/* Low level packing and unpacking of values for GDB, the GNU Debugger. Copyright (C) 1986-2017 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "arch-utils.h" #include "symtab.h" #include "gdbtypes.h" #include "value.h" #include "gdbcore.h" #include "command.h" #include "gdbcmd.h" #include "target.h" #include "language.h" #include "demangle.h" #include "regcache.h" #include "block.h" #include "target-float.h" #include "objfiles.h" #include "valprint.h" #include "cli/cli-decode.h" #include "extension.h" #include #include "tracepoint.h" #include "cp-abi.h" #include "user-regs.h" #include #include "completer.h" /* Definition of a user function. */ struct internal_function { /* The name of the function. It is a bit odd to have this in the function itself -- the user might use a differently-named convenience variable to hold the function. */ char *name; /* The handler. */ internal_function_fn handler; /* User data for the handler. */ void *cookie; }; /* Defines an [OFFSET, OFFSET + LENGTH) range. */ struct range { /* Lowest offset in the range. */ LONGEST offset; /* Length of the range. */ LONGEST length; }; typedef struct range range_s; DEF_VEC_O(range_s); /* Returns true if the ranges defined by [offset1, offset1+len1) and [offset2, offset2+len2) overlap. */ static int ranges_overlap (LONGEST offset1, LONGEST len1, LONGEST offset2, LONGEST len2) { ULONGEST h, l; l = std::max (offset1, offset2); h = std::min (offset1 + len1, offset2 + len2); return (l < h); } /* Returns true if the first argument is strictly less than the second, useful for VEC_lower_bound. We keep ranges sorted by offset and coalesce overlapping and contiguous ranges, so this just compares the starting offset. */ static int range_lessthan (const range_s *r1, const range_s *r2) { return r1->offset < r2->offset; } /* Returns true if RANGES contains any range that overlaps [OFFSET, OFFSET+LENGTH). */ static int ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length) { range_s what; LONGEST i; what.offset = offset; what.length = length; /* We keep ranges sorted by offset and coalesce overlapping and contiguous ranges, so to check if a range list contains a given range, we can do a binary search for the position the given range would be inserted if we only considered the starting OFFSET of ranges. We call that position I. Since we also have LENGTH to care for (this is a range afterall), we need to check if the _previous_ range overlaps the I range. E.g., R |---| |---| |---| |------| ... |--| 0 1 2 N I=1 In the case above, the binary search would return `I=1', meaning, this OFFSET should be inserted at position 1, and the current position 1 should be pushed further (and before 2). But, `0' overlaps with R. Then we need to check if the I range overlaps the I range itself. E.g., R |---| |---| |---| |-------| ... |--| 0 1 2 N I=1 */ i = VEC_lower_bound (range_s, ranges, &what, range_lessthan); if (i > 0) { struct range *bef = VEC_index (range_s, ranges, i - 1); if (ranges_overlap (bef->offset, bef->length, offset, length)) return 1; } if (i < VEC_length (range_s, ranges)) { struct range *r = VEC_index (range_s, ranges, i); if (ranges_overlap (r->offset, r->length, offset, length)) return 1; } return 0; } static struct cmd_list_element *functionlist; /* Note that the fields in this structure are arranged to save a bit of memory. */ struct value { /* Type of value; either not an lval, or one of the various different possible kinds of lval. */ enum lval_type lval; /* Is it modifiable? Only relevant if lval != not_lval. */ unsigned int modifiable : 1; /* If zero, contents of this value are in the contents field. If nonzero, contents are in inferior. If the lval field is lval_memory, the contents are in inferior memory at location.address plus offset. The lval field may also be lval_register. WARNING: This field is used by the code which handles watchpoints (see breakpoint.c) to decide whether a particular value can be watched by hardware watchpoints. If the lazy flag is set for some member of a value chain, it is assumed that this member of the chain doesn't need to be watched as part of watching the value itself. This is how GDB avoids watching the entire struct or array when the user wants to watch a single struct member or array element. If you ever change the way lazy flag is set and reset, be sure to consider this use as well! */ unsigned int lazy : 1; /* If value is a variable, is it initialized or not. */ unsigned int initialized : 1; /* If value is from the stack. If this is set, read_stack will be used instead of read_memory to enable extra caching. */ unsigned int stack : 1; /* If the value has been released. */ unsigned int released : 1; /* Location of value (if lval). */ union { /* If lval == lval_memory, this is the address in the inferior */ CORE_ADDR address; /*If lval == lval_register, the value is from a register. */ struct { /* Register number. */ int regnum; /* Frame ID of "next" frame to which a register value is relative. If the register value is found relative to frame F, then the frame id of F->next will be stored in next_frame_id. */ struct frame_id next_frame_id; } reg; /* Pointer to internal variable. */ struct internalvar *internalvar; /* Pointer to xmethod worker. */ struct xmethod_worker *xm_worker; /* If lval == lval_computed, this is a set of function pointers to use to access and describe the value, and a closure pointer for them to use. */ struct { /* Functions to call. */ const struct lval_funcs *funcs; /* Closure for those functions to use. */ void *closure; } computed; } location; /* Describes offset of a value within lval of a structure in target addressable memory units. Note also the member embedded_offset below. */ LONGEST offset; /* Only used for bitfields; number of bits contained in them. */ LONGEST bitsize; /* Only used for bitfields; position of start of field. For gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */ LONGEST bitpos; /* The number of references to this value. When a value is created, the value chain holds a reference, so REFERENCE_COUNT is 1. If release_value is called, this value is removed from the chain but the caller of release_value now has a reference to this value. The caller must arrange for a call to value_free later. */ int reference_count; /* Only used for bitfields; the containing value. This allows a single read from the target when displaying multiple bitfields. */ struct value *parent; /* Type of the value. */ struct type *type; /* If a value represents