/* GNU/Linux/x86-64 specific low level interface, for the remote server
for GDB.
Copyright (C) 2002-2021 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
#include "server.h"
#include
#include
#include
#include "linux-low.h"
#include "i387-fp.h"
#include "x86-low.h"
#include "gdbsupport/x86-xstate.h"
#include "nat/gdb_ptrace.h"
#ifdef __x86_64__
#include "nat/amd64-linux-siginfo.h"
#endif
#include "gdb_proc_service.h"
/* Don't include elf/common.h if linux/elf.h got included by
gdb_proc_service.h. */
#ifndef ELFMAG0
#include "elf/common.h"
#endif
#include "gdbsupport/agent.h"
#include "tdesc.h"
#include "tracepoint.h"
#include "ax.h"
#include "nat/linux-nat.h"
#include "nat/x86-linux.h"
#include "nat/x86-linux-dregs.h"
#include "linux-x86-tdesc.h"
#ifdef __x86_64__
static target_desc_up tdesc_amd64_linux_no_xml;
#endif
static target_desc_up tdesc_i386_linux_no_xml;
static unsigned char jump_insn[] = { 0xe9, 0, 0, 0, 0 };
static unsigned char small_jump_insn[] = { 0x66, 0xe9, 0, 0 };
/* Backward compatibility for gdb without XML support. */
static const char xmltarget_i386_linux_no_xml[] = "@\
i386\
GNU/Linux\
";
#ifdef __x86_64__
static const char xmltarget_amd64_linux_no_xml[] = "@\
i386:x86-64\
GNU/Linux\
";
#endif
#include
#include
#include
#ifndef PTRACE_GET_THREAD_AREA
#define PTRACE_GET_THREAD_AREA 25
#endif
/* This definition comes from prctl.h, but some kernels may not have it. */
#ifndef PTRACE_ARCH_PRCTL
#define PTRACE_ARCH_PRCTL 30
#endif
/* The following definitions come from prctl.h, but may be absent
for certain configurations. */
#ifndef ARCH_GET_FS
#define ARCH_SET_GS 0x1001
#define ARCH_SET_FS 0x1002
#define ARCH_GET_FS 0x1003
#define ARCH_GET_GS 0x1004
#endif
/* Linux target op definitions for the x86 architecture.
This is initialized assuming an amd64 target.
'low_arch_setup' will correct it for i386 or amd64 targets. */
class x86_target : public linux_process_target
{
public:
const regs_info *get_regs_info () override;
const gdb_byte *sw_breakpoint_from_kind (int kind, int *size) override;
bool supports_z_point_type (char z_type) override;
void process_qsupported (gdb::array_view features) override;
bool supports_tracepoints () override;
bool supports_fast_tracepoints () override;
int install_fast_tracepoint_jump_pad
(CORE_ADDR tpoint, CORE_ADDR tpaddr, CORE_ADDR collector,
CORE_ADDR lockaddr, ULONGEST orig_size, CORE_ADDR *jump_entry,
CORE_ADDR *trampoline, ULONGEST *trampoline_size,
unsigned char *jjump_pad_insn, ULONGEST *jjump_pad_insn_size,
CORE_ADDR *adjusted_insn_addr, CORE_ADDR *adjusted_insn_addr_end,
char *err) override;
int get_min_fast_tracepoint_insn_len () override;
struct emit_ops *emit_ops () override;
int get_ipa_tdesc_idx () override;
protected:
void low_arch_setup () override;
bool low_cannot_fetch_register (int regno) override;
bool low_cannot_store_register (int regno) override;
bool low_supports_breakpoints () override;
CORE_ADDR low_get_pc (regcache *regcache) override;
void low_set_pc (regcache *regcache, CORE_ADDR newpc) override;
int low_decr_pc_after_break () override;
bool low_breakpoint_at (CORE_ADDR pc) override;
int low_insert_point (raw_bkpt_type type, CORE_ADDR addr,
int size, raw_breakpoint *bp) override;
int low_remove_point (raw_bkpt_type type, CORE_ADDR addr,
int size, raw_breakpoint *bp) override;
bool low_stopped_by_watchpoint () override;
CORE_ADDR low_stopped_data_address () override;
/* collect_ptrace_register/supply_ptrace_register are not needed in the
native i386 case (no registers smaller than an xfer unit), and are not
used in the biarch case (HAVE_LINUX_USRREGS is not defined). */
/* Need to fix up i386 siginfo if host is amd64. */
bool low_siginfo_fixup (siginfo_t *native, gdb_byte *inf,
int direction) override;
arch_process_info *low_new_process () override;
void low_delete_process (arch_process_info *info) override;
void low_new_thread (lwp_info *) override;
void low_delete_thread (arch_lwp_info *) override;
void low_new_fork (process_info *parent, process_info *child) override;
void low_prepare_to_resume (lwp_info *lwp) override;
int low_get_thread_area (int lwpid, CORE_ADDR *addrp) override;
bool low_supports_range_stepping () override;
bool low_supports_catch_syscall () override;
void low_get_syscall_trapinfo (regcache *regcache, int *sysno) override;
private:
/* Update all the target description of all processes; a new GDB
connected, and it may or not support xml target descriptions. */
void update_xmltarget ();
};
/* The singleton target ops object. */
static x86_target the_x86_target;
/* Per-process arch-specific data we want to keep. */
struct arch_process_info
{
struct x86_debug_reg_state debug_reg_state;
};
#ifdef __x86_64__
/* Mapping between the general-purpose registers in `struct user'
format and GDB's register array layout.
Note that the transfer layout uses 64-bit regs. */
static /*const*/ int i386_regmap[] =
{
RAX * 8, RCX * 8, RDX * 8, RBX * 8,
RSP * 8, RBP * 8, RSI * 8, RDI * 8,
RIP * 8, EFLAGS * 8, CS * 8, SS * 8,
DS * 8, ES * 8, FS * 8, GS * 8
};
#define I386_NUM_REGS (sizeof (i386_regmap) / sizeof (i386_regmap[0]))
/* So code below doesn't have to care, i386 or amd64. */
#define ORIG_EAX ORIG_RAX
#define REGSIZE 8
static const int x86_64_regmap[] =
{
RAX * 8, RBX * 8, RCX * 8, RDX * 8,
RSI * 8, RDI * 8, RBP * 8, RSP * 8,
R8 * 8, R9 * 8, R10 * 8, R11 * 8,
R12 * 8, R13 * 8, R14 * 8, R15 * 8,
RIP * 8, EFLAGS * 8, CS * 8, SS * 8,
DS * 8, ES * 8, FS * 8, GS * 8,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1,
-1, -1, -1, -1, -1, -1, -1, -1,
ORIG_RAX * 8,
21 * 8, 22 * 8,
-1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
-1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
-1, -1, -1, -1, -1, -1, -1, -1, /* xmm16 ... xmm31 (AVX512) */
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, /* ymm16 ... ymm31 (AVX512) */
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
-1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm31 (AVX512) */
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1 /* pkru */
};
#define X86_64_NUM_REGS (sizeof (x86_64_regmap) / sizeof (x86_64_regmap[0]))
#define X86_64_USER_REGS (GS + 1)
#else /* ! __x86_64__ */
/* Mapping between the general-purpose registers in `struct user'
format and GDB's register array layout. */
static /*const*/ int i386_regmap[] =
{
EAX * 4, ECX * 4, EDX * 4, EBX * 4,
UESP * 4, EBP * 4, ESI * 4, EDI * 4,
EIP * 4, EFL * 4, CS * 4, SS * 4,
DS * 4, ES * 4, FS * 4, GS * 4
};
#define I386_NUM_REGS (sizeof (i386_regmap) / sizeof (i386_regmap[0]))
#define REGSIZE 4
#endif
#ifdef __x86_64__
/* Returns true if the current inferior belongs to a x86-64 process,
per the tdesc. */
static int
is_64bit_tdesc (void)
{
struct regcache *regcache = get_thread_regcache (current_thread, 0);
return register_size (regcache->tdesc, 0) == 8;
}
#endif
/* Called by libthread_db. */
ps_err_e
ps_get_thread_area (struct ps_prochandle *ph,
lwpid_t lwpid, int idx, void **base)
{
#ifdef __x86_64__
int use_64bit = is_64bit_tdesc ();
if (use_64bit)
{
switch (idx)
{
case FS:
if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_FS) == 0)
return PS_OK;
break;
case GS:
if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_GS) == 0)
return PS_OK;
break;
default:
return PS_BADADDR;
}
return PS_ERR;
}
#endif
{
unsigned int desc[4];
if (ptrace (PTRACE_GET_THREAD_AREA, lwpid,
(void *) (intptr_t) idx, (unsigned long) &desc) < 0)
return PS_ERR;
/* Ensure we properly extend the value to 64-bits for x86_64. */
*base = (void *) (uintptr_t) desc[1];
return PS_OK;
}
}
/* Get the thread area address. This is used to recognize which
thread is which when tracing with the in-process agent library. We
don't read anything from the address, and treat it as opaque; it's
the address itself that we assume is unique per-thread. */
int
x86_target::low_get_thread_area (int lwpid, CORE_ADDR *addr)
{
#ifdef __x86_64__
int use_64bit = is_64bit_tdesc ();
if (use_64bit)
{
void *base;
if (ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_GET_FS) == 0)
{
*addr = (CORE_ADDR) (uintptr_t) base;
return 0;
}
return -1;
}
#endif
{
struct lwp_info *lwp = find_lwp_pid (ptid_t (lwpid));
struct thread_info *thr = get_lwp_thread (lwp);
struct regcache *regcache = get_thread_regcache (thr, 1);
unsigned int desc[4];
ULONGEST gs = 0;
const int reg_thread_area = 3; /* bits to scale down register value. */
int idx;
collect_register_by_name (regcache, "gs", &gs);
idx = gs >> reg_thread_area;
if (ptrace (PTRACE_GET_THREAD_AREA,
lwpid_of (thr),
(void *) (long) idx, (unsigned long) &desc) < 0)
return -1;
*addr = desc[1];
return 0;
}
}
bool
x86_target::low_cannot_store_register (int regno)
{
#ifdef __x86_64__
if (is_64bit_tdesc ())
return false;
#endif
return regno >= I386_NUM_REGS;
}
bool
x86_target::low_cannot_fetch_register (int regno)
{
#ifdef __x86_64__
if (is_64bit_tdesc ())
return false;
#endif
return regno >= I386_NUM_REGS;
}
static void
collect_register_i386 (struct regcache *regcache, int regno, void *buf)
{
collect_register (regcache, regno, buf);
#ifdef __x86_64__
/* In case of x86_64 -m32, collect_register only writes 4 bytes, but the
space reserved in buf for the register is 8 bytes. Make sure the entire
reserved space is initialized. */
gdb_assert (register_size (regcache->tdesc, regno) == 4);
if (regno == RAX)
{
/* Sign extend EAX value to avoid potential syscall restart
problems.
