/* Target-dependent code for the Sanyo Xstormy16a (LC590000) processor. Copyright 2001, 2002 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "value.h" #include "inferior.h" #include "symfile.h" #include "arch-utils.h" #include "regcache.h" #include "gdbcore.h" #include "objfiles.h" struct gdbarch_tdep { /* gdbarch target dependent data here. Currently unused for Xstormy16. */ }; /* Extra info which is saved in each frame_info. */ struct frame_extra_info { int framesize; int frameless_p; }; enum gdb_regnum { /* Xstormy16 has 16 general purpose registers (R0-R15) plus PC. Functions will return their values in register R2-R7 as they fit. Otherwise a hidden pointer to an big enough area is given as argument to the function in r2. Further arguments are beginning in r3 then. R13 is used as frame pointer when GCC compiles w/o optimization R14 is used as "PSW", displaying the CPU status. R15 is used implicitely as stack pointer. */ E_R0_REGNUM, E_R1_REGNUM, E_R2_REGNUM, E_1ST_ARG_REGNUM = E_R2_REGNUM, E_PTR_RET_REGNUM = E_R2_REGNUM, E_R3_REGNUM, E_R4_REGNUM, E_R5_REGNUM, E_R6_REGNUM, E_R7_REGNUM, E_LST_ARG_REGNUM = E_R7_REGNUM, E_R8_REGNUM, E_R9_REGNUM, E_R10_REGNUM, E_R11_REGNUM, E_R12_REGNUM, E_R13_REGNUM, E_FP_REGNUM = E_R13_REGNUM, E_R14_REGNUM, E_PSW_REGNUM = E_R14_REGNUM, E_R15_REGNUM, E_SP_REGNUM = E_R15_REGNUM, E_PC_REGNUM, E_NUM_REGS }; /* Size of instructions, registers, etc. */ enum { xstormy16_inst_size = 2, xstormy16_reg_size = 2, xstormy16_pc_size = 4 }; /* Size of return datatype which fits into the remaining return registers. */ #define E_MAX_RETTYPE_SIZE(regnum) ((E_LST_ARG_REGNUM - (regnum) + 1) \ * xstormy16_reg_size) /* Size of return datatype which fits into all return registers. */ enum { E_MAX_RETTYPE_SIZE_IN_REGS = E_MAX_RETTYPE_SIZE (E_R2_REGNUM) }; /* Size of all registers as a whole. */ enum { E_ALL_REGS_SIZE = (E_NUM_REGS - 1) * xstormy16_reg_size + xstormy16_pc_size }; /* Function: xstormy16_register_name Returns the name of the standard Xstormy16 register N. */ static const char * xstormy16_register_name (int regnum) { static char *register_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "psw", "sp", "pc" }; if (regnum < 0 || regnum >= sizeof (register_names) / sizeof (register_names[0])) internal_error (__FILE__, __LINE__, "xstormy16_register_name: illegal register number %d", regnum); else return register_names[regnum]; } /* Function: xstormy16_register_byte Returns the byte position in the register cache for register N. */ static int xstormy16_register_byte (int regnum) { if (regnum < 0 || regnum >= E_NUM_REGS) internal_error (__FILE__, __LINE__, "xstormy16_register_byte: illegal register number %d", regnum); else /* All registers occupy 2 bytes in the regcache except for PC which is the last one. Therefore the byte position is still simply a multiple of 2. */ return regnum * xstormy16_reg_size; } /* Function: xstormy16_register_raw_size Returns the number of bytes occupied by the register on the target. */ static int xstormy16_register_raw_size (int regnum) { if (regnum < 0 || regnum >= E_NUM_REGS) internal_error (__FILE__, __LINE__, "xstormy16_register_raw_size: illegal register number %d", regnum); /* Only the PC has 4 Byte, all other registers 2 Byte. */ else if (regnum == E_PC_REGNUM) return xstormy16_pc_size; else return xstormy16_reg_size; } /* Function: xstormy16_register_virtual_size Returns the number of bytes occupied by the register as represented internally by gdb. */ static int xstormy16_register_virtual_size (int regnum) { return xstormy16_register_raw_size (regnum); } /* Function: xstormy16_reg_virtual_type Returns the default type for register N. */ static struct type * xstormy16_reg_virtual_type (int regnum) { if (regnum < 0 || regnum >= E_NUM_REGS) internal_error (__FILE__, __LINE__, "xstormy16_register_virtual_type: illegal register number %d", regnum); else if (regnum == E_PC_REGNUM) return builtin_type_uint32; else return