a C++ object, then the `type' field gives the object's compile-time type. If the object actually belongs to some class derived from `type', perhaps with other base classes and additional members, then `type' is just a subobject of the real thing, and the full object is probably larger than `type' would suggest. If `type' is a dynamic class (i.e. one with a vtable), then GDB can actually determine the object's run-time type by looking at the run-time type information in the vtable. When this information is available, we may elect to read in the entire object, for several reasons: - When printing the value, the user would probably rather see the full object, not just the limited portion apparent from the compile-time type. - If `type' has virtual base classes, then even printing `type' alone may require reaching outside the `type' portion of the object to wherever the virtual base class has been stored. When we store the entire object, `enclosing_type' is the run-time type -- the complete object -- and `embedded_offset' is the offset of `type' within that larger type, in target addressable memory units. The value_contents() macro takes `embedded_offset' into account, so most GDB code continues to see the `type' portion of the value, just as the inferior would. If `type' is a pointer to an object, then `enclosing_type' is a pointer to the object's run-time type, and `pointed_to_offset' is the offset in target addressable memory units from the full object to the pointed-to object -- that is, the value `embedded_offset' would have if we followed the pointer and fetched the complete object. (I don't really see the point. Why not just determine the run-time type when you indirect, and avoid the special case? The contents don't matter until you indirect anyway.) If we're not doing anything fancy, `enclosing_type' is equal to `type', and `embedded_offset' is zero, so everything works normally. */ struct type *enclosing_type; LONGEST embedded_offset; LONGEST pointed_to_offset; /* Values are stored in a chain, so that they can be deleted easily over calls to the inferior. Values assigned to internal variables, put into the value history or exposed to Python are taken off this list. */ struct value *next; /* Actual contents of the value. Target byte-order. NULL or not valid if lazy is nonzero. */ gdb_byte *contents; /* Unavailable ranges in CONTENTS. We mark unavailable ranges, rather than available, since the common and default case is for a value to be available. This is filled in at value read time. The unavailable ranges are tracked in bits. Note that a contents bit that has been optimized out doesn't really exist in the program, so it can't be marked unavailable either. */ VEC(range_s) *unavailable; /* Likewise, but for optimized out contents (a chunk of the value of a variable that does not actually exist in the program). If LVAL is lval_register, this is a register ($pc, $sp, etc., never a program variable) that has not been saved in the frame. Not saved registers and optimized-out program variables values are treated pretty much the same, except not-saved registers have a different string representation and related error strings. */ VEC(range_s) *optimized_out; }; /* See value.h. */ struct gdbarch * get_value_arch (const struct value *value) { return get_type_arch (value_type (value)); } int value_bits_available (const struct value *value, LONGEST offset, LONGEST length) { gdb_assert (!value->lazy); return !ranges_contain (value->unavailable, offset, length); } int value_bytes_available (const struct value *value, LONGEST offset, LONGEST length) { return value_bits_available (value, offset * TARGET_CHAR_BIT, length * TARGET_CHAR_BIT); } int value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length) { gdb_assert (!value->lazy); return ranges_contain (value->optimized_out, bit_offset, bit_length); } int value_entirely_available (struct value *value) { /* We can only tell whether the whole value is available when we try to read it. */ if (value->lazy) value_fetch_lazy (value); if (VEC_empty (range_s, value->unavailable)) return 1; return 0; } /* Returns true if VALUE is entirely covered by RANGES. If the value is lazy, it'll be read now. Note that RANGE is a pointer to pointer because reading the value might change *RANGE. */ static int value_entirely_covered_by_range_vector (struct value *value, VEC(range_s) **ranges) { /* We can only tell whether the whole value is optimized out / unavailable when we try to read it. */ if (value->lazy) value_fetch_lazy (value); if (VEC_length (range_s, *ranges) == 1) { struct range *t = VEC_index (range_s, *ranges, 0); if (t->offset == 0 && t->length == (TARGET_CHAR_BIT * TYPE_LENGTH (value_enclosing_type (value)))) return 1; } return 0; } int value_entirely_unavailable (struct value *value) { return value_entirely_covered_by_range_vector (value, &value->unavailable); } int value_entirely_optimized_out (struct value *value) { return value_entirely_covered_by_range_vector (value, &value->optimized_out); } /* Insert into the vector pointed to by VECTORP the bit range starting of OFFSET bits, and extending for the next LENGTH bits. */ static void insert_into_bit_range_vector (VEC(range_s) **vectorp, LONGEST offset, LONGEST length) { range_s newr; int i; /* Insert the range sorted. If there's overlap or the new range would be contiguous with an existing range, merge. */ newr.offset = offset; newr.length = length; /* Do a binary search for the position the given range would be inserted if we only considered the starting OFFSET of ranges. Call that position I. Since we also have LENGTH to care for (this is a range afterall), we need to check if the _previous_ range overlaps the I range. E.g., calling R the new range: #1 - overlaps with previous R |-...-| |---| |---| |------| ... |--| 0 1 2 N I=1 In the case #1 above, the binary search would return `I=1', meaning, this OFFSET should be inserted at position 1, and the current position 1 should be pushed further (and become 2). But, note that `0' overlaps with R, so we want to merge them. A similar consideration needs to be taken if the new range would be contiguous with the previous range: #2 - contiguous with previous R |-...-| |--| |---| |------| ... |--| 0 1 2 N I=1 If there's no overlap with the previous range, as in: #3 - not overlapping and not contiguous R |-...-| |--| |---| |------| ... |--| 0 1 2 N I=1 or if I is 0: #4 - R is the range with lowest offset R |-...