/* Target operations for the remote server for GDB. Copyright (C) 2002-2022 Free Software Foundation, Inc. Contributed by MontaVista Software. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "server.h" #include "tracepoint.h" #include "gdbsupport/byte-vector.h" #include "hostio.h" #include #include #include #include process_stratum_target *the_target; int set_desired_thread () { client_state &cs = get_client_state (); thread_info *found = find_thread_ptid (cs.general_thread); switch_to_thread (found); return (current_thread != NULL); } /* The thread that was current before prepare_to_access_memory was called. done_accessing_memory uses this to restore the previous selected thread. */ static ptid_t prev_general_thread; /* See target.h. */ int prepare_to_access_memory (void) { client_state &cs = get_client_state (); /* The first thread found. */ struct thread_info *first = NULL; /* The first stopped thread found. */ struct thread_info *stopped = NULL; /* The current general thread, if found. */ struct thread_info *current = NULL; /* Save the general thread value, since prepare_to_access_memory could change it. */ prev_general_thread = cs.general_thread; int res = the_target->prepare_to_access_memory (); if (res != 0) return res; for_each_thread (prev_general_thread.pid (), [&] (thread_info *thread) { if (mythread_alive (thread->id)) { if (stopped == NULL && the_target->supports_thread_stopped () && target_thread_stopped (thread)) stopped = thread; if (first == NULL) first = thread; if (current == NULL && prev_general_thread == thread->id) current = thread; } }); /* The thread we end up choosing. */ struct thread_info *thread; /* Prefer a stopped thread. If none is found, try the current thread. Otherwise, take the first thread in the process. If none is found, undo the effects of target->prepare_to_access_memory() and return error. */ if (stopped != NULL) thread = stopped; else if (current != NULL) thread = current; else if (first != NULL) thread = first; else { done_accessing_memory (); return 1; } switch_to_thread (thread); cs.general_thread = ptid_of (thread); return 0; } /* See target.h. */ void done_accessing_memory (void) { client_state &cs = get_client_state (); the_target->done_accessing_memory (); /* Restore the previous selected thread. */ cs.general_thread = prev_general_thread; switch_to_thread (the_target, cs.general_thread); } int read_inferior_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len) { int res; res = the_target->read_memory (memaddr, myaddr, len); check_mem_read (memaddr, myaddr, len); return res; } /* See target/target.h. */ int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) { return read_inferior_memory (memaddr, myaddr, len); } /* See target/target.h. */ int target_read_uint32 (CORE_ADDR memaddr, uint32_t *result) { return read_inferior_memory (memaddr, (gdb_byte *) result, sizeof (*result)); } /* See target/target.h. */ int target_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, ssize_t len) { /* Make a copy of the data because check_mem_write may need to update it. */ gdb::byte_vector buffer (myaddr, myaddr + len); check_mem_write (memaddr, buffer.data (), myaddr, len); return the_target->write_memory (memaddr, buffer.data (), len); } ptid_t mywait (ptid_t ptid, struct target_waitstatus *ourstatus, target_wait_flags options, int connected_wait) { ptid_t ret; if (connected_wait) server_waiting = 1; ret = target_wait (ptid, ourstatus, options); /* We don't expose _LOADED events to gdbserver core. See the `dlls_changed' global. */ if (ourstatus->kind () == TARGET_WAITKIND_LOADED) ourstatus->set_stopped (GDB_SIGNAL_0); /* If GDB is connected through TCP/serial, then GDBserver will most probably be running on its own terminal/console, so it's nice to print there why is GDBserver exiting. If however, GDB is connected through stdio, then there's no need to spam the GDB console with this -- the user will already see the exit through regular GDB output, in that same terminal. */ if (!remote_connection_is_stdio ()) { if (ourstatus->kind () == TARGET_WAITKIND_EXITED) fprintf (stderr, "\nChild exited with status %d\n", ourstatus->exit_status ()); else if (ourstatus->kind () == TARGET_WAITKIND_SIGNALLED) fprintf (stderr, "\nChild terminated with signal = 0x%x (%s)\n", gdb_signal_to_host (ourstatus->sig ()), gdb_signal_to_name (ourstatus->sig ())); } if (connected_wait) server_waiting = 0; return ret; } /* See target/target.h. */ void target_stop_and_wait (ptid_t ptid) { struct target_waitstatus status; bool was_non_stop = non_stop; struct thread_resume resume_info; resume_info.thread = ptid; resume_info.kind = resume_stop; resume_info.sig = GDB_SIGNAL_0; the_target->resume (&resume_info, 1); non_stop = true; mywait (ptid, &status, 0, 0); non_stop = was_non_stop; } /* See target/target.h. */ ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status, target_wait_flags options) { return the_target->wait (ptid, status, options); } /* See target/target.h. */ void target_mourn_inferior (ptid_t ptid) { the_target->mourn (find_process_pid (ptid.pid ())); } /* See target/target.h. */ void target_continue_no_signal (ptid_t ptid) { struct thread_resume resume_info; resume_info.thread = ptid; resume_info.kind = resume_continue; resume_info.sig = GDB_SIGNAL_0; the_target->resume (&resume_info, 1); } /* See target/target.h. */ void target_continue (ptid_t ptid, enum gdb_signal signal) { struct thread_resume resume_info; resume_info.thread = ptid; resume_info.kind = resume_continue; resume_info.sig = gdb_signal_to_host (signal); the_target->resume (&resume_info, 1); } /* See target/target.h. */ int target_supports_multi_process (void) { return the_target->supports_multi_process (); } void set_target_ops (process_stratum_target *target) { the_target = target; } /* Convert pid to printable format. */ std::string target_pid_to_str (ptid_t ptid) { if (ptid == minus_one_ptid) return string_printf(""); else if (ptid == null_ptid) return string_printf(""); else if (ptid.tid () != 0) return string_printf("Thread %d.0x%s", ptid.pid (), phex_nz (ptid.tid (), sizeof (ULONGEST))); else if (ptid.lwp () != 0) return string_printf("LWP %d.%ld", ptid.pid (), ptid.lwp ()); else return string_printf("Process %d", ptid.pid ()); } int kill_inferior (process_info *proc) { gdb_agent_about_to_close (proc->pid); return the_target->kill (proc); } /* Define it. */ target_terminal_state target_terminal::m_terminal_state = target_terminal_state::is_ours; /* See target/target.h. */ void target_terminal::init () { /* Placeholder needed because of fork_inferior. Not necessary on GDBserver. */ } /* See target/target.h. */ void target_terminal::inferior () { /* Placeholder needed because of fork_inferior. Not necessary on GDBserver. */ } /* See target/target.h. */ void target_terminal::ours () { /* Placeholder needed because of fork_inferior. Not necessary on GDBserver. */ } /* See target/target.h. */ void target_terminal::ours_for_output (void) { /* Placeholder. */ } /* See target/target.h. */ void target_terminal::info (const char *arg, int from_tty) { /* Placeholder. */ } /* Default implementations of target ops. See target.h for definitions. */ void process_stratum_target::post_create_inferior () { /* Nop. */ } int process_stratum_target::prepare_to_access_memory () { return 0; } void process_stratum_target::done_accessing_memory () { /* Nop. */ } void process_stratum_target::look_up_symbols () { /* Nop. */ } bool process_stratum_target::supports_read_auxv () { return false; } int process_stratum_target::read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len) { gdb_assert_not_reached ("target op read_auxv not supported"); } bool process_stratum_target::supports_z_point_type (char z_type) { return false; } int process_stratum_target::insert_point (enum raw_bkpt_type type, CORE_ADDR addr, int size, raw_breakpoint *bp) { return 1; } int process_stratum_target::remove_point (enum raw_bkpt_type type, CORE_ADDR addr, int size, raw_breakpoint *bp) { return 1; } bool process_stratum_target::stopped_by_sw_breakpoint () { return false; } bool process_stratum_target::supports_stopped_by_sw_breakpoint () { return false; } bool process_stratum_target::stopped_by_hw_breakpoint () { return false; } bool process_stratum_target::supports_stopped_by_hw_breakpoint () { return false; } bool process_stratum_target::supports_hardware_single_step () { return false; } bool process_stratum_target::stopped_by_watchpoint () { return false; } CORE_ADDR process_stratum_target::stopped_data_address () { return 0; } bool process_stratum_target::supports_read_offsets () { return false; } bool process_stratum_target::supports_memory_tagging () { return false; } bool process_stratum_target::fetch_memtags (CORE_ADDR address, size_t len, gdb::byte_vector &tags, int type) { gdb_assert_not_reached ("target op fetch_memtags not supported"); } bool process_stratum_target::store_memtags (CORE_ADDR address, size_t len, const gdb::byte_vector &tags, int type) { gdb_assert_not_reached ("target op store_memtags not supported"); } int process_stratum_target::read_offsets (CORE_ADDR *text, CORE_ADDR *data) { gdb_assert_not_reached ("target op read_offsets not supported"); } bool process_stratum_target::supports_get_tls_address () { return false; } int process_stratum_target::get_tls_address (thread_info *thread, CORE_ADDR offset, CORE_ADDR load_module, CORE_ADDR *address) { gdb_assert_not_reached ("target op get_tls_address not supported"); } bool process_stratum_target::supports_qxfer_osdata () { return false; } int process_stratum_target::qxfer_osdata (const char *annex, unsigned char *readbuf, unsigned const char *writebuf, CORE_ADDR offset, int len) { gdb_assert_not_reached ("target op qxfer_osdata not supported"); } bool process_stratum_target::supports_qxfer_siginfo () { return false; } int process_stratum_target::qxfer_siginfo (const char *annex, unsigned char *readbuf, unsigned const char *writebuf, CORE_ADDR offset, int len) { gdb_assert_not_reached ("target op qxfer_siginfo not supported"); } bool process_stratum_target::supports_non_stop () { return false; } bool process_stratum_target::async (bool enable) { return false; } int process_stratum_target::start_non_stop (bool enable) { if (enable) return -1; else return 0; } bool process_stratum_target::supports_multi_process () { return false; } bool process_stratum_target::supports_fork_events () { return false; } bool process_stratum_target::supports_vfork_events () { return false; } bool process_stratum_target::supports_exec_events () { return false; } void process_stratum_target::handle_new_gdb_connection () { /* Nop. */ } int process_stratum_target::handle_monitor_command (char *mon) { return 0; } int process_stratum_target::core_of_thread (ptid_t ptid) { return -1; } bool process_stratum_target::supports_read_loadmap () { return false; } int process_stratum_target::read_loadmap (const char *annex, CORE_ADDR offset, unsigned char *myaddr, unsigned int len) { gdb_assert_not_reached ("target op read_loadmap not supported"); } void process_stratum_target::process_qsupported (gdb::array_view features) { /* Nop. */ } bool process_stratum_target::supports_tracepoints () { return false; } CORE_ADDR process_stratum_target::read_pc (regcache *regcache) { gdb_assert_not_reached ("process_target::read_pc: Unable to find PC"); } void process_stratum_target::write_pc (regcache *regcache, CORE_ADDR pc) { gdb_assert_not_reached ("process_target::write_pc: Unable to update PC"); } bool process_stratum_target::supports_thread_stopped () { return false; } bool process_stratum_target::thread_stopped (thread_info *thread) { gdb_assert_not_reached ("target op thread_stopped not supported"); } bool process_stratum_target::supports_get_tib_address () { return false; } int process_stratum_target::get_tib_address (ptid_t ptid, CORE_ADDR *address) { gdb_assert_not_reached ("target op get_tib_address not supported"); } void process_stratum_target::pause_all (bool freeze) { /* Nop. */ } void process_stratum_target::unpause_all (bool unfreeze) { /* Nop. */ } void process_stratum_target::stabilize_threads () { /* Nop. */ } bool process_stratum_target::supports_fast_tracepoints () { return false; } int process_stratum_target::install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr, CORE_ADDR collector, CORE_ADDR lockaddr, ULONGEST orig_size, CORE_ADDR *jump_entry, CORE_ADDR *trampoline, ULONGEST *trampoline_size, unsigned char *jjump_pad_insn, ULONGEST *jjump_pad_insn_size, CORE_ADDR *adjusted_insn_addr, CORE_ADDR *adjusted_insn_addr_end, char *err) { gdb_assert_not_reached ("target op install_fast_tracepoint_jump_pad " "not supported"); } int process_stratum_target::get_min_fast_tracepoint_insn_len () { return 0; } struct emit_ops * process_stratum_target::emit_ops () { return nullptr; } bool process_stratum_target::supports_disable_randomization () { return false; } bool process_stratum_target::supports_qxfer_libraries_svr4 () { return false; } int process_stratum_target::qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf, unsigned const char *writebuf, CORE_ADDR offset, int len) { gdb_assert_not_reached ("target op qxfer_libraries_svr4 not supported"); } bool process_stratum_target::supports_agent () { return false; } btrace_target_info * process_stratum_target::enable_btrace (ptid_t ptid, const btrace_config *conf) { error (_("Target does not support branch tracing.")); } int process_stratum_target::disable_btrace (btrace_target_info *tinfo) { error (_("Target does not support branch tracing.")); } int process_stratum_target::read_btrace (btrace_target_info *tinfo, buffer *buffer, enum btrace_read_type type) { error (_("Target does not support branch tracing.")); } int process_stratum_target::read_btrace_conf (const btrace_target_info *tinfo, buffer *buffer) { error (_("Target does not support branch tracing.")); } bool process_stratum_target::supports_range_stepping () { return false; } bool process_stratum_target::supports_pid_to_exec_file () { return false; } const char * process_stratum_target::pid_to_exec_file (int pid) { gdb_assert_not_reached ("target op pid_to_exec_file not supported"); } bool process_stratum_target::supports_multifs () { return false; } int process_stratum_target::multifs_open (int pid, const char *filename, int flags, mode_t mode) { return open (filename, flags, mode); } int process_stratum_target::multifs_unlink (int pid, const char *filename) { return unlink (filename); } ssize_t process_stratum_target::multifs_readlink (int pid, const char *filename, char *buf, size_t bufsiz) { return readlink (filename, buf, bufsiz); } int process_stratum_target::breakpoint_kind_from_pc (CORE_ADDR *pcptr) { /* The default behavior is to use the size of a breakpoint as the kind. */ int size = 0; sw_breakpoint_from_kind (0, &size); return size; } int process_stratum_target::breakpoint_kind_from_current_state (CORE_ADDR *pcptr) { return breakpoint_kind_from_pc (pcptr); } const char * process_stratum_target::thread_name (ptid_t thread) { return nullptr; } bool process_stratum_target::thread_handle (ptid_t ptid, gdb_byte **handle, int *handle_len) { return false; } thread_info * process_stratum_target::thread_pending_parent (thread_info *thread) { return nullptr; } thread_info * process_stratum_target::thread_pending_child (thread_info *thread) { return nullptr; } bool process_stratum_target::supports_software_single_step () { return false; } bool process_stratum_target::supports_catch_syscall () { return false; } int process_stratum_target::get_ipa_tdesc_idx () { return 0; }