See amd64_linux_collect_native_gregset() in
gdb/amd64-linux-nat.c for a detailed explanation. */
*(int64_t *) buf = *(int32_t *) buf;
}
else
{
/* Zero-extend. */
*(uint64_t *) buf = *(uint32_t *) buf;
}
#endif
}
static void
x86_fill_gregset (struct regcache *regcache, void *buf)
{
int i;
#ifdef __x86_64__
if (register_size (regcache->tdesc, 0) == 8)
{
for (i = 0; i < X86_64_NUM_REGS; i++)
if (x86_64_regmap[i] != -1)
collect_register (regcache, i, ((char *) buf) + x86_64_regmap[i]);
return;
}
#endif
for (i = 0; i < I386_NUM_REGS; i++)
collect_register_i386 (regcache, i, ((char *) buf) + i386_regmap[i]);
/* Handle ORIG_EAX, which is not in i386_regmap. */
collect_register_i386 (regcache, find_regno (regcache->tdesc, "orig_eax"),
((char *) buf) + ORIG_EAX * REGSIZE);
}
static void
x86_store_gregset (struct regcache *regcache, const void *buf)
{
int i;
#ifdef __x86_64__
if (register_size (regcache->tdesc, 0) == 8)
{
for (i = 0; i < X86_64_NUM_REGS; i++)
if (x86_64_regmap[i] != -1)
supply_register (regcache, i, ((char *) buf) + x86_64_regmap[i]);
return;
}
#endif
for (i = 0; i < I386_NUM_REGS; i++)
supply_register (regcache, i, ((char *) buf) + i386_regmap[i]);
supply_register_by_name (regcache, "orig_eax",
((char *) buf) + ORIG_EAX * REGSIZE);
}
static void
x86_fill_fpregset (struct regcache *regcache, void *buf)
{
#ifdef __x86_64__
i387_cache_to_fxsave (regcache, buf);
#else
i387_cache_to_fsave (regcache, buf);
#endif
}
static void
x86_store_fpregset (struct regcache *regcache, const void *buf)
{
#ifdef __x86_64__
i387_fxsave_to_cache (regcache, buf);
#else
i387_fsave_to_cache (regcache, buf);
#endif
}
#ifndef __x86_64__
static void
x86_fill_fpxregset (struct regcache *regcache, void *buf)
{
i387_cache_to_fxsave (regcache, buf);
}
static void
x86_store_fpxregset (struct regcache *regcache, const void *buf)
{
i387_fxsave_to_cache (regcache, buf);
}
#endif
static void
x86_fill_xstateregset (struct regcache *regcache, void *buf)
{
i387_cache_to_xsave (regcache, buf);
}
static void
x86_store_xstateregset (struct regcache *regcache, const void *buf)
{
i387_xsave_to_cache (regcache, buf);
}
/* ??? The non-biarch i386 case stores all the i387 regs twice.
Once in i387_.*fsave.* and once in i387_.*fxsave.*.
This is, presumably, to handle the case where PTRACE_[GS]ETFPXREGS
doesn't work. IWBN to avoid the duplication in the case where it
does work. Maybe the arch_setup routine could check whether it works
and update the supported regsets accordingly. */
static struct regset_info x86_regsets[] =
{
#ifdef HAVE_PTRACE_GETREGS
{ PTRACE_GETREGS, PTRACE_SETREGS, 0, sizeof (elf_gregset_t),
GENERAL_REGS,
x86_fill_gregset, x86_store_gregset },
{ PTRACE_GETREGSET, PTRACE_SETREGSET, NT_X86_XSTATE, 0,
EXTENDED_REGS, x86_fill_xstateregset, x86_store_xstateregset },
# ifndef __x86_64__
# ifdef HAVE_PTRACE_GETFPXREGS
{ PTRACE_GETFPXREGS, PTRACE_SETFPXREGS, 0, sizeof (elf_fpxregset_t),
EXTENDED_REGS,
x86_fill_fpxregset, x86_store_fpxregset },
# endif
# endif
{ PTRACE_GETFPREGS, PTRACE_SETFPREGS, 0, sizeof (elf_fpregset_t),
FP_REGS,
x86_fill_fpregset, x86_store_fpregset },
#endif /* HAVE_PTRACE_GETREGS */
NULL_REGSET
};
bool
x86_target::low_supports_breakpoints ()
{
return true;
}
CORE_ADDR
x86_target::low_get_pc (regcache *regcache)
{
int use_64bit = register_size (regcache->tdesc, 0) == 8;
if (use_64bit)
{
uint64_t pc;
collect_register_by_name (regcache, "rip", &pc);
return (CORE_ADDR) pc;
}
else
{
uint32_t pc;
collect_register_by_name (regcache, "eip", &pc);
return (CORE_ADDR) pc;
}
}
void
x86_target::low_set_pc (regcache *regcache, CORE_ADDR pc)
{
int use_64bit = register_size (regcache->tdesc, 0) == 8;
if (use_64bit)
{
uint64_t newpc = pc;
supply_register_by_name (regcache, "rip", &newpc);
}
else
{
uint32_t newpc = pc;
supply_register_by_name (regcache, "eip", &newpc);
}
}
int
x86_target::low_decr_pc_after_break ()
{
return 1;
}
static const gdb_byte x86_breakpoint[] = { 0xCC };
#define x86_breakpoint_len 1
bool
x86_target::low_breakpoint_at (CORE_ADDR pc)
{
unsigned char c;
read_memory (pc, &c, 1);
if (c == 0xCC)
return true;
return false;
}
/* Low-level function vector. */
struct x86_dr_low_type x86_dr_low =
{
x86_linux_dr_set_control,
x86_linux_dr_set_addr,
x86_linux_dr_get_addr,
x86_linux_dr_get_status,
x86_linux_dr_get_control,
sizeof (void *),
};
/* Breakpoint/Watchpoint support. */
bool
x86_target::supports_z_point_type (char z_type)
{
switch (z_type)
{
case Z_PACKET_SW_BP:
case Z_PACKET_HW_BP:
case Z_PACKET_WRITE_WP:
case Z_PACKET_ACCESS_WP:
return true;
default:
return false;
}
}
int
x86_target::low_insert_point (raw_bkpt_type type, CORE_ADDR addr,
int size, raw_breakpoint *bp)
{
struct process_info *proc = current_process ();
switch (type)
{
case raw_bkpt_type_hw:
case raw_bkpt_type_write_wp:
case raw_bkpt_type_access_wp:
{
enum target_hw_bp_type hw_type
= raw_bkpt_type_to_target_hw_bp_type (type);
struct x86_debug_reg_state *state
= &proc->priv->arch_private->debug_reg_state;
return x86_dr_insert_watchpoint (state, hw_type, addr, size);
}
default:
/* Unsupported. */
return 1;
}
}
int
x86_target::low_remove_point (raw_bkpt_type type, CORE_ADDR addr,
int size, raw_breakpoint *bp)
{
struct process_info *proc = current_process ();
switch (type)
{
case raw_bkpt_type_hw:
case raw_bkpt_type_write_wp:
case raw_bkpt_type_access_wp:
{
enum target_hw_bp_type hw_type
= raw_bkpt_type_to_target_hw_bp_type (type);
struct x86_debug_reg_state *state
= &proc->priv->arch_private->debug_reg_state;
return x86_dr_remove_watchpoint (state, hw_type, addr, size);
}
default:
/* Unsupported. */
return 1;
}
}
bool
x86_target::low_stopped_by_watchpoint ()
{
struct process_info *proc = current_process ();
return x86_dr_stopped_by_watchpoint (&proc->priv->arch_private->debug_reg_state);
}
CORE_ADDR
x86_target::low_stopped_data_address ()
{
struct process_info *proc = current_process ();
CORE_ADDR addr;
if (x86_dr_stopped_data_address (&proc->priv->arch_private->debug_reg_state,
&addr))
return addr;
return 0;
}
/* Called when a new process is created. */
arch_process_info *
x86_target::low_new_process ()
{
struct arch_process_info *info = XCNEW (struct arch_process_info);
x86_low_init_dregs (&info->debug_reg_state);
return info;
}
/* Called when a process is being deleted. */
void
x86_target::low_delete_process (arch_process_info *info)
{
xfree (info);
}
void
x86_target::low_new_thread (lwp_info *lwp)
{
/* This comes from nat/. */
x86_linux_new_thread (lwp);
}
void
x86_target::low_delete_thread (arch_lwp_info *alwp)
{
/* This comes from nat/. */
x86_linux_delete_thread (alwp);
}
/* Target routine for new_fork. */
void
x86_target::low_new_fork (process_info *parent, process_info *child)
{
/* These are allocated by linux_add_process. */
gdb_assert (parent->priv != NULL
&& parent->priv->arch_private != NULL);
gdb_assert (child->priv != NULL
&& child->priv->arch_private != NULL);
/* Linux kernel before 2.6.33 commit
72f674d203cd230426437cdcf7dd6f681dad8b0d
will inherit hardware debug registers from parent
on fork/vfork/clone. Newer Linux kernels create such tasks with
zeroed debug registers.
GDB core assumes the child inherits the watchpoints/hw
breakpoints of the parent, and will remove them all from the
forked off process. Copy the debug registers mirrors into the
new process so that all breakpoints and watchpoints can be
removed together. The debug registers mirror will become zeroed
in the end before detaching the forked off process, thus making
this compatible with older Linux kernels too. */
*child->priv->arch_private = *parent->priv->arch_private;
}
void
x86_target::low_prepare_to_resume (lwp_info *lwp)
{
/* This comes from nat/. */
x86_linux_prepare_to_resume (lwp);
}
/* See nat/x86-dregs.h. */
struct x86_debug_reg_state *
x86_debug_reg_state (pid_t pid)
{
struct process_info *proc = find_process_pid (pid);
return &proc->priv->arch_private->debug_reg_state;
}
/* When GDBSERVER is built as a 64-bit application on linux, the
PTRACE_GETSIGINFO data is always presented in 64-bit layout. Since
debugging a 32-bit inferior with a 64-bit GDBSERVER should look the same
as debugging it with a 32-bit GDBSERVER, we do the 32-bit <-> 64-bit
conversion in-place ourselves. */
/* Convert a ptrace/host siginfo object, into/from the siginfo in the
layout of the inferiors' architecture. Returns true if any
conversion was done; false otherwise. If DIRECTION is 1, then copy
from INF to PTRACE. If DIRECTION is 0, copy from PTRACE to
INF. */
bool
x86_target::low_siginfo_fixup (siginfo_t *ptrace, gdb_byte *inf, int direction)
{
#ifdef __x86_64__
unsigned int machine;
int tid = lwpid_of (current_thread);
int is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
/* Is the inferior 32-bit? If so, then fixup the siginfo object. */
if (!is_64bit_tdesc ())
return amd64_linux_siginfo_fixup_common (ptrace, inf, direction,
FIXUP_32);
/* No fixup for native x32 GDB. */
else if (!is_elf64 && sizeof (void *) == 8)
return amd64_linux_siginfo_fixup_common (ptrace, inf, direction,
FIXUP_X32);
#endif
return false;
}
static int use_xml;
/* Format of XSAVE extended state is:
struct
{
fxsave_bytes[0..463]
sw_usable_bytes[464..511]
xstate_hdr_bytes[512..575]
avx_bytes[576..831]
future_state etc
};
Same memory layout will be used for the coredump NT_X86_XSTATE
representing the XSAVE extended state registers.