builtin_type_uint16; } /* Function: xstormy16_get_saved_register Find a register's saved value on the call stack. */ static void xstormy16_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *fi, int regnum, enum lval_type *lval) { deprecated_generic_get_saved_register (raw_buffer, optimized, addrp, fi, regnum, lval); } /* Function: xstormy16_type_is_scalar Makes the decision if a given type is a scalar types. Scalar types are returned in the registers r2-r7 as they fit. */ static int xstormy16_type_is_scalar (struct type *t) { return (TYPE_CODE(t) != TYPE_CODE_STRUCT && TYPE_CODE(t) != TYPE_CODE_UNION && TYPE_CODE(t) != TYPE_CODE_ARRAY); } /* Function: xstormy16_extract_return_value Copy the function's return value into VALBUF. This function is called only in the context of "target function calls", ie. when the debugger forces a function to be called in the child, and when the debugger forces a function to return prematurely via the "return" command. */ static void xstormy16_extract_return_value (struct type *type, char *regbuf, char *valbuf) { CORE_ADDR return_buffer; int offset = 0; if (xstormy16_type_is_scalar (type) && TYPE_LENGTH (type) <= E_MAX_RETTYPE_SIZE_IN_REGS) { /* Scalar return values of <= 12 bytes are returned in E_1ST_ARG_REGNUM to E_LST_ARG_REGNUM. */ memcpy (valbuf, ®buf[REGISTER_BYTE (E_1ST_ARG_REGNUM)] + offset, TYPE_LENGTH (type)); } else { /* Aggregates and return values > 12 bytes are returned in memory, pointed to by R2. */ return_buffer = extract_address (regbuf + REGISTER_BYTE (E_PTR_RET_REGNUM), REGISTER_RAW_SIZE (E_PTR_RET_REGNUM)); read_memory (return_buffer, valbuf, TYPE_LENGTH (type)); } } /* Function: xstormy16_push_arguments Setup the function arguments for GDB to call a function in the inferior. Called only in the context of a target function call from the debugger. Returns the value of the SP register after the args are pushed. */ static CORE_ADDR xstormy16_push_arguments (int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr) { CORE_ADDR stack_dest = sp; int argreg = E_1ST_ARG_REGNUM; int i, j; int typelen, slacklen; char *val; /* If struct_return is true, then the struct return address will consume one argument-passing register. */ if (struct_return) argreg++; /* Arguments are passed in R2-R7 as they fit. If an argument doesn't fit in the remaining registers we're switching over to the stack. No argument is put on stack partially and as soon as we switched over to stack no further argument is put in a register even if it would fit in the remaining unused registers. */ for (i = 0; i < nargs && argreg <= E_LST_ARG_REGNUM; i++) { typelen = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i])); if (typelen > E_MAX_RETTYPE_SIZE (argreg)) break; /* Put argument into registers wordwise. */ val = VALUE_CONTENTS (args[i]); for (j = 0; j < typelen; j += xstormy16_reg_size) write_register (argreg++, extract_unsigned_integer (val + j, typelen - j == 1 ? 1 : xstormy16_reg_size)); } /* Align SP */ if (stack_dest & 1) ++stack_dest; /* Loop backwards through remaining arguments and push them on the stack, wordaligned. */ for (j = nargs - 1; j >= i; j--) { typelen = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[j])); slacklen = typelen & 1; val = alloca (typelen + slacklen); memcpy (val, VALUE_CONTENTS (args[j]), typelen); memset (val + typelen, 0, slacklen); /* Now write this data to the stack. The stack grows upwards. */ write_memory (stack_dest, val, typelen + slacklen); stack_dest += typelen + slacklen; } /* And that should do it. Return the new stack pointer. */ return stack_dest; } /* Function: xstormy16_push_return_address (pc) Setup the return address for GDB to call a function in the inferior. Called only in the context of a target function call from the debugger. Returns the value of the SP register when the operation is finished (which may or may not be the same as before). */ CORE_ADDR xstormy16_push_return_address (CORE_ADDR pc, CORE_ADDR sp) { unsigned char