/* Target-dependent code for the VAX. Copyright (C) 1986-2013 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "arch-utils.h" #include "dis-asm.h" #include "floatformat.h" #include "frame.h" #include "frame-base.h" #include "frame-unwind.h" #include "gdbcore.h" #include "gdbtypes.h" #include "osabi.h" #include "regcache.h" #include "regset.h" #include "trad-frame.h" #include "value.h" #include #include "vax-tdep.h" /* Return the name of register REGNUM. */ static const char * vax_register_name (struct gdbarch *gdbarch, int regnum) { static char *register_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc", "ps", }; if (regnum >= 0 && regnum < ARRAY_SIZE (register_names)) return register_names[regnum]; return NULL; } /* Return the GDB type object for the "standard" data type of data in register REGNUM. */ static struct type * vax_register_type (struct gdbarch *gdbarch, int regnum) { return builtin_type (gdbarch)->builtin_int; } /* Core file support. */ /* Supply register REGNUM from the buffer specified by GREGS and LEN in the general-purpose register set REGSET to register cache REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ static void vax_supply_gregset (const struct regset *regset, struct regcache *regcache, int regnum, const void *gregs, size_t len) { const gdb_byte *regs = gregs; int i; for (i = 0; i < VAX_NUM_REGS; i++) { if (regnum == i || regnum == -1) regcache_raw_supply (regcache, i, regs + i * 4); } } /* VAX register set. */ static struct regset vax_gregset = { NULL, vax_supply_gregset }; /* Return the appropriate register set for the core section identified by SECT_NAME and SECT_SIZE. */ static const struct regset * vax_regset_from_core_section (struct gdbarch *gdbarch, const char *sect_name, size_t sect_size) { if (strcmp (sect_name, ".reg") == 0 && sect_size >= VAX_NUM_REGS * 4) return &vax_gregset; return NULL; } /* The VAX UNIX calling convention uses R1 to pass a structure return value address instead of passing it as a first (hidden) argument as the VMS calling convention suggests. */ static CORE_ADDR vax_store_arguments (struct regcache *regcache, int nargs, struct value **args, CORE_ADDR sp) { struct gdbarch *gdbarch = get_regcache_arch (regcache); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); gdb_byte buf[4]; int count = 0; int i; /* We create an argument list on the stack, and make the argument pointer to it. */ /* Push arguments in reverse order. */ for (i = nargs - 1; i >= 0; i--) { int len = TYPE_LENGTH (value_enclosing_type (args[i])); sp -= (len + 3) & ~3; count += (len + 3) / 4; write_memory (sp, value_contents_all (args[i]), len); } /* Push argument count. */ sp -= 4; store_unsigned_integer (buf, 4, byte_order, count); write_memory (sp, buf, 4); /* Update the argument pointer. */ store_unsigned_integer (buf, 4, byte_order, sp); regcache_cooked_write (regcache, VAX_AP_REGNUM, buf); return sp; } static CORE_ADDR vax_push_dummy_call (struct gdbarch *gdbarch, struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr) { enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); CORE_ADDR fp = sp; gdb_byte buf[4]; /* Set up the function arguments. */ sp = vax_store_arguments (regcache, nargs, args, sp); /* Store return value address. */ if (struct_return) regcache_cooked_write_unsigned (regcache, VAX_R1_REGNUM, struct_addr); /* Store return address in the PC slot. */ sp -= 4; store_unsigned_integer (buf, 4, byte_order, bp_addr); write_memory (sp, buf, 4); /* Store the (fake) frame pointer in the FP slot. */ sp -= 4; store_unsigned_integer (buf, 4, byte_order, fp); write_memory (sp, buf, 4); /* Skip the AP slot. */ sp -= 4; /* Store register save mask and control bits. */ sp -= 4; store_unsigned_integer (buf, 4, byte_order, 0); write_memory (sp, buf, 4); /* Store condition handler. */ sp -= 4; store_unsigned_integer (buf, 4, byte_order, 0); write_memory (sp, buf, 4); /* Update the stack pointer and frame pointer. */ store_unsigned_integer (buf, 4, byte_order, sp); regcache_cooked_write (regcache, VAX_SP_REGNUM, buf); regcache_cooked_write (regcache, VAX_FP_REGNUM, buf); /* Return the saved (fake) frame pointer. */ return fp; } static struct frame_id vax_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) { CORE_ADDR fp; fp = get_frame_register_unsigned (this_frame, VAX_FP_REGNUM); return frame_id_build (fp, get_frame_pc (this_frame)); } static enum return_value_convention vax_return_value (struct gdbarch *gdbarch, struct value *function, struct