The first 8 bytes of the sw_usable_bytes[464..467] is the OS enabled
extended state mask, which is the same as the extended control register
0 (the XFEATURE_ENABLED_MASK register), XCR0. We can use this mask
together with the mask saved in the xstate_hdr_bytes to determine what
states the processor/OS supports and what state, used or initialized,
the process/thread is in. */
#define I386_LINUX_XSAVE_XCR0_OFFSET 464
/* Does the current host support the GETFPXREGS request? The header
file may or may not define it, and even if it is defined, the
kernel will return EIO if it's running on a pre-SSE processor. */
int have_ptrace_getfpxregs =
#ifdef HAVE_PTRACE_GETFPXREGS
-1
#else
0
#endif
;
/* Get Linux/x86 target description from running target. */
static const struct target_desc *
x86_linux_read_description (void)
{
unsigned int machine;
int is_elf64;
int xcr0_features;
int tid;
static uint64_t xcr0;
struct regset_info *regset;
tid = lwpid_of (current_thread);
is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
if (sizeof (void *) == 4)
{
if (is_elf64 > 0)
error (_("Can't debug 64-bit process with 32-bit GDBserver"));
#ifndef __x86_64__
else if (machine == EM_X86_64)
error (_("Can't debug x86-64 process with 32-bit GDBserver"));
#endif
}
#if !defined __x86_64__ && defined HAVE_PTRACE_GETFPXREGS
if (machine == EM_386 && have_ptrace_getfpxregs == -1)
{
elf_fpxregset_t fpxregs;
if (ptrace (PTRACE_GETFPXREGS, tid, 0, (long) &fpxregs) < 0)
{
have_ptrace_getfpxregs = 0;
have_ptrace_getregset = 0;
return i386_linux_read_description (X86_XSTATE_X87);
}
else
have_ptrace_getfpxregs = 1;
}
#endif
if (!use_xml)
{
x86_xcr0 = X86_XSTATE_SSE_MASK;
/* Don't use XML. */
#ifdef __x86_64__
if (machine == EM_X86_64)
return tdesc_amd64_linux_no_xml.get ();
else
#endif
return tdesc_i386_linux_no_xml.get ();
}
if (have_ptrace_getregset == -1)
{
uint64_t xstateregs[(X86_XSTATE_SSE_SIZE / sizeof (uint64_t))];
struct iovec iov;
iov.iov_base = xstateregs;
iov.iov_len = sizeof (xstateregs);
/* Check if PTRACE_GETREGSET works. */
if (ptrace (PTRACE_GETREGSET, tid,
(unsigned int) NT_X86_XSTATE, (long) &iov) < 0)
have_ptrace_getregset = 0;
else
{
have_ptrace_getregset = 1;
/* Get XCR0 from XSAVE extended state. */
xcr0 = xstateregs[(I386_LINUX_XSAVE_XCR0_OFFSET
/ sizeof (uint64_t))];
/* Use PTRACE_GETREGSET if it is available. */
for (regset = x86_regsets;
regset->fill_function != NULL; regset++)
if (regset->get_request == PTRACE_GETREGSET)
regset->size = X86_XSTATE_SIZE (xcr0);
else if (regset->type != GENERAL_REGS)
regset->size = 0;
}
}
/* Check the native XCR0 only if PTRACE_GETREGSET is available. */
xcr0_features = (have_ptrace_getregset
&& (xcr0 & X86_XSTATE_ALL_MASK));
if (xcr0_features)
x86_xcr0 = xcr0;
if (machine == EM_X86_64)
{
#ifdef __x86_64__
const target_desc *tdesc = NULL;
if (xcr0_features)
{
tdesc = amd64_linux_read_description (xcr0 & X86_XSTATE_ALL_MASK,
!is_elf64);
}
if (tdesc == NULL)
tdesc = amd64_linux_read_description (X86_XSTATE_SSE_MASK, !is_elf64);
return tdesc;
#endif
}
else
{
const target_desc *tdesc = NULL;
if (xcr0_features)
tdesc = i386_linux_read_description (xcr0 & X86_XSTATE_ALL_MASK);
if (tdesc == NULL)
tdesc = i386_linux_read_description (X86_XSTATE_SSE);
return tdesc;
}
gdb_assert_not_reached ("failed to return tdesc");
}
/* Update all the target description of all processes; a new GDB
connected, and it may or not support xml target descriptions. */
void
x86_target::update_xmltarget ()
{
struct thread_info *saved_thread = current_thread;
/* Before changing the register cache's internal layout, flush the
contents of the current valid caches back to the threads, and
release the current regcache objects. */
regcache_release ();
for_each_process ([this] (process_info *proc) {
int pid = proc->pid;
/* Look up any thread of this process. */
current_thread = find_any_thread_of_pid (pid);
low_arch_setup ();
});
current_thread = saved_thread;
}
/* Process qSupported query, "xmlRegisters=". Update the buffer size for
PTRACE_GETREGSET. */
void
x86_target::process_qsupported (gdb::array_view features)
{
/* Return if gdb doesn't support XML. If gdb sends "xmlRegisters="
with "i386" in qSupported query, it supports x86 XML target
descriptions. */
use_xml = 0;
for (const char *feature : features)
{
if (startswith (feature, "xmlRegisters="))
{
char *copy = xstrdup (feature + 13);
char *saveptr;
for (char *p = strtok_r (copy, ",", &saveptr);
p != NULL;
p = strtok_r (NULL, ",", &saveptr))
{
if (strcmp (p, "i386") == 0)
{
use_xml = 1;
break;
}
}
free (copy);
}
}
update_xmltarget ();
}
/* Common for x86/x86-64. */
static struct regsets_info x86_regsets_info =
{
x86_regsets, /* regsets */
0, /* num_regsets */
NULL, /* disabled_regsets */
};
#ifdef __x86_64__
static struct regs_info amd64_linux_regs_info =
{
NULL, /* regset_bitmap */
NULL, /* usrregs_info */
&x86_regsets_info
};
#endif
static struct usrregs_info i386_linux_usrregs_info =
{
I386_NUM_REGS,
i386_regmap,
};
static struct regs_info i386_linux_regs_info =
{
NULL, /* regset_bitmap */
&i386_linux_usrregs_info,
&x86_regsets_info
};
const regs_info *
x86_target::get_regs_info ()
{
#ifdef __x86_64__
if (is_64bit_tdesc ())
return &amd64_linux_regs_info;
else
#endif
return &i386_linux_regs_info;
}
/* Initialize the target description for the architecture of the
inferior. */
void
x86_target::low_arch_setup ()
{
current_process ()->tdesc = x86_linux_read_description ();
}
bool
x86_target::low_supports_catch_syscall ()
{
return true;
}
/* Fill *SYSNO and *SYSRET with the syscall nr trapped and the syscall return
code. This should only be called if LWP got a SYSCALL_SIGTRAP. */
void
x86_target::low_get_syscall_trapinfo (regcache *regcache, int *sysno)
{
int use_64bit = register_size (regcache->tdesc, 0) == 8;
if (use_64bit)
{
long l_sysno;
collect_register_by_name (regcache, "orig_rax", &l_sysno);
*sysno = (int) l_sysno;
}
else
collect_register_by_name (regcache, "orig_eax", sysno);
}
bool
x86_target::supports_tracepoints ()
{
return true;
}
static void
append_insns (CORE_ADDR *to, size_t len, const unsigned char *buf)
{
target_write_memory (*to, buf, len);
*to += len;
}
static int
push_opcode (unsigned char *buf, const char *op)
{
unsigned char *buf_org = buf;
while (1)
{
char *endptr;
unsigned long ul = strtoul (op, &endptr, 16);
if (endptr == op)
break;
*buf++ = ul;
op = endptr;
}
return buf - buf_org;
}
#ifdef __x86_64__
/* Build a jump pad that saves registers and calls a collection
function. Writes a jump instruction to the jump pad to
JJUMPAD_INSN. The caller is responsible to write it in at the
tracepoint address. */
static int
amd64_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
CORE_ADDR collector,
CORE_ADDR lockaddr,
ULONGEST orig_size,
CORE_ADDR *jump_entry,
CORE_ADDR *trampoline,
ULONGEST *trampoline_size,
unsigned char *jjump_pad_insn,
ULONGEST *jjump_pad_insn_size,
CORE_ADDR *adjusted_insn_addr,
CORE_ADDR *adjusted_insn_addr_end,
char *err)
{
unsigned char buf[40];