buf[xstormy16_pc_size]; store_unsigned_integer (buf, xstormy16_pc_size, CALL_DUMMY_ADDRESS ()); write_memory (sp, buf, xstormy16_pc_size); return sp + xstormy16_pc_size; } /* Function: xstormy16_pop_frame Destroy the innermost (Top-Of-Stack) stack frame, restoring the machine state that was in effect before the frame was created. Used in the contexts of the "return" command, and of target function calls from the debugger. */ static void xstormy16_pop_frame (void) { struct frame_info *fi = get_current_frame (); int i; if (fi == NULL) return; /* paranoia */ if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) { generic_pop_dummy_frame (); } else { /* Restore the saved regs. */ for (i = 0; i < NUM_REGS; i++) if (fi->saved_regs[i]) { if (i == SP_REGNUM) write_register (i, fi->saved_regs[i]); else if (i == E_PC_REGNUM) write_register (i, read_memory_integer (fi->saved_regs[i], xstormy16_pc_size)); else write_register (i, read_memory_integer (fi->saved_regs[i], xstormy16_reg_size)); } /* Restore the PC */ write_register (PC_REGNUM, FRAME_SAVED_PC (fi)); flush_cached_frames (); } return; } /* Function: xstormy16_store_struct_return Copy the (struct) function return value to its destined location. Called only in the context of a target function call from the debugger. */ static void xstormy16_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) { write_register (E_PTR_RET_REGNUM, addr); } /* Function: xstormy16_store_return_value Copy the function return value from VALBUF into the proper location for a function return. Called only in the context of the "return" command. */ static void xstormy16_store_return_value (struct type *type, char *valbuf) { CORE_ADDR return_buffer; char buf[xstormy16_reg_size]; if (xstormy16_type_is_scalar (type) && TYPE_LENGTH (type) == 1) { /* Add leading zeros to the value. */ memset (buf, 0, xstormy16_reg_size); memcpy (buf, valbuf, 1); deprecated_write_register_gen (E_1ST_ARG_REGNUM, buf); } else if (xstormy16_type_is_scalar (type) && TYPE_LENGTH (type) <= E_MAX_RETTYPE_SIZE_IN_REGS) deprecated_write_register_bytes (REGISTER_BYTE (E_1ST_ARG_REGNUM), valbuf, TYPE_LENGTH (type)); else { return_buffer = read_register (E_PTR_RET_REGNUM); write_memory (return_buffer, valbuf, TYPE_LENGTH (type)); } } /* Function: xstormy16_extract_struct_value_address Returns the address in which a function should return a struct value. Used in the contexts of the "return" command, and of target function calls from the debugger. */ static CORE_ADDR xstormy16_extract_struct_value_address (char *regbuf) { return extract_address (regbuf + xstormy16_register_byte (E_PTR_RET_REGNUM), xstormy16_reg_size); } /* Function: xstormy16_use_struct_convention Returns non-zero if the given struct type will be returned using a special convention, rather than the normal function return method. 7sed in the contexts of the "return" command, and of target function calls from the debugger. */ static int xstormy16_use_struct_convention (int gcc_p, struct type *type) { return !xstormy16_type_is_scalar (type) || TYPE_LENGTH (type) > E_MAX_RETTYPE_SIZE_IN_REGS; } /* Function: frame_saved_register Returns the value that regnum had in frame fi (saved in fi or in one of its children). */ static CORE_ADDR xstormy16_frame_saved_register (struct frame_info *fi, int regnum) { int size = xstormy16_register_raw_size (regnum); char *buf = (char *) alloca (size); deprecated_generic_get_saved_register (buf, NULL, NULL, fi, regnum, NULL); return (CORE_ADDR) extract_unsigned_integer (buf, size); } /* Function: xstormy16_scan_prologue Decode the instructions within the given address range. Decide when we must have reached the end of the function prologue. If a frame_info pointer is provided, fill in its saved_regs etc. Returns the address of the first instruction after the prologue. */ static CORE_ADDR xstormy16_scan_prologue (CORE_ADDR start_addr, CORE_ADDR end_addr, struct frame_info *fi, int *frameless) { CORE_ADDR sp = 0, fp = 0; CORE_ADDR next_addr; ULONGEST inst, inst2; LONGEST offset; int regnum; if (frameless) *frameless = 1; if (fi) { /* In a call dummy, don't touch the frame. */ if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) return start_addr; /* Grab the frame-relative values of SP and FP, needed below. The frame_saved_register function will find them on the stack or in the registers as appropriate. */ sp = xstormy16_frame_saved_register (fi, E_SP_REGNUM); fp = xstormy16_frame_saved_register (fi, E_FP_REGNUM); /* Initialize framesize with size of PC put on stack by CALLF inst. */ fi->extra_info->framesize = xstormy16_pc_size; } for (next_addr = start_addr; next_addr < end_addr; next_addr += xstormy16_inst_size) { inst = read_memory_unsigned_integer (next_addr, xstormy16_inst_size); inst2 = read_memory_unsigned_integer (next_addr + xstormy16_inst_size, xstormy16_inst_size); if (inst >= 0x0082 && inst <= 0x008d) /* push r2 .. push r13 */ { if (fi) { regnum = inst & 0x000f; fi->saved_regs[regnum] = fi->extra_info->framesize; fi->extra_info->framesize += xstormy16_reg_size; } } /* optional stack allocation for args and local vars <= 4 byte */ else if (inst == 0x301f || inst == 0x303f) /* inc r15, #0x1/#0x3 */ { if (fi) /* Record the frame size. */ fi->extra_info->framesize += ((inst & 0x0030) >> 4) + 1; } /* optional stack allocation for args and local vars > 4 && < 16 byte */ else if ((inst & 0xff0f) == 0x510f) /* 51Hf add r15, #0xH */ { if (fi) /* Record the frame size. */ fi->extra_info->framesize += (inst & 0x00f0) >> 4; } /* optional stack allocation for args and local vars >= 16 byte */ else if (inst == 0x314f && inst2 >= 0x0010) /* 314f HHHH add r15, #0xH */ { if (fi) /* Record the frame size. */ fi->extra_info->framesize += inst2; next_addr += xstormy16_inst_size; } else if (inst == 0x46fd) /* mov r13, r15 */ { if (fi) /* Record that the frame pointer is in use. */ fi->extra_info->frameless_p = 0; if (frameless) *frameless = 0; } /* optional copying of args in r2-r7 to r10-r13 */ /* Probably only in optimized case but legal action for prologue */ else if ((inst & 0xff00) == 0x4600 /* 46SD mov rD, rS */ && (inst & 0x00f0) >= 0x0020 && (inst & 0x00f0) <= 0x0070 && (inst & 0x000f) >= 0x00a0 && (inst & 0x000f) <= 0x000d) ; /* optional copying of args in r2-r7 to stack */ /* 72DS HHHH mov.b (rD, 0xHHHH), r(S-8) (bit3 always 1, bit2-0 = reg) */ /* 73DS HHHH mov.w (rD, 0xHHHH), r(S-8) */ else if ((inst & 0xfed8) == 0x72d8 && (inst & 0x0007) >= 2) { if (fi) { regnum = inst & 0x0007; /* Only 12 of 16 bits of the argument are used for the signed offset. */ offset = (LONGEST) (inst2 & 0x0fff); if (offset & 0x0800) offset -= 0x1000; fi->saved_regs[regnum] = fi->extra_info->framesize + offset; } next_addr += xstormy16_inst_size; } #if 0 /* 2001-08-10: Not part of the prologue anymore due to change in ABI. r8 and r9 are not used for argument passing anymore. */ /* optional copying of r8, r9 to stack */ /* 46S7; 73Df HHHH mov.w r7,rS; mov.w (rD, 0xHHHH), r7 D=8,9; S=13,15 */ /* 46S7; 72df HHHH mov.w r7,rS; mov.b (rD, 0xHHHH), r7 D=8,9; S=13,15 */ else if ((inst & 0xffef) == 0x4687 && (inst2 & 0xfedf) == 0x72df) { next_addr += xstormy16_inst_size; if (fi) { regnum = (inst & 0x00f0) >> 4; inst = inst2; inst2 = read_memory_unsigned_integer (next_addr + xstormy16_inst_size, xstormy16_inst_size); /* Only 12 of 16 bits of the argument are used for the signed offset. */ offset = (LONGEST) (inst2 & 0x0fff); if (offset & 0x0800) offset -= 0x1000; fi->saved_regs[regnum] = fi->extra_info->framesize + offset; } next_addr += xstormy16_inst_size; } #endif else /* Not a prologue instruction. */ break; } if (fi) { /* Special handling for the "saved" address of the SP: The SP is of course never saved on the stack at all, so by convention what we put here is simply the previous _value_ of the SP (as opposed to an address where the previous value would have been pushed). */ if (fi->extra_info->frameless_p) { fi->saved_regs[E_SP_REGNUM] = sp - fi->extra_info->framesize; fi->frame = sp; } else { fi->saved_regs[E_SP_REGNUM] = fp - fi->extra_info->framesize; fi->frame = fp; } /* So far only offsets to the beginning of the frame are saved in the saved_regs. Now we now the relation between sp, fp and framesize. We know the beginning of the frame so we can translate the register offsets to real addresses. */ for (regnum = 0; regnum < E_SP_REGNUM; ++regnum) if (fi->saved_regs[regnum]) fi->saved_regs[regnum] += fi->saved_regs[E_SP_REGNUM]; /* Save address of PC on stack. */ fi->saved_regs[E_PC_REGNUM] = fi->saved_regs[E_SP_REGNUM]; } return next_addr; } /* Function: xstormy16_skip_prologue If the input address is in a function prologue, returns the address of the end of the prologue; else returns the input address. Note: the input address is likely to be the function start, since this function is mainly used for advancing a breakpoint to the first line, or stepping to the first line when we have stepped into a function call. */ static CORE_ADDR xstormy16_skip_prologue (CORE_ADDR pc) { CORE_ADDR func_addr = 0, func_end = 0; char *func_name; if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end)) { struct symtab_and_line sal; struct symbol *sym; /* Don't trust line number debug info in frameless functions. */ int frameless = 1; CORE_ADDR plg_end = xstormy16_scan_prologue (func_addr, func_end, NULL, &frameless); if (frameless) return plg_end; /* Found a function. */ sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL); /* Don't use line number debug info for assembly source files. */ if (sym && SYMBOL_LANGUAGE (sym) != language_asm) { sal = find_pc_line (func_addr, 0); if (sal.end && sal.end < func_end) { /* Found a line number, use it as end of prologue. */ return sal.end; } } /* No useable line symbol. Use result of prologue parsing method. */ return plg_end; } /* No function symbol -- just return the PC. */ return (CORE_ADDR) pc; } /* The epilogue is defined here as the area at the end of a function, either on the `ret' instruction itself or after an instruction which destroys the function's stack frame. */ static int xstormy16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) { CORE_ADDR addr, func_addr = 0, func_end = 0; if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) { ULONGEST inst, inst2; CORE_ADDR addr = func_end - xstormy16_inst_size; /* The Xstormy16 epilogue is max. 14 bytes long. */ if (pc < func_end - 7 * xstormy16_inst_size) return 0; /* Check if we're on a `ret' instruction. Otherwise it's too dangerous to proceed. */ inst = read_memory_unsigned_integer (addr, xstormy16_inst_size); if (inst != 0x0003) return 0; while ((addr -= xstormy16_inst_size) >= func_addr) { inst = read_memory_unsigned_integer (addr, xstormy16_inst_size); if (inst >= 0x009a && inst <= 0x009d) /* pop r10...r13 */ continue; if (inst == 0x305f || inst == 0x307f) /* dec r15, #0x1/#0x3 */ break; inst2 = read_memory_unsigned_integer (addr - xstormy16_inst_size, xstormy16_inst_size); if (inst2 == 0x314f && inst >= 0x8000) /* add r15, neg. value */ { addr -= xstormy16_inst_size; break; } return 0; } if (pc > addr) return 1; } return 0; } /* Function: xstormy16_frame_init_saved_regs Set up the 'saved_regs' array. This is a data structure containing the addresses on the stack where each register has been saved, for each stack frame. Registers that have not been saved will have zero here. The stack register is special: rather than the address where the stack register has been saved, saved_regs[SP_REGNUM] will have the actual value of the previous frame's stack register. This function may be called in any context where the saved register values may be needed (backtrace, frame_info, get_saved_register). On many targets, it is called directly by init_extra_frame_info, in part because the information may be needed immediately by frame_chain. */ static void xstormy16_frame_init_saved_regs (struct frame_info *fi) { CORE_ADDR