-| |--| |---| |------| ... |--| 0 1 2 N I=0 ... we just push the new range to I. All the 4 cases above need to consider that the new range may also overlap several of the ranges that follow, or that R may be contiguous with the following range, and merge. E.g., #5 - overlapping following ranges R |------------------------| |--| |---| |------| ... |--| 0 1 2 N I=0 or: R |-------| |--| |---| |------| ... |--| 0 1 2 N I=1 */ i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan); if (i > 0) { struct range *bef = VEC_index (range_s, *vectorp, i - 1); if (ranges_overlap (bef->offset, bef->length, offset, length)) { /* #1 */ ULONGEST l = std::min (bef->offset, offset); ULONGEST h = std::max (bef->offset + bef->length, offset + length); bef->offset = l; bef->length = h - l; i--; } else if (offset == bef->offset + bef->length) { /* #2 */ bef->length += length; i--; } else { /* #3 */ VEC_safe_insert (range_s, *vectorp, i, &newr); } } else { /* #4 */ VEC_safe_insert (range_s, *vectorp, i, &newr); } /* Check whether the ranges following the one we've just added or touched can be folded in (#5 above). */ if (i + 1 < VEC_length (range_s, *vectorp)) { struct range *t; struct range *r; int removed = 0; int next = i + 1; /* Get the range we just touched. */ t = VEC_index (range_s, *vectorp, i); removed = 0; i = next; for (; VEC_iterate (range_s, *vectorp, i, r); i++) if (r->offset <= t->offset + t->length) { ULONGEST l, h; l = std::min (t->offset, r->offset); h = std::max (t->offset + t->length, r->offset + r->length); t->offset = l; t->length = h - l; removed++; } else { /* If we couldn't merge this one, we won't be able to merge following ones either, since the ranges are always sorted by OFFSET. */ break; } if (removed != 0) VEC_block_remove (range_s, *vectorp, next, removed); } } void mark_value_bits_unavailable (struct value *value, LONGEST offset, LONGEST length) { insert_into_bit_range_vector (&value->unavailable, offset, length); } void mark_value_bytes_unavailable (struct value *value, LONGEST offset, LONGEST length) { mark_value_bits_unavailable (value, offset * TARGET_CHAR_BIT, length * TARGET_CHAR_BIT); } /* Find the first range in RANGES that overlaps the range defined by OFFSET and LENGTH, starting at element POS in the RANGES vector, Returns the index into RANGES where such overlapping range was found, or -1 if none was found. */ static int find_first_range_overlap (VEC(range_s) *ranges, int pos, LONGEST offset, LONGEST length) { range_s *r; int i; for (i = pos; VEC_iterate (range_s, ranges, i, r); i++) if (ranges_overlap (r->offset, r->length, offset, length)) return i; return -1; } /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise return non-zero. It must always be the case that: OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT It is assumed that memory can be accessed from: PTR + (OFFSET_BITS / TARGET_CHAR_BIT) to: PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT) */ static int memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits, const gdb_byte *ptr2, size_t offset2_bits, size_t length_bits) { gdb_assert (offset1_bits % TARGET_CHAR_BIT == offset2_bits % TARGET_CHAR_BIT); if (offset1_bits % TARGET_CHAR_BIT != 0) { size_t bits; gdb_byte mask, b1, b2; /* The offset from the base pointers PTR1 and PTR2 is not a complete number of bytes. A number of bits up to either the next exact byte boundary, or LENGTH_BITS (which ever is sooner) will be compared. */ bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT; gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT); mask = (1 << bits) - 1; if (length_bits < bits) { mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1); bits = length_bits; } /* Now load the two bytes and mask off the bits we care about. */ b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask; b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask; if (b1 != b2) return 1; /* Now update the length and offsets to take account of the bits we've just compared. */ length_bits -= bits; offset1_bits += bits; offset2_bits += bits; } if (length_bits % TARGET_CHAR_BIT != 0) { size_t bits; size_t o1, o2; gdb_byte mask, b1, b2; /* The length is not an exact number of bytes. After the previous IF.. block then the offsets are byte aligned, or the length is zero (in which case this code is not reached). Compare a number of bits at the end of the region, starting from an exact byte boundary. */ bits = length_bits % TARGET_CHAR_BIT; o1 = offset1_bits + length_bits - bits; o2 = offset2_bits + length_bits - bits; gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT); mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits); gdb_assert (o1 % TARGET_CHAR_BIT == 0); gdb_assert (o2 % TARGET_CHAR_BIT == 0); b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask; b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask; if (b1 != b2) return 1; length_bits -= bits; } if (length_bits > 0) { /* We've now taken care of any stray "bits" at the start, or end of the region to compare, the remainder can be covered with a simple memcmp. */ gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0); gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0); gdb_assert (length_bits % TARGET_CHAR_BIT == 0); return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT, ptr2 + offset2_bits / TARGET_CHAR_BIT, length_bits / TARGET_CHAR_BIT); } /* Length is zero, regions match. */ return 0; } /* Helper struct for find_first_range_overlap_and_match and value_contents_bits_eq. Keep track of which slot of a given ranges vector have we last looked at. */ struct ranges_and_idx { /* The ranges. */ VEC(range_s) *ranges; /* The range we've last found in RANGES. Given ranges are sorted, we can start the next lookup here. */ int idx; }; /* Helper function for value_contents_bits_eq. Compare LENGTH bits of RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's ranges starting at OFFSET2 bits. Return true if the ranges match and fill in *L and *H with the overlapping window relative to (both) OFFSET1 or OFFSET2. */ static int find_first_range_overlap_and_match (struct ranges_and_idx *rp1, struct ranges_and_idx *rp2, LONGEST offset1, LONGEST offset2, LONGEST length, ULONGEST *l, ULONGEST *h) { rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx, offset1, length); rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx, offset2, length); if (rp1->idx == -1 && rp2->idx == -1) { *l = length; *h = length; return 1; } else if (rp1->idx == -1 || rp2->idx == -1) return 0; else { range_s *r1, *r2; ULONGEST l1, h1; ULONGEST l2, h2; r1 = VEC_index (range_s, rp1->ranges, rp1->idx); r2 = VEC_index (range_s, rp2->ranges, rp2->idx); /* Get the unavailable windows intersected by the incoming ranges. The first and last ranges that overlap the argument range may be wider than said incoming arguments ranges. */ l1 = std::max (offset1, r1->offset); h1 = std::min (offset1 + length, r1->offset + r1->length); l2 = std::max (offset2, r2->offset); h2 = std::min (offset2 + length, offset2 + r2->length); /* Make them relative to the respective start offsets, so we can compare them for equality. */ l1 -= offset1; h1 -= offset1; l2 -= offset2; h2 -= offset2; /* Different ranges, no match. */ if (l1 != l2 || h1 != h2) return 0; *h = h1; *l = l1; return 1; } } /* Helper function for value_contents_eq. The only difference is that this function is bit rather than byte based. Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits with LENGTH bits of VAL2's contents starting at OFFSET2 bits. Return true if the available bits match. */ static int value_contents_bits_eq (const struct value *val1, int offset1, const struct value *val2, int offset2, int length) { /* Each array element corresponds to a ranges source (unavailable, optimized out). '1' is for VAL1, '2' for VAL2. */ struct ranges_and_idx rp1[2], rp2[2]; /* See function description in value.h. */ gdb_assert (!val1->lazy && !val2->lazy); /* We shouldn't be trying to compare past the end of the values. */ gdb_assert (offset1 + length <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT); gdb_assert (offset2 + length <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT); memset (&rp1, 0, sizeof (rp1)); memset (&rp2, 0, sizeof (rp2)); rp1[0].ranges = val1->unavailable; rp2[0].ranges = val2->unavailable; rp1[1].ranges = val1->optimized_out; rp2[1].ranges = val2->optimized_out; while (length > 0) { ULONGEST l = 0, h = 0; /* init for gcc -Wall */ int i; for (i = 0; i < 2; i++) { ULONGEST l_tmp, h_tmp; /* The contents only match equal if the invalid/unavailable contents ranges match as well. */ if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i], offset1, offset2, length, &l_tmp, &h_tmp)) return 0; /* We're interested in the lowest/first range found. */ if (i == 0 || l_tmp < l) { l = l_tmp; h = h_tmp; } } /* Compare the available/valid contents. */ if (memcmp_with_bit_offsets (val1->contents, offset1, val2->contents, offset2, l) != 0) return 0; length -= h; offset1 += h; offset2 += h; } return 1; } int value_contents_eq (const struct value *val1, LONGEST offset1, const struct value *val2, LONGEST offset2, LONGEST length) { return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT, val2, offset2 * TARGET_CHAR_BIT, length * TARGET_CHAR_BIT); } /* Prototypes for local functions. */ static void show_values (char *, int); /* The value-history records all the values printed by print commands during this session. Each chunk records 60 consecutive values. The first chunk on the chain records the most recent values. The total number of values is in value_history_count. */ #define VALUE_HISTORY_CHUNK 60 struct value_history_chunk { struct value_history_chunk *next; struct value *values[VALUE_HISTORY_CHUNK]; }; /* Chain of chunks now in use. */ static struct value_history_chunk *value_history_chain; static int value_history_count; /* Abs number of last entry stored. */ /* List of all value objects currently allocated (except for those released by calls to release_value) This is so they can be freed after each command. */ static struct value *all_values; /* Allocate a lazy value for type TYPE. Its actual content is "lazily" allocated too: the content field of the return value is NULL; it will be allocated when it is fetched from the target. */ struct value * allocate_value_lazy (struct type *type) { struct value *val; /* Call check_typedef on our type to make sure that, if TYPE is a TYPE_CODE_TYPEDEF, its length is set to the length of the target type instead of zero. However, we do not replace the typedef type by the target type, because we want to keep the typedef in order to be able to set the VAL's type description correctly. */ check_typedef (type); val = XCNEW (struct value); val->contents = NULL; val->next = all_values; all_values = val; val->type = type; val->enclosing_type = type; VALUE_LVAL (val) = not_lval; val->location.address = 0; val->offset = 0; val->bitpos = 0; val->bitsize = 0; val->lazy = 1; val->embedded_offset = 0; val->pointed_to_offset = 0; val->modifiable = 1; val->initialized = 1; /* Default to initialized. */ /* Values start out on the all_values chain. */ val->reference_count = 1; return val; } /* The maximum size, in bytes, that GDB will try to allocate for a value. The initial value of 64k was not selected for any specific reason, it is just a reasonable starting point. */ static int max_value_size = 65536; /* 64k bytes */ /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of LONGEST, otherwise GDB will not be able to parse integer values from the CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would be unable to parse "set max-value-size 2". As we want a consistent GDB experience across hosts with different sizes of LONGEST, this arbitrary minimum value was selected, so long as this is bigger than LONGEST on all GDB supported hosts we're fine. */ #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE); /* Implement the "set max-value-size" command. */ static void set_max_value_size (char *args, int from_tty, struct cmd_list_element *c) { gdb_assert (max_value_size == -1 || max_value_size >= 0); if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE) { max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE; error (_("max-value-size set too low, increasing to %d bytes"), max_value_size); } } /* Implement the "show max-value-size" command. */ static void show_max_value_size (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { if (max_value_size == -1) fprintf_filtered (file, _("Maximum value size is unlimited.\n")); else fprintf_filtered (file, _("Maximum value size is %d bytes.