this->as_node (m_elem);
m_elem = node->prev;
return temp;
}
};
/* Reverse iterator for an intrusive_list. */
template>
struct intrusive_list_reverse_iterator
: public intrusive_list_base_iterator
>
{
using base = intrusive_list_base_iterator
>;
using self_type = typename base::self_type;
/* Inherit constructor and M_NODE visibility from base. */
using base::base;
using base::m_elem;
using node_type = typename base::node_type;
self_type &operator++ ()
{
node_type *node = this->as_node (m_elem);
m_elem = node->prev;
return *this;
}
self_type operator++ (int)
{
self_type temp = *this;
node_type *node = this->as_node (m_elem);
m_elem = node->prev;
return temp;
}
self_type &operator-- ()
{
node_type *node = this->as_node (m_elem);
m_elem = node->next;
return *this;
}
self_type operator-- (int)
{
self_type temp = *this;
node_type *node = this->as_node (m_elem);
m_elem = node->next;
return temp;
}
};
/* An intrusive double-linked list.
T is the type of the elements to link. The type T must either:
- inherit from intrusive_list_node
- have an intrusive_list_node member
AsNode is a type with an as_node static method used to get a node from an
element. If elements inherit from intrusive_list_node, use the default
intrusive_base_node. If elements have an intrusive_list_node member,
use:
intrusive_member_node
where `member` is the name of the member. */
template >
class intrusive_list
{
public:
using value_type = T;
using pointer = T *;
using const_pointer = const T *;
using reference = T &;
using const_reference = const T &;
using difference_type = ptrdiff_t;
using size_type = size_t;
using iterator = intrusive_list_iterator;
using reverse_iterator = intrusive_list_reverse_iterator;
using const_iterator = const intrusive_list_iterator;
using const_reverse_iterator
= const intrusive_list_reverse_iterator;
using node_type = intrusive_list_node;
intrusive_list () = default;
~intrusive_list ()
{
clear ();
}
intrusive_list (intrusive_list &&other)
: m_front (other.m_front),
m_back (other.m_back)
{
other.m_front = nullptr;
other.m_back = nullptr;
}
intrusive_list &operator= (intrusive_list &&other)
{
m_front = other.m_front;
m_back = other.m_back;
other.m_front = nullptr;
other.m_back = nullptr;
return *this;
}
void swap (intrusive_list &other)
{
std::swap (m_front, other.m_front);
std::swap (m_back, other.m_back);
}
iterator iterator_to (reference value)
{
return iterator (&value);
}
const_iterator iterator_to (const_reference value)
{
return const_iterator (&value);
}
reference front ()
{
gdb_assert (!this->empty ());
return *m_front;
}
const_reference front () const
{
gdb_assert (!this->empty ());
return *m_front;
}
reference back ()
{
gdb_assert (!this->empty ());
return *m_back;
}
const_reference back () const
{
gdb_assert (!this->empty ());
return *m_back;
}
void push_front (reference elem)
{
intrusive_list_node *elem_node = as_node (&elem);
gdb_assert (elem_node->next == INTRUSIVE_LIST_UNLINKED_VALUE);
gdb_assert (elem_node->prev == INTRUSIVE_LIST_UNLINKED_VALUE);
if (this->empty ())
this->push_empty (elem);
else
this->push_front_non_empty (elem);
}
void push_back (reference elem)
{
intrusive_list_node *elem_node = as_node (&elem);
gdb_assert (elem_node->next == INTRUSIVE_LIST_UNLINKED_VALUE);
gdb_assert (elem_node->prev == INTRUSIVE_LIST_UNLINKED_VALUE);
if (this->empty ())
this->push_empty (elem);
else
this->push_back_non_empty (elem);
}
/* Inserts ELEM before POS. */
void insert (const_iterator pos, reference elem)
{
if (this->empty ())
return this->push_empty (elem);
if (pos == this->begin ())
return this->push_front_non_empty (elem);
if (pos == this->end ())
return this->push_back_non_empty (elem);
intrusive_list_node *elem_node = as_node (&elem);
pointer pos_elem = &*pos;
intrusive_list_node *pos_node = as_node (pos_elem);
pointer prev_elem = pos_node->prev;
intrusive_list_node *prev_node = as_node (prev_elem);
gdb_assert (elem_node->next == INTRUSIVE_LIST_UNLINKED_VALUE);
gdb_assert (elem_node->prev == INTRUSIVE_LIST_UNLINKED_VALUE);
elem_node->prev = prev_elem;
prev_node->next = &elem;
elem_node->next = pos_elem;
pos_node->prev = &elem;
}
/* Move elements from LIST at the end of the current list. */
void splice (intrusive_list &&other)
{
if (other.empty ())