func_addr, func_end; if (!fi->saved_regs) { frame_saved_regs_zalloc (fi); /* Find the beginning of this function, so we can analyze its prologue. */ if (find_pc_partial_function (fi->pc, NULL, &func_addr, &func_end)) xstormy16_scan_prologue (func_addr, fi->pc, fi, NULL); /* Else we're out of luck (can't debug completely stripped code). FIXME. */ } } /* Function: xstormy16_frame_saved_pc Returns the return address for the selected frame. Called by frame_info, frame_chain_valid, and sometimes by get_prev_frame. */ static CORE_ADDR xstormy16_frame_saved_pc (struct frame_info *fi) { CORE_ADDR saved_pc; if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) { saved_pc = deprecated_read_register_dummy (fi->pc, fi->frame, E_PC_REGNUM); } else { saved_pc = read_memory_unsigned_integer (fi->saved_regs[E_PC_REGNUM], xstormy16_pc_size); } return saved_pc; } /* Function: xstormy16_init_extra_frame_info This is the constructor function for the frame_info struct, called whenever a new frame_info is created (from create_new_frame, and from get_prev_frame). */ static void xstormy16_init_extra_frame_info (int fromleaf, struct frame_info *fi) { if (!fi->extra_info) { fi->extra_info = (struct frame_extra_info *) frame_obstack_alloc (sizeof (struct frame_extra_info)); fi->extra_info->framesize = 0; fi->extra_info->frameless_p = 1; /* Default frameless, detect framed */ /* By default, the fi->frame is set to the value of the FP reg by gdb. This may not always be right; we may be in a frameless function, or we may be in the prologue, before the FP has been set up. Unfortunately, we can't make this determination without first calling scan_prologue, and we can't do that unles we know the fi->pc. */ if (!fi->pc) { /* Sometimes we are called from get_prev_frame without the PC being set up first. Long history, don't ask. Fortunately this will never happen from the outermost frame, so we should be able to get the saved pc from the next frame. */ if (fi->next) fi->pc = xstormy16_frame_saved_pc (fi->next); } /* Take care of the saved_regs right here (non-lazy). */ xstormy16_frame_init_saved_regs (fi); } } /* Function: xstormy16_frame_chain Returns a pointer to the stack frame of the calling function. Called only from get_prev_frame. Needed for backtrace, "up", etc. */ static CORE_ADDR xstormy16_frame_chain (struct frame_info *fi) { if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) { /* Call dummy's frame is the same as caller's. */ return fi->frame; } else { /* Return computed offset from this frame's fp. */ return fi->frame - fi->extra_info->framesize; } } static int xstormy16_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) { return chain < 0x8000 && FRAME_SAVED_PC (thisframe) >= 0x8000 && (thisframe->extra_info->frameless_p || thisframe->frame - thisframe->extra_info->framesize == chain); } /* Function: xstormy16_saved_pc_after_call Returns the previous PC immediately after a function call. This function is meant to bypass the regular get_saved_register mechanism, ie. it is meant to work even if the frame isn't complete. Called by step_over_function, and sometimes by get_prev_frame. */ static CORE_ADDR xstormy16_saved_pc_after_call (struct frame_info *ignore) { CORE_ADDR sp, pc, tmp; sp = read_register (E_SP_REGNUM) - xstormy16_pc_size; pc = read_memory_integer (sp, xstormy16_pc_size); /* Skip over jump table entry if necessary. */ if ((tmp = SKIP_TRAMPOLINE_CODE (pc))) pc = tmp; return pc; } const static unsigned char * xstormy16_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) { static unsigned char breakpoint[] = { 0x06, 0x0 }; *lenptr = sizeof (breakpoint); return breakpoint; } /* Given a pointer to a jump table entry, return the address of the function it jumps to. Return 0 if not found. */ static CORE_ADDR xstormy16_resolve_jmp_table_entry (CORE_ADDR faddr) { struct obj_section *faddr_sect = find_pc_section (faddr); if (faddr_sect) { LONGEST inst, inst2, addr; char buf[2 * xstormy16_inst_size]; /* Return