type *type, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf) { int len = TYPE_LENGTH (type); gdb_byte buf[8]; if (TYPE_CODE (type) == TYPE_CODE_STRUCT || TYPE_CODE (type) == TYPE_CODE_UNION || TYPE_CODE (type) == TYPE_CODE_ARRAY) { /* The default on VAX is to return structures in static memory. Consequently a function must return the address where we can find the return value. */ if (readbuf) { ULONGEST addr; regcache_raw_read_unsigned (regcache, VAX_R0_REGNUM, &addr); read_memory (addr, readbuf, len); } return RETURN_VALUE_ABI_RETURNS_ADDRESS; } if (readbuf) { /* Read the contents of R0 and (if necessary) R1. */ regcache_cooked_read (regcache, VAX_R0_REGNUM, buf); if (len > 4) regcache_cooked_read (regcache, VAX_R1_REGNUM, buf + 4); memcpy (readbuf, buf, len); } if (writebuf) { /* Read the contents to R0 and (if necessary) R1. */ memcpy (buf, writebuf, len); regcache_cooked_write (regcache, VAX_R0_REGNUM, buf); if (len > 4) regcache_cooked_write (regcache, VAX_R1_REGNUM, buf + 4); } return RETURN_VALUE_REGISTER_CONVENTION; } /* Use the program counter to determine the contents and size of a breakpoint instruction. Return a pointer to a string of bytes that encode a breakpoint instruction, store the length of the string in *LEN and optionally adjust *PC to point to the correct memory location for inserting the breakpoint. */ static const gdb_byte * vax_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len) { static gdb_byte break_insn[] = { 3 }; *len = sizeof (break_insn); return break_insn; } /* Advance PC across any function entry prologue instructions to reach some "real" code. */ static CORE_ADDR vax_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) { enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); gdb_byte op = read_memory_unsigned_integer (pc, 1, byte_order); if (op == 0x11) pc += 2; /* skip brb */ if (op == 0x31) pc += 3; /* skip brw */ if (op == 0xC2 && read_memory_unsigned_integer (pc + 2, 1, byte_order) == 0x5E) pc += 3; /* skip subl2 */ if (op == 0x9E && read_memory_unsigned_integer (pc + 1, 1, byte_order) == 0xAE && read_memory_unsigned_integer (pc + 3, 1, byte_order) == 0x5E) pc += 4; /* skip movab */ if (op == 0x9E && read_memory_unsigned_integer (pc + 1, 1, byte_order) == 0xCE && read_memory_unsigned_integer (pc + 4, 1, byte_order) == 0x5E) pc += 5; /* skip movab */ if (op == 0x9E && read_memory_unsigned_integer (pc + 1, 1, byte_order) == 0xEE && read_memory_unsigned_integer (pc + 6, 1, byte_order) == 0x5E) pc += 7; /* skip movab */ return pc; } /* Unwinding the stack is relatively easy since the VAX has a dedicated frame pointer, and frames are set up automatically as the result of a function call. Most of the relevant information can be inferred from the documentation of the Procedure Call Instructions in the VAX MACRO and Instruction Set Reference Manual. */ struct vax_frame_cache { /* Base address. */ CORE_ADDR base; /* Table of saved registers. */ struct trad_frame_saved_reg *saved_regs; }; static struct vax_frame_cache * vax_frame_cache (struct frame_info *this_frame, void **this_cache) { struct vax_frame_cache *cache; CORE_ADDR addr; ULONGEST mask; int regnum; if (*this_cache) return *this_cache; /* Allocate a new cache. */ cache = FRAME_OBSTACK_ZALLOC (struct vax_frame_cache); cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); /* The frame pointer is used as the base for the frame. */ cache->base = get_frame_register_unsigned (this_frame, VAX_FP_REGNUM); if (cache->base == 0) return cache; /* The register save mask and control bits determine the layout of the stack frame. */ mask = get_frame_memory_unsigned (this_frame, cache->base + 4, 4) >> 16; /* These are always saved. */ cache->saved_regs[VAX_PC_REGNUM].addr = cache->base + 16; cache->saved_regs[VAX_FP_REGNUM].addr = cache->base + 12; cache->saved_regs[VAX_AP_REGNUM].addr = cache->base + 8; cache->saved_regs[VAX_PS_REGNUM].addr = cache->base + 4; /* Scan the register save mask and record the location of the saved registers. */ addr = cache->base + 20; for (regnum = 0; regnum < VAX_AP_REGNUM; regnum++) { if (mask & (1 << regnum)) { cache->saved_regs[regnum].addr = addr; addr += 4; } } /* The CALLS/CALLG flag determines whether this frame has a General Argument List or a Stack Argument List. */ if (mask & (1 << 13)) { ULONGEST numarg; /* This is a procedure with Stack Argument List. Adjust the stack address for the arguments that were pushed onto the stack. The return instruction