\n"), max_value_size); } /* Called before we attempt to allocate or reallocate a buffer for the contents of a value. TYPE is the type of the value for which we are allocating the buffer. If the buffer is too large (based on the user controllable setting) then throw an error. If this function returns then we should attempt to allocate the buffer. */ static void check_type_length_before_alloc (const struct type *type) { unsigned int length = TYPE_LENGTH (type); if (max_value_size > -1 && length > max_value_size) { if (TYPE_NAME (type) != NULL) error (_("value of type `%s' requires %u bytes, which is more " "than max-value-size"), TYPE_NAME (type), length); else error (_("value requires %u bytes, which is more than " "max-value-size"), length); } } /* Allocate the contents of VAL if it has not been allocated yet. */ static void allocate_value_contents (struct value *val) { if (!val->contents) { check_type_length_before_alloc (val->enclosing_type); val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)); } } /* Allocate a value and its contents for type TYPE. */ struct value * allocate_value (struct type *type) { struct value *val = allocate_value_lazy (type); allocate_value_contents (val); val->lazy = 0; return val; } /* Allocate a value that has the correct length for COUNT repetitions of type TYPE. */ struct value * allocate_repeat_value (struct type *type, int count) { int low_bound = current_language->string_lower_bound; /* ??? */ /* FIXME-type-allocation: need a way to free this type when we are done with it. */ struct type *array_type = lookup_array_range_type (type, low_bound, count + low_bound - 1); return allocate_value (array_type); } struct value * allocate_computed_value (struct type *type, const struct lval_funcs *funcs, void *closure) { struct value *v = allocate_value_lazy (type); VALUE_LVAL (v) = lval_computed; v->location.computed.funcs = funcs; v->location.computed.closure = closure; return v; } /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */ struct value * allocate_optimized_out_value (struct type *type) { struct value *retval = allocate_value_lazy (type); mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type)); set_value_lazy (retval, 0); return retval; } /* Accessor methods. */ struct value * value_next (const struct value *value) { return value->next; } struct type * value_type (const struct value *value) { return value->type; } void deprecated_set_value_type (struct value *value, struct type *type) { value->type = type; } LONGEST value_offset (const struct value *value) { return value->offset; } void set_value_offset (struct value *value, LONGEST offset) { value->offset = offset; } LONGEST value_bitpos (const struct value *value) { return value->bitpos; } void set_value_bitpos (struct value *value, LONGEST bit) { value->bitpos = bit; } LONGEST value_bitsize (const struct value *value) { return value->bitsize; } void set_value_bitsize (struct value *value, LONGEST bit) { value->bitsize = bit; } struct value * value_parent (const struct value *value) { return value->parent; } /* See value.h. */ void set_value_parent (struct value *value, struct value *parent) { struct value *old = value->parent; value->parent = parent; if (parent != NULL) value_incref (parent); value_free (old); } gdb_byte * value_contents_raw (struct value *value) { struct gdbarch *arch = get_value_arch (value); int unit_size = gdbarch_addressable_memory_unit_size (arch); allocate_value_contents (value); return value->contents + value->embedded_offset * unit_size; } gdb_byte * value_contents_all_raw (struct value *value) { allocate_value_contents (value); return value->contents; } struct type * value_enclosing_type (const struct value *value) { return value->enclosing_type; } /* Look at value.h for description. */ struct type * value_actual_type (struct value *value, int resolve_simple_types, int *real_type_found) { struct value_print_options opts; struct type *result; get_user_print_options (&opts); if (real_type_found) *real_type_found = 0; result = value_type (value); if (opts.objectprint) { /* If result's target type is TYPE_CODE_STRUCT, proceed to fetch its rtti type. */ if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result)) && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result))) == TYPE_CODE_STRUCT && !value_optimized_out (value)) { struct type *real_type; real_type = value_rtti_indirect_type (value, NULL, NULL, NULL); if (real_type) { if (real_type_found) *real_type_found = 1; result = real_type; } } else if (resolve_simple_types) { if (real_type_found) *real_type_found = 1; result = value_enclosing_type (value); } } return result; } void error_value_optimized_out (void) { error (_("value has been optimized out")); } static void require_not_optimized_out (const struct value *value) { if (!VEC_empty (range_s, value->optimized_out)) { if (value->lval == lval_register) error (_("register has not been saved in frame")); else error_value_optimized_out (); } } static void require_available (const struct value *value) { if (!VEC_empty (range_s, value->unavailable)) throw_error (NOT_AVAILABLE_ERROR, _("value is not available")); } const gdb_byte * value_contents_for_printing (struct value *value) { if (value->lazy) value_fetch_lazy (value); return value->contents; } const gdb_byte * value_contents_for_printing_const (const struct value *value) { gdb_assert (!value->lazy); return value->contents; } const gdb_byte * value_contents_all (struct value *value) { const gdb_byte *result = value_contents_for_printing (value); require_not_optimized_out (value); require_available (value); return result; } /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET, SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */ static void ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset, VEC (range_s) *src_range, int src_bit_offset, int bit_length) { range_s *r; int i; for (i = 0; VEC_iterate (range_s, src_range, i, r); i++) { ULONGEST h, l; l = std::max (r->offset, (LONGEST) src_bit_offset); h = std::min (r->offset + r->length, (LONGEST) src_bit_offset + bit_length); if (l < h) insert_into_bit_range_vector (dst_range, dst_bit_offset + (l - src_bit_offset), h - l); } } /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET, SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */ static void value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset, const struct value *src, int src_bit_offset, int bit_length) { ranges_copy_adjusted (&dst->unavailable, dst_bit_offset, src->unavailable, src_bit_offset, bit_length); ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset, src->optimized_out, src_bit_offset, bit_length); } /* Copy LENGTH target addressable memory units of SRC value's (all) contents (value_contents_all) starting at SRC_OFFSET, into DST value's (all) contents, starting at DST_OFFSET. If unavailable contents are being copied from SRC, the corresponding DST contents are marked unavailable accordingly. Neither DST nor SRC may be lazy values. It