int i, offset;
int64_t loffset;
CORE_ADDR buildaddr = *jump_entry;
/* Build the jump pad. */
/* First, do tracepoint data collection. Save registers. */
i = 0;
/* Need to ensure stack pointer saved first. */
buf[i++] = 0x54; /* push %rsp */
buf[i++] = 0x55; /* push %rbp */
buf[i++] = 0x57; /* push %rdi */
buf[i++] = 0x56; /* push %rsi */
buf[i++] = 0x52; /* push %rdx */
buf[i++] = 0x51; /* push %rcx */
buf[i++] = 0x53; /* push %rbx */
buf[i++] = 0x50; /* push %rax */
buf[i++] = 0x41; buf[i++] = 0x57; /* push %r15 */
buf[i++] = 0x41; buf[i++] = 0x56; /* push %r14 */
buf[i++] = 0x41; buf[i++] = 0x55; /* push %r13 */
buf[i++] = 0x41; buf[i++] = 0x54; /* push %r12 */
buf[i++] = 0x41; buf[i++] = 0x53; /* push %r11 */
buf[i++] = 0x41; buf[i++] = 0x52; /* push %r10 */
buf[i++] = 0x41; buf[i++] = 0x51; /* push %r9 */
buf[i++] = 0x41; buf[i++] = 0x50; /* push %r8 */
buf[i++] = 0x9c; /* pushfq */
buf[i++] = 0x48; /* movabs ,%rdi */
buf[i++] = 0xbf;
memcpy (buf + i, &tpaddr, 8);
i += 8;
buf[i++] = 0x57; /* push %rdi */
append_insns (&buildaddr, i, buf);
/* Stack space for the collecting_t object. */
i = 0;
i += push_opcode (&buf[i], "48 83 ec 18"); /* sub $0x18,%rsp */
i += push_opcode (&buf[i], "48 b8"); /* mov ,%rax */
memcpy (buf + i, &tpoint, 8);
i += 8;
i += push_opcode (&buf[i], "48 89 04 24"); /* mov %rax,(%rsp) */
i += push_opcode (&buf[i],
"64 48 8b 04 25 00 00 00 00"); /* mov %fs:0x0,%rax */
i += push_opcode (&buf[i], "48 89 44 24 08"); /* mov %rax,0x8(%rsp) */
append_insns (&buildaddr, i, buf);
/* spin-lock. */
i = 0;
i += push_opcode (&buf[i], "48 be"); /* movl ,%rsi */
memcpy (&buf[i], (void *) &lockaddr, 8);
i += 8;
i += push_opcode (&buf[i], "48 89 e1"); /* mov %rsp,%rcx */
i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
i += push_opcode (&buf[i], "f0 48 0f b1 0e"); /* lock cmpxchg %rcx,(%rsi) */
i += push_opcode (&buf[i], "48 85 c0"); /* test %rax,%rax */
i += push_opcode (&buf[i], "75 f4"); /* jne */
append_insns (&buildaddr, i, buf);
/* Set up the gdb_collect call. */
/* At this point, (stack pointer + 0x18) is the base of our saved
register block. */
i = 0;
i += push_opcode (&buf[i], "48 89 e6"); /* mov %rsp,%rsi */
i += push_opcode (&buf[i], "48 83 c6 18"); /* add $0x18,%rsi */
/* tpoint address may be 64-bit wide. */
i += push_opcode (&buf[i], "48 bf"); /* movl ,%rdi */
memcpy (buf + i, &tpoint, 8);
i += 8;
append_insns (&buildaddr, i, buf);
/* The collector function being in the shared library, may be
>31-bits away off the jump pad. */
i = 0;
i += push_opcode (&buf[i], "48 b8"); /* mov $collector,%rax */
memcpy (buf + i, &collector, 8);
i += 8;
i += push_opcode (&buf[i], "ff d0"); /* callq *%rax */
append_insns (&buildaddr, i, buf);
/* Clear the spin-lock. */
i = 0;
i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
i += push_opcode (&buf[i], "48 a3"); /* mov %rax, lockaddr */
memcpy (buf + i, &lockaddr, 8);
i += 8;
append_insns (&buildaddr, i, buf);
/* Remove stack that had been used for the collect_t object. */
i = 0;
i += push_opcode (&buf[i], "48 83 c4 18"); /* add $0x18,%rsp */
append_insns (&buildaddr, i, buf);
/* Restore register state. */
i = 0;
buf[i++] = 0x48; /* add $0x8,%rsp */
buf[i++] = 0x83;
buf[i++] = 0xc4;
buf[i++] = 0x08;
buf[i++] = 0x9d; /* popfq */
buf[i++] = 0x41; buf[i++] = 0x58; /* pop %r8 */
buf[i++] = 0x41; buf[i++] = 0x59; /* pop %r9 */
buf[i++] = 0x41; buf[i++] = 0x5a; /* pop %r10 */
buf[i++] = 0x41; buf[i++] = 0x5b; /* pop %r11 */
buf[i++] = 0x41; buf[i++] = 0x5c; /* pop %r12 */
buf[i++] = 0x41; buf[i++] = 0x5d; /* pop %r13 */
buf[i++] = 0x41; buf[i++] = 0x5e; /* pop %r14 */
buf[i++] = 0x41; buf[i++] = 0x5f; /* pop %r15 */
buf[i++] = 0x58; /* pop %rax */
buf[i++] = 0x5b; /* pop %rbx */
buf[i++] = 0x59; /* pop %rcx */
buf[i++] = 0x5a; /* pop %rdx */
buf[i++] = 0x5e; /* pop %rsi */
buf[i++] = 0x5f; /* pop %rdi */
buf[i++] = 0x5d; /* pop %rbp */
buf[i++] = 0x5c; /* pop %rsp */
append_insns (&buildaddr, i, buf);
/* Now, adjust the original instruction to execute in the jump
pad. */
*adjusted_insn_addr = buildaddr;
relocate_instruction (&buildaddr, tpaddr);
*adjusted_insn_addr_end = buildaddr;
/* Finally, write a jump back to the program. */
loffset = (tpaddr + orig_size) - (buildaddr + sizeof (jump_insn));
if (loffset > INT_MAX || loffset < INT_MIN)
{
sprintf (err,
"E.Jump back from jump pad too far from tracepoint "
"(offset 0x%" PRIx64 " > int32).", loffset);
return 1;
}
offset = (int) loffset;
memcpy (buf, jump_insn, sizeof (jump_insn));
memcpy (buf + 1, &offset, 4);
append_insns (&buildaddr, sizeof (jump_insn), buf);
/* The jump pad is now built. Wire in a jump to our jump pad. This
is always done last (by our caller actually), so that we can
install fast tracepoints with threads running. This relies on
the agent's atomic write support. */
loffset = *jump_entry - (tpaddr + sizeof (jump_insn));
if (loffset > INT_MAX || loffset < INT_MIN)
{
sprintf (err,
"E.Jump pad too far from tracepoint "
"(offset 0x%" PRIx64 " > int32).", loffset);
return 1;
}
offset = (int) loffset;
memcpy (buf, jump_insn, sizeof (jump_insn));
memcpy (buf + 1, &offset, 4);
memcpy (jjump_pad_insn, buf, sizeof (jump_insn));
*jjump_pad_insn_size = sizeof (jump_insn);
/* Return the end address of our pad. */
*jump_entry = buildaddr;
return 0;
}
#endif /* __x86_64__ */
/* Build a jump pad that saves registers and calls a collection
function. Writes a jump instruction to the jump pad to
JJUMPAD_INSN. The caller is responsible to write it in at the
tracepoint address. */
static int
i386_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
CORE_ADDR collector,
CORE_ADDR lockaddr,
ULONGEST orig_size,
CORE_ADDR *jump_entry,
CORE_ADDR *trampoline,
ULONGEST *trampoline_size,
unsigned char *jjump_pad_insn,
ULONGEST *jjump_pad_insn_size,
CORE_ADDR *adjusted_insn_addr,
CORE_ADDR *adjusted_insn_addr_end,
char *err)
{
unsigned char buf[0x100];
int i, offset;
CORE_ADDR buildaddr = *jump_entry;
/* Build the jump pad. */
/* First, do tracepoint data collection. Save registers. */
i = 0;
buf[i++] = 0x60; /* pushad */
buf[i++] = 0x68; /* push tpaddr aka $pc */
*((int *)(buf + i)) = (int) tpaddr;
i += 4;
buf[i++] = 0x9c; /* pushf */
buf[i++] = 0x1e; /* push %ds */
buf[i++] = 0x06; /* push %es */
buf[i++] = 0x0f; /* push %fs */
buf[i++] = 0xa0;
buf[i++] = 0x0f; /* push %gs */
buf[i++] = 0xa8;
buf[i++] = 0x16; /* push %ss */
buf[i++] = 0x0e; /* push %cs */
append_insns (&buildaddr, i, buf);
/* Stack space for the collecting_t object. */
i = 0;
i += push_opcode (&buf[i], "83 ec 08"); /* sub $0x8,%esp */
/* Build the object. */
i += push_opcode (&buf[i], "b8"); /* mov ,%eax */
memcpy (buf + i, &tpoint, 4);
i += 4;
i += push_opcode (&buf[i], "89 04 24"); /* mov %eax,(%esp) */
i += push_opcode (&buf[i], "65 a1 00 00 00 00"); /* mov %gs:0x0,%eax */
i += push_opcode (&buf[i], "89 44 24 04"); /* mov %eax,0x4(%esp) */
append_insns (&buildaddr, i, buf);
/* spin-lock. Note this is using cmpxchg, which leaves i386 behind.