will automatically pop the arguments from the stack. */ numarg = get_frame_memory_unsigned (this_frame, addr, 1); addr += 4 + numarg * 4; } /* Bits 1:0 of the stack pointer were saved in the control bits. */ trad_frame_set_value (cache->saved_regs, VAX_SP_REGNUM, addr + (mask >> 14)); return cache; } static void vax_frame_this_id (struct frame_info *this_frame, void **this_cache, struct frame_id *this_id) { struct vax_frame_cache *cache = vax_frame_cache (this_frame, this_cache); /* This marks the outermost frame. */ if (cache->base == 0) return; (*this_id) = frame_id_build (cache->base, get_frame_func (this_frame)); } static struct value * vax_frame_prev_register (struct frame_info *this_frame, void **this_cache, int regnum) { struct vax_frame_cache *cache = vax_frame_cache (this_frame, this_cache); return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum); } static const struct frame_unwind vax_frame_unwind = { NORMAL_FRAME, default_frame_unwind_stop_reason, vax_frame_this_id, vax_frame_prev_register, NULL, default_frame_sniffer }; static CORE_ADDR vax_frame_base_address (struct frame_info *this_frame, void **this_cache) { struct vax_frame_cache *cache = vax_frame_cache (this_frame, this_cache); return cache->base; } static CORE_ADDR vax_frame_args_address (struct frame_info *this_frame, void **this_cache) { return get_frame_register_unsigned (this_frame, VAX_AP_REGNUM); } static const struct frame_base vax_frame_base = { &vax_frame_unwind, vax_frame_base_address, vax_frame_base_address, vax_frame_args_address }; /* Return number of arguments for FRAME. */ static int vax_frame_num_args (struct frame_info *frame) { CORE_ADDR args; /* Assume that the argument pointer for the outermost frame is hosed, as is the case on NetBSD/vax ELF. */ if (get_frame_base_address (frame) == 0) return 0; args = get_frame_register_unsigned (frame, VAX_AP_REGNUM); return get_frame_memory_unsigned (frame, args, 1); } static CORE_ADDR vax_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) { return frame_unwind_register_unsigned (next_frame, VAX_PC_REGNUM); } /* Initialize the current architecture based on INFO. If possible, re-use an architecture from ARCHES, which is a list of architectures already created during this debugging session. Called e.g. at program startup, when reading a core file, and when reading a binary file. */ static struct gdbarch * vax_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) { struct gdbarch *gdbarch; /* If there is already a candidate, use it. */ arches = gdbarch_list_lookup_by_info (arches, &info); if (arches != NULL) return arches->gdbarch; gdbarch = gdbarch_alloc (&info, NULL); set_gdbarch_float_format (gdbarch, floatformats_vax_f); set_gdbarch_double_format (gdbarch, floatformats_vax_d); set_gdbarch_long_double_format (gdbarch, floatformats_vax_d); set_gdbarch_long_double_bit (gdbarch, 64); /* Register info */ set_gdbarch_num_regs (gdbarch, VAX_NUM_REGS); set_gdbarch_register_name (gdbarch, vax_register_name); set_gdbarch_register_type (gdbarch, vax_register_type); set_gdbarch_sp_regnum (gdbarch, VAX_SP_REGNUM); set_gdbarch_pc_regnum (gdbarch, VAX_PC_REGNUM); set_gdbarch_ps_regnum (gdbarch, VAX_PS_REGNUM); set_gdbarch_regset_from_core_section (gdbarch, vax_regset_from_core_section); /* Frame and stack info */ set_gdbarch_skip_prologue (gdbarch, vax_skip_prologue); set_gdbarch_frame_num_args (gdbarch, vax_frame_num_args); set_gdbarch_frame_args_skip (gdbarch, 4); /* Stack grows downward. */ set_gdbarch_inner_than (gdbarch, core_addr_lessthan); /* Return value info */ set_gdbarch_return_value (gdbarch, vax_return_value); /* Call dummy code. */ set_gdbarch_push_dummy_call (gdbarch, vax_push_dummy_call); set_gdbarch_dummy_id (gdbarch, vax_dummy_id); /* Breakpoint info */ set_gdbarch_breakpoint_from_pc (gdbarch, vax_breakpoint_from_pc); /* Misc info */ set_gdbarch_deprecated_function_start_offset (gdbarch, 2); set_gdbarch_believe_pcc_promotion (gdbarch, 1); set_gdbarch_print_insn (gdbarch, print_insn_vax); set_gdbarch_unwind_pc (gdbarch, vax_unwind_pc); frame_base_set_default (gdbarch, &vax_frame_base); /* Hook in ABI-specific overrides, if they have been registered. */ gdbarch_init_osabi (info, gdbarch); frame_unwind_append_unwinder (gdbarch, &vax_frame_unwind); return (gdbarch); } /* Provide a prototype to silence -Wmissing-prototypes. */ void _initialize_vax_tdep (void); void _initialize_vax_tdep (void) { gdbarch_register (bfd_arch_vax, vax_gdbarch_init, NULL); }