is assumed the contents of DST in the [DST_OFFSET, DST_OFFSET+LENGTH) range are wholly available. */ void value_contents_copy_raw (struct value *dst, LONGEST dst_offset, struct value *src, LONGEST src_offset, LONGEST length) { LONGEST src_bit_offset, dst_bit_offset, bit_length; struct gdbarch *arch = get_value_arch (src); int unit_size = gdbarch_addressable_memory_unit_size (arch); /* A lazy DST would make that this copy operation useless, since as soon as DST's contents were un-lazied (by a later value_contents call, say), the contents would be overwritten. A lazy SRC would mean we'd be copying garbage. */ gdb_assert (!dst->lazy && !src->lazy); /* The overwritten DST range gets unavailability ORed in, not replaced. Make sure to remember to implement replacing if it turns out actually necessary. */ gdb_assert (value_bytes_available (dst, dst_offset, length)); gdb_assert (!value_bits_any_optimized_out (dst, TARGET_CHAR_BIT * dst_offset, TARGET_CHAR_BIT * length)); /* Copy the data. */ memcpy (value_contents_all_raw (dst) + dst_offset * unit_size, value_contents_all_raw (src) + src_offset * unit_size, length * unit_size); /* Copy the meta-data, adjusted. */ src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT; dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT; bit_length = length * unit_size * HOST_CHAR_BIT; value_ranges_copy_adjusted (dst, dst_bit_offset, src, src_bit_offset, bit_length); } /* Copy LENGTH bytes of SRC value's (all) contents (value_contents_all) starting at SRC_OFFSET byte, into DST value's (all) contents, starting at DST_OFFSET. If unavailable contents are being copied from SRC, the corresponding DST contents are marked unavailable accordingly. DST must not be lazy. If SRC is lazy, it will be fetched now. It is assumed the contents of DST in the [DST_OFFSET, DST_OFFSET+LENGTH) range are wholly available. */ void value_contents_copy (struct value *dst, LONGEST dst_offset, struct value *src, LONGEST src_offset, LONGEST length) { if (src->lazy) value_fetch_lazy (src); value_contents_copy_raw (dst, dst_offset, src, src_offset, length); } int value_lazy (const struct value *value) { return value->lazy; } void set_value_lazy (struct value *value, int val) { value->lazy = val; } int value_stack (const struct value *value) { return value->stack; } void set_value_stack (struct value *value, int val) { value->stack = val; } const gdb_byte * value_contents (struct value *value) { const gdb_byte *result = value_contents_writeable (value); require_not_optimized_out (value); require_available (value); return result; } gdb_byte * value_contents_writeable (struct value *value) { if (value->lazy) value_fetch_lazy (value); return value_contents_raw (value); } int value_optimized_out (struct value *value) { /* We can only know if a value is optimized out once we have tried to fetch it. */ if (VEC_empty (range_s, value->optimized_out) && value->lazy) { TRY { value_fetch_lazy (value); } CATCH (ex, RETURN_MASK_ERROR) { /* Fall back to checking value->optimized_out. */ } END_CATCH } return !VEC_empty (range_s, value->optimized_out); } /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and the following LENGTH bytes. */ void mark_value_bytes_optimized_out (struct value *value, int offset, int length) { mark_value_bits_optimized_out (value, offset * TARGET_CHAR_BIT, length * TARGET_CHAR_BIT); } /* See value.h. */ void mark_value_bits_optimized_out (struct value *value, LONGEST offset, LONGEST length) { insert_into_bit_range_vector (&value->optimized_out, offset, length); } int value_bits_synthetic_pointer (const struct value *value, LONGEST offset, LONGEST length) { if (value->lval != lval_computed || !value->location.computed.funcs->check_synthetic_pointer) return 0; return value->location.computed.funcs->check_synthetic_pointer (value, offset, length); } LONGEST value_embedded_offset (const struct value *value) { return value->embedded_offset; } void set_value_embedded_offset (struct value *value, LONGEST val) { value->embedded_offset = val; } LONGEST value_pointed_to_offset (const struct value *value) { return value->pointed_to_offset; } void set_value_pointed_to_offset (struct value *value, LONGEST val) { value->pointed_to_offset = val; } const struct lval_funcs * value_computed_funcs (const struct value *v) { gdb_assert (value_lval_const (v) == lval_computed); return v->location.computed.funcs; } void * value_computed_closure (const struct value *v) { gdb_assert (v->lval == lval_computed); return v->location.computed.closure; } enum lval_type * deprecated_value_lval_hack (struct value *value) { return &value->lval; } enum lval_type value_lval_const (const struct value *value) { return value->lval; } CORE_ADDR value_address (const struct value *value) { if (value->lval != lval_memory) return 0; if (value->parent != NULL) return value_address (value->parent) + value->offset; if (NULL != TYPE_DATA_LOCATION (value_type (value))) { gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value))); return TYPE_DATA_LOCATION_ADDR (value_type (value)); } return value->location.address + value->offset; } CORE_ADDR value_raw_address (const struct value *value) { if (value->lval != lval_memory) return 0; return value->location.address; } void set_value_address (struct value *value, CORE_ADDR addr) { gdb_assert (value->lval == lval_memory); value->location.address = addr; } struct internalvar ** deprecated_value_internalvar_hack (struct value *value) { return &value->location.internalvar; } struct frame_id * deprecated_value_next_frame_id_hack (struct value *value) { gdb_assert (value->lval == lval_register); return &value->location.reg.next_frame_id; } int * deprecated_value_regnum_hack (struct value *value) { gdb_assert (value->lval == lval_register); return &value->location.reg.regnum; } int deprecated_value_modifiable (const struct value *value) { return value->modifiable; } /* Return a mark in the value chain. All values allocated after the mark is obtained (except for those released) are subject to being freed if a subsequent value_free_to_mark is passed the mark. */ struct value * value_mark (void) { return all_values; } /* Take a reference to VAL. VAL will not be deallocated until all references are released. */ void value_incref (struct value *val) { val->reference_count++; } /* Release a reference to VAL, which was acquired with value_incref. This function is also called to deallocate values from the value chain. */ void value_free (struct value *val) { if (val) { gdb_assert (val->reference_count > 0); val->reference_count--; if (val->reference_count > 0) return; /* If there's an associated parent value, drop our reference to it. */ if (val->parent != NULL) value_free (val->parent); if (VALUE_LVAL (val) == lval_computed) { const struct lval_funcs *funcs = val->location.computed.funcs; if (funcs->free_closure) funcs->free_closure (val); } else if (VALUE_LVAL (val) == lval_xcallable) free_xmethod_worker (val->location.xm_worker); xfree (val->contents); VEC_free (range_s, val->unavailable); } xfree (val); } /* Free all values allocated since MARK was obtained by value_mark (except for those released). */ void value_free_to_mark (const struct value *mark) { struct value *val; struct value *next; for (val = all_values; val && val != mark; val = next) { next = val->next; val->released = 1; value_free (val); } all_values = val; } /* Free all the values that have been allocated (except for those released). Call after each command, successful or not. In practice this is called before each command, which is sufficient. */ void free_all_values (void) { struct value *val; struct value *next; for (val = all_values; val; val = next) { next = val->next; val->released = 1; value_free (val); } all_values = 0; } /* Frees all the elements in a chain of values. */ void free_value_chain (struct value *v) { struct value *next; for (; v; v = next) { next = value_next (v); value_free (v); } } /* Remove VAL from the chain all_values so it will not be freed automatically. */ void release_value (struct value *val) { struct value *v; if (all_values == val) { all_values = val->next; val->next = NULL; val->released = 1; return; } for (v = all_values; v; v = v->next) { if (v->next == val) { v->next = val->next; val->next = NULL; val->released = 1; break; } } } /* If the value is not already released, release it. If the value is already released, increment its reference count. That is, this function ensures that the value is released from the value chain and that the caller owns a reference to it. */ void release_value_or_incref (struct value *val) { if (val->released) value_incref (val); else release_value (val); } /* Release all values up to mark */ struct value * value_release_to_mark (const struct value *mark) { struct value *val; struct value *next; for (val = next = all_values; next; next = next->next) { if (next->next == mark) { all_values = next->next; next->next = NULL; return val; } next->released = 1; } all_values = 0; return val; } /* Return a copy of the value ARG. It contains the same contents, for same memory address, but it's a different block of storage. */ struct value * value_copy (struct value *arg) { struct type *encl_type = value_enclosing_type (arg); struct value *val; if (value_lazy (arg)) val = allocate_value_lazy (encl_type); else val = allocate_value (encl_type); val->type = arg->type; VALUE_LVAL (val) = VALUE_LVAL (arg); val->location = arg->location; val->offset = arg->offset; val->bitpos = arg->bitpos; val->bitsize = arg->bitsize; val->lazy = arg->lazy; val->embedded_offset = value_embedded_offset (arg); val->pointed_to_offset = arg->pointed_to_offset; val->modifiable = arg->modifiable; if (!value_lazy (val)) { memcpy (value_contents_all_raw (val), value_contents_all_raw (arg), TYPE_LENGTH (value_enclosing_type (arg))); } val->unavailable = VEC_copy (range_s, arg->unavailable); val->optimized_out = VEC_copy (range_s, arg->optimized_out); set_value_parent (val, arg->parent); if (VALUE_LVAL (val) == lval_computed) { const struct lval_funcs *funcs = val->location.computed.funcs; if (funcs->copy_closure) val->location.computed.closure = funcs->copy_closure (val); } return val; } /* Return a "const" and/or "volatile" qualified version of the value V. If CNST is true, then the returned value will be qualified with "const". if VOLTL is true, then the returned value will be qualified with "volatile". */ struct value * make_cv_value (int cnst, int voltl, struct value *v) { struct type *val_type = value_type (v); struct type *enclosing_type = value_enclosing_type (v); struct value *cv_val = value_copy (v); deprecated_set_value_type (cv_val, make_cv_type (cnst, voltl, val_type, NULL)); set_value_enclosing_type (cv_val, make_cv_type (cnst, voltl, enclosing_type, NULL)); return cv_val; } /* Return a version of ARG that is non-lvalue. */ struct value * value_non_lval (struct value *arg) { if (VALUE_LVAL (arg) != not_lval) { struct type *enc_type = value_enclosing_type (arg); struct value *val = allocate_value (enc_type); memcpy (value_contents_all_raw (val), value_contents_all (arg), TYPE_LENGTH (enc_type)); val->type = arg->type; set_value_embedded_offset (val, value_embedded_offset (arg)); set_value_pointed_to_offset (val, value_pointed_to_offset (arg)); return val; } return arg; } /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */ void value_force_lval (struct value *v, CORE_ADDR addr) { gdb_assert (VALUE_LVAL (v) == not_lval); write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v))); v->lval = lval_memory; v->location.address = addr; } void set_value_component_location (struct value *component, const struct value *whole) { struct type *type; gdb_assert (whole->lval != lval_xcallable); if (whole->lval == lval_internalvar) VALUE_LVAL (component) = lval_internalvar_component; else VALUE_LVAL (component) = whole->lval; component->location = whole->location; if (whole->lval == lval_computed) { const struct lval_funcs *funcs = whole->location.computed.funcs; if (funcs->copy_closure) component->location.computed.closure = funcs->copy_closure (whole); } /* If type has a dynamic resolved location property update it's value address. */ type = value_type (whole); if (NULL != TYPE_DATA_LOCATION (type) && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST) set_value_address (component, TYPE_DATA_LOCATION_ADDR (type)); } /* Access to the value history. */ /* Record a new value in the value history. Returns the absolute history index of the entry. */ int record_latest_value (struct value *val) { int i; /* We don't want this value to have anything to do with the inferior anymore. In particular, "set $1 = 50" should not affect the variable from which the value was taken, and fast watchpoints should be able to assume that a value on the value history never changes. */ if (value_lazy (val)) value_fetch_lazy (val); /* We preserve VALUE_LVAL so that the user can find out where it was fetched from. This is a bit dubious, because then *&$1 does not just return $1 but the current contents of that