If we cared for it, this could be using xchg alternatively. */
i = 0;
i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
i += push_opcode (&buf[i], "f0 0f b1 25"); /* lock cmpxchg
%esp, */
memcpy (&buf[i], (void *) &lockaddr, 4);
i += 4;
i += push_opcode (&buf[i], "85 c0"); /* test %eax,%eax */
i += push_opcode (&buf[i], "75 f2"); /* jne */
append_insns (&buildaddr, i, buf);
/* Set up arguments to the gdb_collect call. */
i = 0;
i += push_opcode (&buf[i], "89 e0"); /* mov %esp,%eax */
i += push_opcode (&buf[i], "83 c0 08"); /* add $0x08,%eax */
i += push_opcode (&buf[i], "89 44 24 fc"); /* mov %eax,-0x4(%esp) */
append_insns (&buildaddr, i, buf);
i = 0;
i += push_opcode (&buf[i], "83 ec 08"); /* sub $0x8,%esp */
append_insns (&buildaddr, i, buf);
i = 0;
i += push_opcode (&buf[i], "c7 04 24"); /* movl ,(%esp) */
memcpy (&buf[i], (void *) &tpoint, 4);
i += 4;
append_insns (&buildaddr, i, buf);
buf[0] = 0xe8; /* call */
offset = collector - (buildaddr + sizeof (jump_insn));
memcpy (buf + 1, &offset, 4);
append_insns (&buildaddr, 5, buf);
/* Clean up after the call. */
buf[0] = 0x83; /* add $0x8,%esp */
buf[1] = 0xc4;
buf[2] = 0x08;
append_insns (&buildaddr, 3, buf);
/* Clear the spin-lock. This would need the LOCK prefix on older
broken archs. */
i = 0;
i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
i += push_opcode (&buf[i], "a3"); /* mov %eax, lockaddr */
memcpy (buf + i, &lockaddr, 4);
i += 4;
append_insns (&buildaddr, i, buf);
/* Remove stack that had been used for the collect_t object. */
i = 0;
i += push_opcode (&buf[i], "83 c4 08"); /* add $0x08,%esp */
append_insns (&buildaddr, i, buf);
i = 0;
buf[i++] = 0x83; /* add $0x4,%esp (no pop of %cs, assume unchanged) */
buf[i++] = 0xc4;
buf[i++] = 0x04;
buf[i++] = 0x17; /* pop %ss */
buf[i++] = 0x0f; /* pop %gs */
buf[i++] = 0xa9;
buf[i++] = 0x0f; /* pop %fs */
buf[i++] = 0xa1;
buf[i++] = 0x07; /* pop %es */
buf[i++] = 0x1f; /* pop %ds */
buf[i++] = 0x9d; /* popf */
buf[i++] = 0x83; /* add $0x4,%esp (pop of tpaddr aka $pc) */
buf[i++] = 0xc4;
buf[i++] = 0x04;
buf[i++] = 0x61; /* popad */
append_insns (&buildaddr, i, buf);
/* Now, adjust the original instruction to execute in the jump
pad. */
*adjusted_insn_addr = buildaddr;
relocate_instruction (&buildaddr, tpaddr);
*adjusted_insn_addr_end = buildaddr;
/* Write the jump back to the program. */
offset = (tpaddr + orig_size) - (buildaddr + sizeof (jump_insn));
memcpy (buf, jump_insn, sizeof (jump_insn));
memcpy (buf + 1, &offset, 4);
append_insns (&buildaddr, sizeof (jump_insn), buf);
/* The jump pad is now built. Wire in a jump to our jump pad. This
is always done last (by our caller actually), so that we can
install fast tracepoints with threads running. This relies on
the agent's atomic write support. */
if (orig_size == 4)
{
/* Create a trampoline. */
*trampoline_size = sizeof (jump_insn);
if (!claim_trampoline_space (*trampoline_size, trampoline))
{
/* No trampoline space available. */
strcpy (err,
"E.Cannot allocate trampoline space needed for fast "
"tracepoints on 4-byte instructions.");
return 1;
}
offset = *jump_entry - (*trampoline + sizeof (jump_insn));
memcpy (buf, jump_insn, sizeof (jump_insn));
memcpy (buf + 1, &offset, 4);
target_write_memory (*trampoline, buf, sizeof (jump_insn));
/* Use a 16-bit relative jump instruction to jump to the trampoline. */
offset = (*trampoline - (tpaddr + sizeof (small_jump_insn))) & 0xffff;
memcpy (buf, small_jump_insn, sizeof (small_jump_insn));
memcpy (buf + 2, &offset, 2);
memcpy (jjump_pad_insn, buf, sizeof (small_jump_insn));
*jjump_pad_insn_size = sizeof (small_jump_insn);
}
else
{
/* Else use a 32-bit relative jump instruction. */
offset = *jump_entry - (tpaddr + sizeof (jump_insn));
memcpy (buf, jump_insn, sizeof (jump_insn));
memcpy (buf + 1, &offset, 4);
memcpy (jjump_pad_insn, buf, sizeof (jump_insn));
*jjump_pad_insn_size = sizeof (jump_insn);
}
/* Return the end address of our pad. */
*jump_entry = buildaddr;
return 0;
}
bool
x86_target::supports_fast_tracepoints ()
{
return true;
}
int
x86_target::install_fast_tracepoint_jump_pad (CORE_ADDR tpoint,
CORE_ADDR tpaddr,
CORE_ADDR collector,
CORE_ADDR lockaddr,
ULONGEST orig_size,
CORE_ADDR *jump_entry,
CORE_ADDR *trampoline,
ULONGEST *trampoline_size,
unsigned char *jjump_pad_insn,
ULONGEST *jjump_pad_insn_size,
CORE_ADDR *adjusted_insn_addr,
CORE_ADDR *adjusted_insn_addr_end,
char *err)
{
#ifdef __x86_64__
if (is_64bit_tdesc ())
return amd64_install_fast_tracepoint_jump_pad (tpoint, tpaddr,
collector, lockaddr,
orig_size, jump_entry,
trampoline, trampoline_size,
jjump_pad_insn,
jjump_pad_insn_size,
adjusted_insn_addr,
adjusted_insn_addr_end,
err);
#endif
return i386_install_fast_tracepoint_jump_pad (tpoint, tpaddr,
collector, lockaddr,
orig_size, jump_entry,
trampoline, trampoline_size,
jjump_pad_insn,
jjump_pad_insn_size,
adjusted_insn_addr,
adjusted_insn_addr_end,
err);
}
/* Return the minimum instruction length for fast tracepoints on x86/x86-64
architectures. */
int
x86_target::get_min_fast_tracepoint_insn_len ()
{
static int warned_about_fast_tracepoints = 0;
#ifdef __x86_64__
/* On x86-64, 5-byte jump instructions with a 4-byte offset are always
used for fast tracepoints. */
if (is_64bit_tdesc ())
return 5;
#endif
if (agent_loaded_p ())
{
char errbuf[IPA_BUFSIZ];
errbuf[0] = '\0';
/* On x86, if trampolines are available, then 4-byte jump instructions
with a 2-byte offset may be used, otherwise 5-byte jump instructions
with a 4-byte offset are used instead. */
if (have_fast_tracepoint_trampoline_buffer (errbuf))
return 4;
else
{
/* GDB has no channel to explain to user why a shorter fast
tracepoint is not possible, but at least make GDBserver
mention that something has gone awry. */
if (!warned_about_fast_tracepoints)
{
warning ("4-byte fast tracepoints not available; %s", errbuf);
warned_about_fast_tracepoints = 1;
}
return 5;
}
}
else
{
/* Indicate that the minimum length is currently unknown since the IPA
has not loaded yet. */
return 0;
}
}
static void
add_insns (unsigned char *start, int len)
{
CORE_ADDR buildaddr = current_insn_ptr;
if (debug_threads)
debug_printf ("Adding %d bytes of insn at %s\n",
len, paddress (buildaddr));
append_insns (&buildaddr, len, start);
current_insn_ptr = buildaddr;
}
/* Our general strategy for emitting code is to avoid specifying raw
bytes whenever possible, and instead copy a block of inline asm
that is embedded in the function. This is a little messy, because
we need to keep the compiler from discarding what looks like dead
code, plus suppress various warnings. */
#define EMIT_ASM(NAME, INSNS) \
do \
{ \
extern unsigned char start_ ## NAME, end_ ## NAME; \
add_insns (&start_ ## NAME, &end_ ## NAME - &start_ ## NAME); \
__asm__ ("jmp end_" #NAME "\n" \
"\t" "start_" #NAME ":" \
"\t" INSNS "\n" \
"\t" "end_" #NAME ":"); \
} while (0)
#ifdef __x86_64__
#define EMIT_ASM32(NAME,INSNS) \
do \
{ \
extern unsigned char start_ ## NAME, end_ ## NAME; \
add_insns (&start_ ## NAME, &end_ ## NAME - &start_ ## NAME); \
__asm__ (".code32\n" \
"\t" "jmp end_" #NAME "\n" \
"\t" "start_" #NAME ":\n" \
"\t" INSNS "\n" \
"\t" "end_" #NAME ":\n" \
".code64\n"); \
} while (0)
#else
#define EMIT_ASM32(NAME,INSNS) EMIT_ASM(NAME,INSNS)
#endif
#ifdef __x86_64__
static void
amd64_emit_prologue (void)
{
EMIT_ASM (amd64_prologue,
"pushq %rbp\n\t"
"movq %rsp,%rbp\n\t"
"sub $0x20,%rsp\n\t"
"movq %rdi,-8(%rbp)\n\t"
"movq %rsi,-16(%rbp)");
}
static void
amd64_emit_epilogue (void)
{
EMIT_ASM (amd64_epilogue,
"movq -16(%rbp),%rdi\n\t"
"movq %rax,(%rdi)\n\t"
"xor %rax,%rax\n\t"
"leave\n\t"
"ret");
}
static void
amd64_emit_add (void)
{
EMIT_ASM (amd64_add,
"add (%rsp),%rax\n\t"
"lea 0x8(%rsp),%rsp");
}
static void
amd64_emit_sub (void)
{
EMIT_ASM (amd64_sub,
"sub %rax,(%rsp)\n\t"