return;
if (this->empty ())
{
*this = std::move (other);
return;
}
/* [A ... B] + [C ... D] */
pointer b_elem = m_back;
node_type *b_node = as_node (b_elem);
pointer c_elem = other.m_front;
node_type *c_node = as_node (c_elem);
pointer d_elem = other.m_back;
b_node->next = c_elem;
c_node->prev = b_elem;
m_back = d_elem;
other.m_front = nullptr;
other.m_back = nullptr;
}
void pop_front ()
{
gdb_assert (!this->empty ());
erase_element (*m_front);
}
void pop_back ()
{
gdb_assert (!this->empty ());
erase_element (*m_back);
}
private:
/* Push ELEM in the list, knowing the list is empty. */
void push_empty (reference elem)
{
gdb_assert (this->empty ());
intrusive_list_node *elem_node = as_node (&elem);
gdb_assert (elem_node->next == INTRUSIVE_LIST_UNLINKED_VALUE);
gdb_assert (elem_node->prev == INTRUSIVE_LIST_UNLINKED_VALUE);
m_front = &elem;
m_back = &elem;
elem_node->prev = nullptr;
elem_node->next = nullptr;
}
/* Push ELEM at the front of the list, knowing the list is not empty. */
void push_front_non_empty (reference elem)
{
gdb_assert (!this->empty ());
intrusive_list_node *elem_node = as_node (&elem);
intrusive_list_node *front_node = as_node (m_front);
gdb_assert (elem_node->next == INTRUSIVE_LIST_UNLINKED_VALUE);
gdb_assert (elem_node->prev == INTRUSIVE_LIST_UNLINKED_VALUE);
elem_node->next = m_front;
front_node->prev = &elem;
elem_node->prev = nullptr;
m_front = &elem;
}
/* Push ELEM at the back of the list, knowing the list is not empty. */
void push_back_non_empty (reference elem)
{
gdb_assert (!this->empty ());
intrusive_list_node *elem_node = as_node (&elem);
intrusive_list_node *back_node = as_node (m_back);
gdb_assert (elem_node->next == INTRUSIVE_LIST_UNLINKED_VALUE);
gdb_assert (elem_node->prev == INTRUSIVE_LIST_UNLINKED_VALUE);
elem_node->prev = m_back;
back_node->next = &elem;
elem_node->next = nullptr;
m_back = &elem;
}
void erase_element (reference elem)
{
intrusive_list_node *elem_node = as_node (&elem);
gdb_assert (elem_node->prev != INTRUSIVE_LIST_UNLINKED_VALUE);
gdb_assert (elem_node->next != INTRUSIVE_LIST_UNLINKED_VALUE);
if (m_front == &elem)
{
gdb_assert (elem_node->prev == nullptr);
m_front = elem_node->next;
}
else
{
gdb_assert (elem_node->prev != nullptr);
intrusive_list_node *prev_node = as_node (elem_node->prev);
prev_node->next = elem_node->next;
}
if (m_back == &elem)
{
gdb_assert (elem_node->next == nullptr);
m_back = elem_node->prev;
}
else
{
gdb_assert (elem_node->next != nullptr);
intrusive_list_node *next_node = as_node (elem_node->next);
next_node->prev = elem_node->prev;
}
elem_node->next = INTRUSIVE_LIST_UNLINKED_VALUE;
elem_node->prev = INTRUSIVE_LIST_UNLINKED_VALUE;
}
public:
/* Remove the element pointed by I from the list. The element
pointed by I is not destroyed. */
iterator erase (const_iterator i)
{
iterator ret = i;
++ret;
erase_element (*i);
return ret;
}
/* Erase all the elements. The elements are not destroyed. */
void clear ()
{
while (!this->empty ())
pop_front ();
}
/* Erase all the elements. Disposer::operator()(pointer) is called
for each of the removed elements. */
template
void clear_and_dispose (Disposer disposer)
{
while (!this->empty ())
{
pointer p = &front ();
pop_front ();
disposer (p);
}
}
bool empty () const
{
return m_front == nullptr;
}
iterator begin () noexcept
{
return iterator (m_front);
}
const_iterator begin () const noexcept
{
return const_iterator (m_front);
}
const_iterator cbegin () const noexcept
{
return const_iterator (m_front);
}
iterator end () noexcept
{
return {};
}
const_iterator end () const noexcept
{
return {};
}
const_iterator cend () const noexcept
{
return {};
}
reverse_iterator rbegin () noexcept
{
return reverse_iterator (m_back);
}
const_reverse_iterator rbegin () const noexcept
{
return const_reverse_iterator (m_back);
}
const_reverse_iterator crbegin () const noexcept
{
return const_reverse_iterator (m_back);
}
reverse_iterator rend () noexcept
{
return {};
}
const_reverse_iterator rend () const noexcept
{
return {};
}
const_reverse_iterator crend () const noexcept
{
return {};
}
private:
static node_type *as_node (pointer elem)
{
return AsNode::as_node (elem);
}
pointer m_front = nullptr;
pointer m_back = nullptr;
};
#endif /* GDBSUPPORT_INTRUSIVE_LIST_H */