faddr if it's not pointing into the jump table. */ if (strcmp (faddr_sect->the_bfd_section->name, ".plt")) return faddr; if (!target_read_memory (faddr, buf, sizeof buf)) { inst = extract_unsigned_integer (buf, xstormy16_inst_size); inst2 = extract_unsigned_integer (buf + xstormy16_inst_size, xstormy16_inst_size); addr = inst2 << 8 | (inst & 0xff); return addr; } } return 0; } /* Given a function's address, attempt to find (and return) the address of the corresponding jump table entry. Return 0 if not found. */ static CORE_ADDR xstormy16_find_jmp_table_entry (CORE_ADDR faddr) { struct obj_section *faddr_sect = find_pc_section (faddr); if (faddr_sect) { struct obj_section *osect; /* Return faddr if it's already a pointer to a jump table entry. */ if (!strcmp (faddr_sect->the_bfd_section->name, ".plt")) return faddr; ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) { if (!strcmp (osect->the_bfd_section->name, ".plt")) break; } if (osect < faddr_sect->objfile->sections_end) { CORE_ADDR addr; for (addr = osect->addr; addr < osect->endaddr; addr += 2 * xstormy16_inst_size) { int status; LONGEST inst, inst2, faddr2; char buf[2 * xstormy16_inst_size]; if (target_read_memory (addr, buf, sizeof buf)) return 0; inst = extract_unsigned_integer (buf, xstormy16_inst_size); inst2 = extract_unsigned_integer (buf + xstormy16_inst_size, xstormy16_inst_size); faddr2 = inst2 << 8 | (inst & 0xff); if (faddr == faddr2) return addr; } } } return 0; } static CORE_ADDR xstormy16_skip_trampoline_code (CORE_ADDR pc) { int tmp = xstormy16_resolve_jmp_table_entry (pc); if (tmp && tmp != pc) return tmp; return 0; } static int xstormy16_in_solib_call_trampoline (CORE_ADDR pc, char *name) { return xstormy16_skip_trampoline_code (pc) != 0; } static CORE_ADDR xstormy16_pointer_to_address (struct type *type, void *buf) { enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type)); CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type)); if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD) { CORE_ADDR addr2 = xstormy16_resolve_jmp_table_entry (addr); if (addr2) addr = addr2; } return addr; } static void xstormy16_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr) { enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type)); if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD) { CORE_ADDR addr2 = xstormy16_find_jmp_table_entry (addr); if (addr2) addr = addr2; } store_address (buf, TYPE_LENGTH (type), addr); } static CORE_ADDR xstormy16_stack_align (CORE_ADDR addr) { if (addr & 1) ++addr; return addr; } void xstormy16_save_dummy_frame_tos (CORE_ADDR sp) { generic_save_dummy_frame_tos (sp - xstormy16_pc_size); } /* Function: xstormy16_gdbarch_init Initializer function for the xstormy16 gdbarch vector. Called by gdbarch. Sets up the gdbarch vector(s) for this target. */ static struct gdbarch * xstormy16_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) { static LONGEST call_dummy_words[1] = { 0 }; struct gdbarch_tdep *tdep = NULL; struct gdbarch *gdbarch; /* find a candidate among the list of pre-declared architectures. */ arches = gdbarch_list_lookup_by_info (arches, &info); if (arches != NULL) return (arches->gdbarch); #if 0 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); #endif gdbarch = gdbarch_alloc (&info, 0); /* * Basic register fields and methods. */ set_gdbarch_num_regs (gdbarch, E_NUM_REGS); set_gdbarch_num_pseudo_regs (gdbarch, 0); set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM); set_gdbarch_fp_regnum (gdbarch, E_FP_REGNUM); set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM); set_gdbarch_register_name (gdbarch, xstormy16_register_name); set_gdbarch_register_size (gdbarch, xstormy16_reg_size); set_gdbarch_register_bytes (gdbarch, E_ALL_REGS_SIZE); set_gdbarch_register_byte (gdbarch, xstormy16_register_byte); set_gdbarch_register_raw_size (gdbarch, xstormy16_register_raw_size); set_gdbarch_max_register_raw_size (gdbarch, xstormy16_pc_size); set_gdbarch_register_virtual_size (gdbarch, xstormy16_register_raw_size); set_gdbarch_max_register_virtual_size (gdbarch, 4); set_gdbarch_register_virtual_type (gdbarch, xstormy16_reg_virtual_type); /* * Frame Info */ set_gdbarch_init_extra_frame_info (gdbarch, xstormy16_init_extra_frame_info); set_gdbarch_frame_init_saved_regs (gdbarch, xstormy16_frame_init_saved_regs); set_gdbarch_frame_chain (gdbarch, xstormy16_frame_chain); set_gdbarch_get_saved_register (gdbarch, xstormy16_get_saved_register); set_gdbarch_saved_pc_after_call (gdbarch, xstormy16_saved_pc_after_call); set_gdbarch_frame_saved_pc (gdbarch, xstormy16_frame_saved_pc); set_gdbarch_skip_prologue (gdbarch, xstormy16_skip_prologue); set_gdbarch_frame_chain_valid (gdbarch, xstormy16_frame_chain_valid); set_gdbarch_in_function_epilogue_p (gdbarch, xstormy16_in_function_epilogue_p); /* * Miscelany */ /* Stack grows up. */ set_gdbarch_inner_than (gdbarch, core_addr_greaterthan); /* PC stops zero byte after a trap instruction (which means: exactly on trap instruction). */ set_gdbarch_decr_pc_after_break (gdbarch, 0); /* This value is almost never non-zero... */ set_gdbarch_function_start_offset (gdbarch, 0); /* This value is almost never non-zero... */ set_gdbarch_frame_args_skip (gdbarch, 0); /* OK to default this value to 'unknown'. */ set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); /* W/o prototype, coerce float args to double. */ set_gdbarch_coerce_float_to_double (gdbarch, standard_coerce_float_to_double); /* * Call Dummies * * These values and methods are used when gdb calls a target function. */ set_gdbarch_use_generic_dummy_frames (gdbarch, 1); set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame); set_gdbarch_push_return_address (gdbarch, xstormy16_push_return_address); set_gdbarch_deprecated_extract_return_value (gdbarch, xstormy16_extract_return_value); set_gdbarch_push_arguments (gdbarch, xstormy16_push_arguments); set_gdbarch_pop_frame (gdbarch, xstormy16_pop_frame); set_gdbarch_store_struct_return (gdbarch, xstormy16_store_struct_return); set_gdbarch_deprecated_store_return_value (gdbarch, xstormy16_store_return_value); set_gdbarch_deprecated_extract_struct_value_address (gdbarch, xstormy16_extract_struct_value_address); set_gdbarch_use_struct_convention (gdbarch, xstormy16_use_struct_convention); set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); set_gdbarch_call_dummy_address (gdbarch, entry_point_address); set_gdbarch_call_dummy_start_offset (gdbarch, 0); set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); set_gdbarch_call_dummy_length (gdbarch, 0); set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy); set_gdbarch_call_dummy_p (gdbarch, 1); set_gdbarch_call_dummy_words (gdbarch, call_dummy_words); set_gdbarch_sizeof_call_dummy_words (gdbarch, 0); set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); /* set_gdbarch_call_dummy_stack_adjust */ set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy); set_gdbarch_breakpoint_from_pc (gdbarch, xstormy16_breakpoint_from_pc); set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT); set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); set_gdbarch_address_to_pointer (gdbarch, xstormy16_address_to_pointer); set_gdbarch_pointer_to_address (gdbarch, xstormy16_pointer_to_address); set_gdbarch_stack_align (gdbarch, xstormy16_stack_align); set_gdbarch_extra_stack_alignment_needed (gdbarch, 0); set_gdbarch_save_dummy_frame_tos (gdbarch, xstormy16_save_dummy_frame_tos); set_gdbarch_skip_trampoline_code (gdbarch, xstormy16_skip_trampoline_code); set_gdbarch_in_solib_call_trampoline (gdbarch, xstormy16_in_solib_call_trampoline); return gdbarch; } /* Function: _initialize_xstormy16_tdep Initializer function for the Sanyo Xstormy16a module. Called by gdb at start-up. */ void _initialize_xstormy16_tdep (void) { extern int print_insn_xstormy16 (); register_gdbarch_init (bfd_arch_xstormy16, xstormy16_gdbarch_init); tm_print_insn = print_insn_xstormy16; }