"pop %rax");
}
static void
amd64_emit_mul (void)
{
emit_error = 1;
}
static void
amd64_emit_lsh (void)
{
emit_error = 1;
}
static void
amd64_emit_rsh_signed (void)
{
emit_error = 1;
}
static void
amd64_emit_rsh_unsigned (void)
{
emit_error = 1;
}
static void
amd64_emit_ext (int arg)
{
switch (arg)
{
case 8:
EMIT_ASM (amd64_ext_8,
"cbtw\n\t"
"cwtl\n\t"
"cltq");
break;
case 16:
EMIT_ASM (amd64_ext_16,
"cwtl\n\t"
"cltq");
break;
case 32:
EMIT_ASM (amd64_ext_32,
"cltq");
break;
default:
emit_error = 1;
}
}
static void
amd64_emit_log_not (void)
{
EMIT_ASM (amd64_log_not,
"test %rax,%rax\n\t"
"sete %cl\n\t"
"movzbq %cl,%rax");
}
static void
amd64_emit_bit_and (void)
{
EMIT_ASM (amd64_and,
"and (%rsp),%rax\n\t"
"lea 0x8(%rsp),%rsp");
}
static void
amd64_emit_bit_or (void)
{
EMIT_ASM (amd64_or,
"or (%rsp),%rax\n\t"
"lea 0x8(%rsp),%rsp");
}
static void
amd64_emit_bit_xor (void)
{
EMIT_ASM (amd64_xor,
"xor (%rsp),%rax\n\t"
"lea 0x8(%rsp),%rsp");
}
static void
amd64_emit_bit_not (void)
{
EMIT_ASM (amd64_bit_not,
"xorq $0xffffffffffffffff,%rax");
}
static void
amd64_emit_equal (void)
{
EMIT_ASM (amd64_equal,
"cmp %rax,(%rsp)\n\t"
"je .Lamd64_equal_true\n\t"
"xor %rax,%rax\n\t"
"jmp .Lamd64_equal_end\n\t"
".Lamd64_equal_true:\n\t"
"mov $0x1,%rax\n\t"
".Lamd64_equal_end:\n\t"
"lea 0x8(%rsp),%rsp");
}
static void
amd64_emit_less_signed (void)
{
EMIT_ASM (amd64_less_signed,
"cmp %rax,(%rsp)\n\t"
"jl .Lamd64_less_signed_true\n\t"
"xor %rax,%rax\n\t"
"jmp .Lamd64_less_signed_end\n\t"
".Lamd64_less_signed_true:\n\t"
"mov $1,%rax\n\t"
".Lamd64_less_signed_end:\n\t"
"lea 0x8(%rsp),%rsp");
}
static void
amd64_emit_less_unsigned (void)
{
EMIT_ASM (amd64_less_unsigned,
"cmp %rax,(%rsp)\n\t"
"jb .Lamd64_less_unsigned_true\n\t"
"xor %rax,%rax\n\t"
"jmp .Lamd64_less_unsigned_end\n\t"
".Lamd64_less_unsigned_true:\n\t"
"mov $1,%rax\n\t"
".Lamd64_less_unsigned_end:\n\t"
"lea 0x8(%rsp),%rsp");
}
static void
amd64_emit_ref (int size)
{
switch (size)
{
case 1:
EMIT_ASM (amd64_ref1,
"movb (%rax),%al");
break;
case 2:
EMIT_ASM (amd64_ref2,
"movw (%rax),%ax");
break;
case 4:
EMIT_ASM (amd64_ref4,
"movl (%rax),%eax");
break;
case 8:
EMIT_ASM (amd64_ref8,
"movq (%rax),%rax");
break;
}
}
static void
amd64_emit_if_goto (int *offset_p, int *size_p)
{
EMIT_ASM (amd64_if_goto,
"mov %rax,%rcx\n\t"
"pop %rax\n\t"
"cmp $0,%rcx\n\t"
".byte 0x0f, 0x85, 0x0, 0x0, 0x0, 0x0");
if (offset_p)
*offset_p = 10;
if (size_p)
*size_p = 4;
}
static void
amd64_emit_goto (int *offset_p, int *size_p)
{
EMIT_ASM (amd64_goto,
".byte 0xe9, 0x0, 0x0, 0x0, 0x0");
if (offset_p)
*offset_p = 1;
if (size_p)
*size_p = 4;
}
static void
amd64_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
{
int diff = (to - (from + size));
unsigned char buf[sizeof (int)];
if (size != 4)
{
emit_error = 1;
return;
}
memcpy (buf, &diff, sizeof (int));
target_write_memory (from, buf, sizeof (int));
}
static void
amd64_emit_const (LONGEST num)
{
unsigned char buf[16];
int i;
CORE_ADDR buildaddr = current_insn_ptr;
i = 0;
buf[i++] = 0x48; buf[i++] = 0xb8; /* mov $,%rax */
memcpy (&buf[i], &num, sizeof (num));
i += 8;
append_insns (&buildaddr, i, buf);
current_insn_ptr = buildaddr;
}
static void
amd64_emit_call (CORE_ADDR fn)
{
unsigned char buf[16];
int i;
CORE_ADDR buildaddr;
LONGEST offset64;
/* The destination function being in the shared library, may be
>31-bits away off the compiled code pad. */
buildaddr = current_insn_ptr;
offset64 = fn - (buildaddr + 1 /* call op */ + 4 /* 32-bit offset */);
i = 0;
if (offset64 > INT_MAX || offset64 < INT_MIN)
{
/* Offset is too large for a call. Use callq, but that requires
a register, so avoid it if possible. Use r10, since it is
call-clobbered, we don't have to push/pop it. */
buf[i++] = 0x48; /* mov $fn,%r10 */
buf[i++] = 0xba;
memcpy (buf + i, &fn, 8);
i += 8;
buf[i++] = 0xff; /* callq *%r10 */
buf[i++] = 0xd2;
}
else
{
int offset32 = offset64; /* we know we can't overflow here. */
buf[i++] = 0xe8; /* call */
memcpy (buf + i, &offset32, 4);
i += 4;
}
append_insns (&buildaddr, i, buf);
current_insn_ptr = buildaddr;
}
static void
amd64_emit_reg (int reg)
{
unsigned char buf[16];
int i;
CORE_ADDR buildaddr;
/* Assume raw_regs is still in %rdi. */
buildaddr = current_insn_ptr;
i = 0;
buf[i++] = 0xbe; /* mov $,%esi */
memcpy (&buf[i], ®, sizeof (reg));
i += 4;
append_insns (&buildaddr, i, buf);
current_insn_ptr = buildaddr;
amd64_emit_call (get_raw_reg_func_addr ());
}
static void
amd64_emit_pop (void)
{
EMIT_ASM (amd64_pop,
"pop %rax");
}
static void
amd64_emit_stack_flush (void)
{
EMIT_ASM (amd64_stack_flush,
"push %rax");
}
static void
amd64_emit_zero_ext (int arg)
{
switch (arg)
{
case 8:
EMIT_ASM (amd64_zero_ext_8,
"and $0xff,%rax");
break;
case 16:
EMIT_ASM (amd64_zero_ext_16,
"and $0xffff,%rax");
break;
case 32:
EMIT_ASM (amd64_zero_ext_32,
"mov $0xffffffff,%rcx\n\t"
"and %rcx,%rax");
break;
default:
emit_error = 1;
}
}
static void
amd64_emit_swap (void)
{
EMIT_ASM (amd64_swap,
"mov %rax,%rcx\n\t"
"pop %rax\n\t"
"push %rcx");
}
static void
amd64_emit_stack_adjust (int n)
{
unsigned char buf[16];
int i;
CORE_ADDR buildaddr = current_insn_ptr;
i = 0;
buf[i++] = 0x48; /* lea $(%rsp),%rsp */
buf[i++] = 0x8d;
buf[i++] = 0x64;
buf[i++] = 0x24;
/* This only handles adjustments up to 16, but we don't expect any more. */
buf[i++] = n * 8;
append_insns (&buildaddr, i, buf);
current_insn_ptr = buildaddr;
}
/* FN's prototype is `LONGEST(*fn)(int)'. */
static void
amd64_emit_int_call_1 (CORE_ADDR fn, int arg1)
{
unsigned char buf[16];
int i;
CORE_ADDR buildaddr;
buildaddr = current_insn_ptr;
i = 0;
buf[i++] = 0xbf; /* movl $,%edi */
memcpy (&buf[i], &arg1, sizeof (arg1));
i += 4;
append_insns (&buildaddr, i, buf);
current_insn_ptr = buildaddr;
amd64_emit_call (fn);
}
/* FN's prototype is `void(*fn)(int,LONGEST)'. */
static void
amd64_emit_void_call_2 (CORE_ADDR fn, int arg1)
{
unsigned char buf[16];
int i;
CORE_ADDR buildaddr;
buildaddr = current_insn_ptr;
i = 0;
buf[i++] = 0xbf; /* movl $,%edi */
memcpy (&buf[i], &arg1, sizeof (arg1));
i += 4;
append_insns (&buildaddr, i, buf);
current_insn_ptr = buildaddr;
EMIT_ASM (amd64_void_call_2_a,
/* Save away a copy of the stack top. */
"push %rax\n\t"
/* Also pass top as the second argument. */
"mov %rax,%rsi");
amd64_emit_call (fn);
EMIT_ASM (amd64_void_call_2_b,
/* Restore the stack top, %rax may have been trashed. */
"pop %rax");
}
static void
amd64_emit_eq_goto (int *offset_p, int *size_p)
{
EMIT_ASM (amd64_eq,
"cmp %rax,(%rsp)\n\t"
"jne .Lamd64_eq_fallthru\n\t"
"lea 0x8(%rsp),%rsp\n\t"
"pop %rax\n\t"
/* jmp, but don't trust the assembler to choose the right jump */
".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
".Lamd64_eq_fallthru:\n\t"
"lea 0x8(%rsp),%rsp\n\t"
"pop %rax");
if (offset_p)
*offset_p = 13;
if (size_p)
*size_p = 4;
}
static void
amd64_emit_ne_goto (int *offset_p, int *size_p)
{
EMIT_ASM (amd64_ne,
"cmp %rax,(%rsp)\n\t"
"je .Lamd64_ne_fallthru\n\t"
"lea 0x8(%rsp),%rsp\n\t"
"pop %rax\n\t"
/* jmp, but don't trust the assembler to choose the right jump */
".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
".Lamd64_ne_fallthru:\n\t"
"lea 0x8(%rsp),%rsp\n\t"
"pop %rax");
if (offset_p)
*offset_p = 13;
if (size_p)
*size_p = 4;
}
static void
amd64_emit_lt_goto (int *offset_p, int *size_p)
{
EMIT_ASM (amd64_lt,
"cmp %rax,(%rsp)\n\t"
"jnl .Lamd64_lt_fallthru\n\t"
"lea 0x8(%rsp),%rsp\n\t"
"pop %rax\n\t"
/* jmp, but don't trust the assembler to choose the right jump */
".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
".Lamd64_lt_fallthru:\n\t"
"lea 0x8(%rsp),%rsp\n\t"
"pop %rax");
if (offset_p)
*offset_p = 13;
if (size_p)
*size_p = 4;
}
static void
amd64_emit_le_goto (int *offset_p, int *size_p)
{
EMIT_ASM (amd64_le,
"cmp %rax,(%rsp)\n\t"
"jnle .Lamd64_le_fallthru\n\t"
"lea 0x8(%rsp),%rsp\n\t"
"pop %rax\n\t"
/* jmp, but don't trust the assembler to choose the right jump */
".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
".Lamd64_le_fallthru:\n\t"
"lea 0x8(%rsp),%rsp\n\t"
"pop %rax");
if (offset_p)
*offset_p = 13;
if (size_p)
*size_p = 4;
}
static void
amd64_emit_gt_goto (int *offset_p, int *size_p)
{
EMIT_ASM (amd64_gt,
"cmp %rax,(%rsp)\n\t"
"jng .Lamd64_gt_fallthru\n\t"
"lea 0x8(%rsp),%rsp\n\t"
"pop %rax\n\t"
/* jmp, but don't trust the assembler to choose the right jump */
".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
".Lamd64_gt_fallthru:\n\t"
"lea 0x8(%rsp),%rsp\n\t"
"pop %rax");
if (offset_p)
*offset_p = 13;
if (size_p)
*size_p = 4;
}
static void
amd64_emit_ge_goto (int *offset_p, int *size_p)
{
EMIT_ASM (amd64_ge,
"cmp %rax,(%rsp)\n\t"
"jnge .Lamd64_ge_fallthru\n\t"
".Lamd64_ge_jump:\n\t"
"lea 0x8(%rsp),%rsp\n\t"
"pop %rax\n\t"
/* jmp, but don't trust the assembler to choose the right jump */
".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
".Lamd64_ge_fallthru:\n\t"
"lea 0x8(%rsp),%rsp\n\t"
"pop %rax");
if (offset_p)
*offset_p = 13;
if (size_p)
*size_p = 4;
}
static emit_ops amd64_emit_ops =
{
amd64_emit_prologue,
amd64_emit_epilogue,
amd64_emit_add,
amd64_emit_sub,
amd64_emit_mul,
amd64_emit_lsh,
amd64_emit_rsh_signed,
amd64_emit_rsh_unsigned,
amd64_emit_ext,
amd64_emit_log_not,
amd64_emit_bit_and,
amd64_emit_bit_or,
amd64_emit_bit_xor,
amd64_emit_bit_not,
amd64_emit_equal,
amd64_emit_less_signed,
amd64_emit_less_unsigned,
amd64_emit_ref,
amd64_emit_if_goto,
amd64_emit_goto,
amd64_write_goto_address,
amd64_emit_const,
amd64_emit_call,
amd64_emit_reg,
amd64_emit_pop,
amd64_emit_stack_flush,
amd64_emit_zero_ext,
amd64_emit_swap,
amd64_emit_stack_adjust,
amd64_emit_int_call_1,
amd64_emit_void_call_2,
amd64_emit_eq_goto,
amd64_emit_ne_goto,
amd64_emit_lt_goto,
amd64_emit_le_goto,
amd64_emit_gt_goto,
amd64_emit_ge_goto
};
#endif /* __x86_64__ */
static void
i386_emit_prologue (void)
{
EMIT_ASM32 (i386_prologue,
"push %ebp\n\t"
"mov %esp,%ebp\n\t"
"push %ebx");
/* At this point, the raw regs base address is at 8(%ebp), and the
value pointer is at 12(%ebp). */
}
static void
i386_emit_epilogue (void)
{
EMIT_ASM32 (i386_epilogue,
"mov 12(%ebp),%ecx\n\t"
"mov %eax,(%ecx)\n\t"
"mov %ebx,0x4(%ecx)\n\t"
"xor %eax,%eax\n\t"
"pop %ebx\n\t"
"pop %ebp\n\t"
"ret");
}
static void
i386_emit_add (void)
{
EMIT_ASM32 (i386_add,
"add (%esp),%eax\n\t"
"adc 0x4(%esp),%ebx\n\t"
"lea 0x8(%esp),%esp");
}
static void
i386_emit_sub (void)
{
EMIT_ASM32 (i386_sub,
"subl %eax,(%esp)\n\t"
"sbbl %ebx,4(%esp)\n\t"
"pop %eax\n\t"
"pop %ebx\n\t");
}
static void
i386_emit_mul (void)
{
emit_error = 1;
}
static void
i386_emit_lsh (void)
{
emit_error = 1;
}
static void
i386_emit_rsh_signed (void)
{
emit_error = 1;
}
static void
i386_emit_rsh_unsigned (void)
{
emit_error = 1;
}
static void
i386_emit_ext (int arg)
{
switch (arg)
{
case 8:
EMIT_ASM32 (i386_ext_8,
"cbtw\n\t"
"cwtl\n\t"
"movl %eax,%ebx\n\t"
"sarl $31,%ebx");
break;
case 16:
EMIT_ASM32 (i386_ext_16,
"cwtl\n\t"
"movl %eax,%ebx\n\t"
"sarl $31,%ebx");
break;
case 32:
EMIT_ASM32 (i386_ext_32,
"movl %eax,%ebx\n\t"
"sarl $31,%ebx");
break;
default:
emit_error = 1;
}
}
static void
i386_emit_log_not (void)
{
EMIT_ASM32 (i386_log_not,
"or %ebx,%eax\n\t"
"test %eax,%eax\n\t"
"sete %cl\n\t"
"xor %ebx,%ebx\n\t"
"movzbl %cl,%eax");
}
static void
i386_emit_bit_and (void)
{
EMIT_ASM32 (i386_and,
"and (%esp),%eax\n\t"
"and 0x4(%esp),%ebx\n\t"
"lea 0x8(%esp),%esp");
}
static void
i386_emit_bit_or (void)
{
EMIT_ASM32 (i386_or,
"or (%esp),%eax\n\t"
"or 0x4(%esp),%ebx\n\t"
"lea 0x8(%esp),%esp");
}
static void
i386_emit_bit_xor (void)
{
EMIT_ASM32 (i386_xor,
"xor (%esp),%eax\n\t"
"xor 0x4(%esp),%ebx\n\t"
"lea 0x8(%esp),%esp");
}
static void
i386_emit_bit_not (void)
{
EMIT_ASM32 (i386_bit_not,
"xor $0xffffffff,%eax\n\t"
"xor $0xffffffff,%ebx\n\t");
}
static void
i386_emit_equal (void)
{
EMIT_ASM32 (i386_equal,
"cmpl %ebx,4(%esp)\n\t"
"jne .Li386_equal_false\n\t"
"cmpl %eax,(%esp)\n\t"
"je .Li386_equal_true\n\t"
".Li386_equal_false:\n\t"
"xor %eax,%eax\n\t"
"jmp .Li386_equal_end\n\t"
".Li386_equal_true:\n\t"
"mov $1,%eax\n\t"
".Li386_equal_end:\n\t"
"xor %ebx,%ebx\n\t"
"lea 0x8(%esp),%esp");
}
static void
i386_emit_less_signed (void)
{
EMIT_ASM32 (i386_less_signed,
"cmpl %ebx,4(%esp)\n\t"
"jl .Li386_less_signed_true\n\t"
"jne .Li386_less_signed_false\n\t"
"cmpl %eax,(%esp)\n\t"
"jl .Li386_less_signed_true\n\t"
".Li386_less_signed_false:\n\t"
"xor %eax,%eax\n\t"
"jmp .Li386_less_signed_end\n\t"
".Li386_less_signed_true:\n\t"
"mov $1,%eax\n\t"
".Li386_less_signed_end:\n\t"
"xor %ebx,%ebx\n\t"
"lea 0x8(%esp),%esp");
}
static void
i386_emit_less_unsigned (void)
{
EMIT_ASM32 (i386_less_unsigned,
"cmpl %ebx,4(%esp)\n\t"
"jb .Li386_less_unsigned_true\n\t"
"jne .Li386_less_unsigned_false\n\t"
"cmpl %eax,(%esp)\n\t"
"jb .Li386_less_unsigned_true\n\t"
".Li386_less_unsigned_false:\n\t"
"xor %eax,%eax\n\t"
"jmp .Li386_less_unsigned_end\n\t"
".Li386_less_unsigned_true:\n\t"
"mov $1,%eax\n\t"
".Li386_less_unsigned_end:\n\t"
"xor %ebx,%ebx\n\t"
"lea 0x8(%esp),%esp");
}
static void
i386_emit_ref (int size)
{
switch (size)
{
case 1:
EMIT_ASM32 (i386_ref1,
"movb (%eax),%al");
break;
case 2:
EMIT_ASM32 (i386_ref2,
"movw (%eax),%ax");
break;
case 4:
EMIT_ASM32 (i386_ref4,
"movl (%eax),%eax");
break;
case 8:
EMIT_ASM32 (i386_ref8,
"movl 4(%eax),%ebx\n\t"
"movl (%eax),%eax");
break;
}
}
static void
i386_emit_if_goto (int *offset_p, int *size_p)
{
EMIT_ASM32 (i386_if_goto,
"mov %eax,%ecx\n\t"
"or %ebx,%ecx\n\t"
"pop %eax\n\t"
"pop %ebx\n\t"
"cmpl $0,%ecx\n\t"
/* Don't trust the assembler to choose the right jump */
".byte 0x0f, 0x85, 0x0, 0x0, 0x0, 0x0");
if (offset_p)
*offset_p = 11; /* be sure that this matches the sequence above */
if (size_p)
*size_p = 4;
}
static void
i386_emit_goto (int *offset_p, int *size_p)
{
EMIT_ASM32 (i386_goto,
/* Don't trust the assembler to choose the right jump */
".byte 0xe9, 0x0, 0x0, 0x0, 0x0");
if (offset_p)
*offset_p = 1;
if (size_p)
*size_p = 4;
}
static void
i386_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
{
int diff = (to - (from + size));
unsigned char buf[sizeof (int)];
/* We're only doing 4-byte sizes at the moment. */
if (size != 4)
{
emit_error = 1;
return;
}
memcpy (buf, &diff, sizeof (int));
target_write_memory (from, buf, sizeof (int));
}
static void
i386_emit_const (LONGEST num)
{
unsigned char buf[16];
int i, hi, lo;
CORE_ADDR buildaddr = current_insn_ptr;
i = 0;
buf[i++] = 0xb8; /* mov $,%eax */
lo = num & 0xffffffff;
memcpy (&buf[i], &lo, sizeof (lo));
i += 4;
hi = ((num >> 32) & 0xffffffff);
if (hi)
{
buf[i++] = 0xbb; /* mov $,%ebx */
memcpy (&buf[i], &hi, sizeof (hi));
i += 4;
}
else
{
buf[i++] = 0x31; buf[i++] = 0xdb; /* xor %ebx,%ebx */
}
append_insns (&buildaddr, i, buf);
current_insn_ptr = buildaddr;
}
static void
i386_emit_call (CORE_ADDR fn)
{
unsigned char buf[16];
int i, offset;
CORE_ADDR buildaddr;
buildaddr = current_insn_ptr;
i = 0;
buf[i++] = 0xe8; /* call */
offset = ((int) fn) - (buildaddr + 5);
memcpy (buf + 1, &offset, 4);
append_insns (&buildaddr, 5, buf);
current_insn_ptr = buildaddr;
}
static void
i386_emit_reg (int reg)
{
unsigned char buf[16];
int i;
CORE_ADDR buildaddr;
EMIT_ASM32 (i386_reg_a,
"sub $0x8,%esp");
buildaddr = current_insn_ptr;
i = 0;
buf[i++] = 0xb8; /* mov $,%eax */
memcpy (&buf[i], ®, sizeof (reg));
i += 4;
append_insns (&buildaddr, i, buf);
current_insn_ptr = buildaddr;
EMIT_ASM32 (i386_reg_b,
"mov %eax,4(%esp)\n\t"
"mov 8(%ebp),%eax\n\t"
"mov %eax,(%esp)");
i386_emit_call (get_raw_reg_func_addr ());
EMIT_ASM32 (i386_reg_c,
"xor %ebx,%ebx\n\t"
"lea 0x8(%esp),%esp");
}
static void
i386_emit_pop (void)
{
EMIT_ASM32 (i386_pop,
"pop %eax\n\t"
"pop %ebx");
}
static void
i386_emit_stack_flush (void)
{
EMIT_ASM32 (i386_stack_flush,
"push %ebx\n\t"
"push %eax");
}
static void
i386_emit_zero_ext (int arg)
{
switch (arg)
{
case 8:
EMIT_ASM32 (i386_zero_ext_8,
"and $0xff,%eax\n\t"
"xor %ebx,%ebx");
break;
case 16:
EMIT_ASM32 (i386_zero_ext_16,
"and $0xffff,%eax\n\t"
"xor %ebx,%ebx");
break;
case 32:
EMIT_ASM32 (i386_zero_ext_32,
"xor %ebx,%ebx");
break;
default:
emit_error = 1;
}
}
static void
i386_emit_swap (void)
{
EMIT_ASM32 (i386_swap,
"mov %eax,%ecx\n\t"
"mov %ebx,%edx\n\t"
"pop %eax\n\t"
"pop %ebx\n\t"
"push %edx\n\t"
"push %ecx");
}
static void
i386_emit_stack_adjust (int n)
{
unsigned char buf[16];
int i;
CORE_ADDR buildaddr = current_insn_ptr;
i = 0;
buf[i++] = 0x8d; /* lea $(%esp),%esp */
buf[i++] = 0x64;
buf[i++] = 0x24;
buf[i++] = n * 8;
append_insns (&buildaddr, i, buf);
current_insn_ptr = buildaddr;
}
/* FN's prototype is `LONGEST(*fn)(int)'. */
static void
i386_emit_int_call_1 (CORE_ADDR fn, int arg1)
{
unsigned char buf[16];
int i;
CORE_ADDR buildaddr;
EMIT_ASM32 (i386_int_call_1_a,
/* Reserve a bit of stack space. */
"sub $0x8,%esp");
/* Put the one argument on the stack. */
buildaddr = current_insn_ptr;
i = 0;
buf[i++] = 0xc7; /* movl $,(%esp) */
buf[i++] = 0x04;
buf[i++] = 0x24;
memcpy (&buf[i], &arg1, sizeof (arg1));
i += 4;
append_insns (&buildaddr, i, buf);
current_insn_ptr = buildaddr;
i386_emit_call (fn);
EMIT_ASM32 (i386_int_call_1_c,
"mov %edx,%ebx\n\t"
"lea 0x8(%esp),%esp");
}
/* FN's prototype is `void(*fn)(int,LONGEST)'. */
static void
i386_emit_void_call_2 (CORE_ADDR fn, int arg1)
{
unsigned char buf[16];
int i;
CORE_ADDR buildaddr;
EMIT_ASM32 (i386_void_call_2_a,
/* Preserve %eax only; we don't have to worry about %ebx. */
"push %eax\n\t"
/* Reserve a bit of stack space for arguments. */
"sub $0x10,%esp\n\t"
/* Copy "top" to the second argument position. (Note that
we can't assume function won't scribble on its
arguments, so don't try to restore from this.) */
"mov %eax,4(%esp)\n\t"
"mov %ebx,8(%esp)");
/* Put the first argument on the stack. */
buildaddr = current_insn_ptr;
i = 0;
buf[i++] = 0xc7; /* movl $,(%esp) */
buf[i++] = 0x04;
buf[i++] = 0x24;
memcpy (&buf[i], &arg1, sizeof (arg1));
i += 4;
append_insns (&buildaddr, i, buf);
current_insn_ptr = buildaddr;
i386_emit_call (fn);
EMIT_ASM32 (i386_void_call_2_b,
"lea 0x10(%esp),%esp\n\t"
/* Restore original stack top. */
"pop %eax");
}
static void
i386_emit_eq_goto (int *offset_p, int *size_p)
{
EMIT_ASM32 (eq,
/* Check low half first, more likely to be decider */
"cmpl %eax,(%esp)\n\t"
"jne .Leq_fallthru\n\t"
"cmpl %ebx,4(%esp)\n\t"
"jne .Leq_fallthru\n\t"
"lea 0x8(%esp),%esp\n\t"
"pop %eax\n\t"
"pop %ebx\n\t"
/* jmp, but don't trust the assembler to choose the right jump */
".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
".Leq_fallthru:\n\t"
"lea 0x8(%esp),%esp\n\t"
"pop %eax\n\t"
"pop %ebx");
if (offset_p)
*offset_p = 18;
if (size_p)
*size_p = 4;
}
static void
i386_emit_ne_goto (int *offset_p, int *size_p)
{
EMIT_ASM32 (ne,
/* Check low half first, more likely to be decider */
"cmpl %eax,(%esp)\n\t"
"jne .Lne_jump\n\t"
"cmpl %ebx,4(%esp)\n\t"
"je .Lne_fallthru\n\t"
".Lne_jump:\n\t"
"lea 0x8(%esp),%esp\n\t"
"pop %eax\n\t"
"pop %ebx\n\t"
/* jmp, but don't trust the assembler to choose the right jump */
".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
".Lne_fallthru:\n\t"
"lea 0x8(%esp),%esp\n\t"
"pop %eax\n\t"
"pop %ebx");
if (offset_p)
*offset_p = 18;
if (size_p)
*size_p = 4;
}
static void
i386_emit_lt_goto (int *offset_p, int *size_p)
{
EMIT_ASM32 (lt,
"cmpl %ebx,4(%esp)\n\t"
"jl .Llt_jump\n\t"
"jne .Llt_fallthru\n\t"
"cmpl %eax,(%esp)\n\t"
"jnl .Llt_fallthru\n\t"
".Llt_jump:\n\t"
"lea 0x8(%esp),%esp\n\t"
"pop %eax\n\t"
"pop %ebx\n\t"
/* jmp, but don't trust the assembler to choose the right jump */
".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
".Llt_fallthru:\n\t"
"lea 0x8(%esp),%esp\n\t"
"pop %eax\n\t"
"pop %ebx");
if (offset_p)
*offset_p = 20;
if (size_p)
*size_p = 4;
}
static void
i386_emit_le_goto (int *offset_p, int *size_p)
{
EMIT_ASM32 (le,
"cmpl %ebx,4(%esp)\n\t"
"jle .Lle_jump\n\t"
"jne .Lle_fallthru\n\t"
"cmpl %eax,(%esp)\n\t"
"jnle .Lle_fallthru\n\t"
".Lle_jump:\n\t"
"lea 0x8(%esp),%esp\n\t"
"pop %eax\n\t"
"pop %ebx\n\t"
/* jmp, but don't trust the assembler to choose the right jump */
".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
".Lle_fallthru:\n\t"
"lea 0x8(%esp),%esp\n\t"
"pop %eax\n\t"
"pop %ebx");
if (offset_p)
*offset_p = 20;
if (size_p)
*size_p = 4;
}
static void
i386_emit_gt_goto (int *offset_p, int *size_p)
{
EMIT_ASM32 (gt,
"cmpl %ebx,4(%esp)\n\t"
"jg .Lgt_jump\n\t"
"jne .Lgt_fallthru\n\t"
"cmpl %eax,(%esp)\n\t"
"jng .Lgt_fallthru\n\t"
".Lgt_jump:\n\t"
"lea 0x8(%esp),%esp\n\t"
"pop %eax\n\t"
"pop %ebx\n\t"
/* jmp, but don't trust the assembler to choose the right jump */
".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
".Lgt_fallthru:\n\t"
"lea 0x8(%esp),%esp\n\t"
"pop %eax\n\t"
"pop %ebx");
if (offset_p)
*offset_p = 20;
if (size_p)
*size_p = 4;
}
static void
i386_emit_ge_goto (int *offset_p, int *size_p)
{
EMIT_ASM32 (ge,
"cmpl %ebx,4(%esp)\n\t"
"jge .Lge_jump\n\t"
"jne .Lge_fallthru\n\t"
"cmpl %eax,(%esp)\n\t"
"jnge .Lge_fallthru\n\t"
".Lge_jump:\n\t"
"lea 0x8(%esp),%esp\n\t"
"pop %eax\n\t"
"pop %ebx\n\t"
/* jmp, but don't trust the assembler to choose the right jump */
".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
".Lge_fallthru:\n\t"
"lea 0x8(%esp),%esp\n\t"
"pop %eax\n\t"
"pop %ebx");
if (offset_p)
*offset_p = 20;
if (size_p)
*size_p = 4;
}
static emit_ops i386_emit_ops =
{
i386_emit_prologue,
i386_emit_epilogue,
i386_emit_add,
i386_emit_sub,
i386_emit_mul,
i386_emit_lsh,
i386_emit_rsh_signed,
i386_emit_rsh_unsigned,
i386_emit_ext,
i386_emit_log_not,
i386_emit_bit_and,
i386_emit_bit_or,
i386_emit_bit_xor,
i386_emit_bit_not,
i386_emit_equal,
i386_emit_less_signed,
i386_emit_less_unsigned,
i386_emit_ref,
i386_emit_if_goto,
i386_emit_goto,
i386_write_goto_address,
i386_emit_const,
i386_emit_call,
i386_emit_reg,
i386_emit_pop,
i386_emit_stack_flush,
i386_emit_zero_ext,
i386_emit_swap,
i386_emit_stack_adjust,
i386_emit_int_call_1,
i386_emit_void_call_2,
i386_emit_eq_goto,
i386_emit_ne_goto,
i386_emit_lt_goto,
i386_emit_le_goto,
i386_emit_gt_goto,
i386_emit_ge_goto
};
emit_ops *
x86_target::emit_ops ()
{
#ifdef __x86_64__
if (is_64bit_tdesc ())
return &amd64_emit_ops;
else
#endif
return &i386_emit_ops;
}
/* Implementation of target ops method "sw_breakpoint_from_kind". */
const gdb_byte *
x86_target::sw_breakpoint_from_kind (int kind, int *size)
{
*size = x86_breakpoint_len;
return x86_breakpoint;
}
bool
x86_target::low_supports_range_stepping ()
{
return true;
}
int
x86_target::get_ipa_tdesc_idx ()
{
struct regcache *regcache = get_thread_regcache (current_thread, 0);
const struct target_desc *tdesc = regcache->tdesc;
#ifdef __x86_64__
return amd64_get_ipa_tdesc_idx (tdesc);
#endif
if (tdesc == tdesc_i386_linux_no_xml.get ())
return X86_TDESC_SSE;
return i386_get_ipa_tdesc_idx (tdesc);
}
/* The linux target ops object. */
linux_process_target *the_linux_target = &the_x86_target;
void
initialize_low_arch (void)
{
/* Initialize the Linux target descriptions. */
#ifdef __x86_64__
tdesc_amd64_linux_no_xml = allocate_target_description ();
copy_target_description (tdesc_amd64_linux_no_xml.get (),
amd64_linux_read_description (X86_XSTATE_SSE_MASK,
false));
tdesc_amd64_linux_no_xml->xmltarget = xmltarget_amd64_linux_no_xml;
#endif
tdesc_i386_linux_no_xml = allocate_target_description ();
copy_target_description (tdesc_i386_linux_no_xml.get (),
i386_linux_read_description (X86_XSTATE_SSE_MASK));
tdesc_i386_linux_no_xml->xmltarget = xmltarget_i386_linux_no_xml;
initialize_regsets_info (&x86_regsets_info);
}