location. c'est la vie... */ val->modifiable = 0; /* The value may have already been released, in which case we're adding a new reference for its entry in the history. That is why we call release_value_or_incref here instead of release_value. */ release_value_or_incref (val); /* Here we treat value_history_count as origin-zero and applying to the value being stored now. */ i = value_history_count % VALUE_HISTORY_CHUNK; if (i == 0) { struct value_history_chunk *newobj = XCNEW (struct value_history_chunk); newobj->next = value_history_chain; value_history_chain = newobj; } value_history_chain->values[i] = val; /* Now we regard value_history_count as origin-one and applying to the value just stored. */ return ++value_history_count; } /* Return a copy of the value in the history with sequence number NUM. */ struct value * access_value_history (int num) { struct value_history_chunk *chunk; int i; int absnum = num; if (absnum <= 0) absnum += value_history_count; if (absnum <= 0) { if (num == 0) error (_("The history is empty.")); else if (num == 1) error (_("There is only one value in the history.")); else error (_("History does not go back to $$%d."), -num); } if (absnum > value_history_count) error (_("History has not yet reached $%d."), absnum); absnum--; /* Now absnum is always absolute and origin zero. */ chunk = value_history_chain; for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; i > 0; i--) chunk = chunk->next; return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); } static void show_values (char *num_exp, int from_tty) { int i; struct value *val; static int num = 1; if (num_exp) { /* "show values +" should print from the stored position. "show values " should print around value number . */ if (num_exp[0] != '+' || num_exp[1] != '\0') num = parse_and_eval_long (num_exp) - 5; } else { /* "show values" means print the last 10 values. */ num = value_history_count - 9; } if (num <= 0) num = 1; for (i = num; i < num + 10 && i <= value_history_count; i++) { struct value_print_options opts; val = access_value_history (i); printf_filtered (("$%d = "), i); get_user_print_options (&opts); value_print (val, gdb_stdout, &opts); printf_filtered (("\n")); } /* The next "show values +" should start after what we just printed. */ num += 10; /* Hitting just return after this command should do the same thing as "show values +". If num_exp is null, this is unnecessary, since "show values +" is not useful after "show values". */ if (from_tty && num_exp) set_repeat_arguments ("+"); } enum internalvar_kind { /* The internal variable is empty. */ INTERNALVAR_VOID, /* The value of the internal variable is provided directly as a GDB value object. */ INTERNALVAR_VALUE, /* A fresh value is computed via a call-back routine on every access to the internal variable. */ INTERNALVAR_MAKE_VALUE, /* The internal variable holds a GDB internal convenience function. */ INTERNALVAR_FUNCTION, /* The variable holds an integer value. */ INTERNALVAR_INTEGER, /* The variable holds a GDB-provided string. */ INTERNALVAR_STRING, }; union internalvar_data { /* A value object used with INTERNALVAR_VALUE. */ struct value *value; /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */ struct { /* The functions to call. */ const struct internalvar_funcs *functions; /* The function's user-data. */ void *data; } make_value; /* The internal function used with INTERNALVAR_FUNCTION. */ struct { struct internal_function *function; /* True if this is the canonical name for the function. */ int canonical; } fn; /* An integer value used with INTERNALVAR_INTEGER. */ struct { /* If type is non-NULL, it will be used as the type to generate a value for this internal variable. If type is NULL, a default integer type for the architecture is used. */ struct type *type; LONGEST val; } integer; /* A string value used with INTERNALVAR_STRING. */ char *string; }; /* Internal variables. These are variables within the debugger that hold values assigned by debugger commands. The user refers to them with a '$' prefix that does not appear in the variable names stored internally. */ struct internalvar { struct internalvar *next; char *name; /* We support various different kinds of content of an internal variable. enum internalvar_kind specifies the kind, and union internalvar_data provides the data associated with this particular kind. */ enum internalvar_kind kind; union internalvar_data u; }; static struct internalvar *internalvars; /* If the variable does not already exist create it and give it the value given. If no value is given then the default is zero. */ static void init_if_undefined_command (const char* args, int from_tty) { struct internalvar* intvar; /* Parse the expression - this is taken from set_command(). */ expression_up expr = parse_expression (args); /* Validate the expression. Was the expression an assignment? Or even an expression at all? */ if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN) error (_("Init-if-undefined requires an assignment expression.")); /* Extract the variable from the parsed expression. In the case of an assign the lvalue will be in elts[1] and elts[2]. */ if (expr->elts[1].opcode != OP_INTERNALVAR) error (_("The first parameter to init-if-undefined " "should be a GDB variable.")); intvar = expr->elts[2].internalvar; /* Only evaluate the expression if the lvalue is void. This may still fail if the expresssion is invalid. */ if (intvar->kind == INTERNALVAR_VOID) evaluate_expression (expr.get ()); } /* Look up an internal variable with name NAME. NAME should not normally include a dollar sign. If the specified internal variable does not exist, the return value is NULL. */ struct internalvar * lookup_only_internalvar (const char *name) { struct internalvar *var; for (var = internalvars; var; var = var->next) if (strcmp (var->name, name) == 0) return var; return NULL; } /* Complete NAME by comparing it to the names of internal variables. */ void complete_internalvar (completion_tracker &tracker, const char *name) { struct internalvar *var; int len; len = strlen (name); for (var = internalvars; var; var = var->next) if (strncmp (var->name, name, len) == 0) { gdb::unique_xmalloc_ptr copy (xstrdup (var->name)); tracker.add_completion (std::move (copy)); } } /* Create an internal variable with name NAME and with a void value. NAME should not normally include a dollar sign. */ struct internalvar * create_internalvar (const char *name) { struct internalvar *var = XNEW (struct internalvar); var->name = concat (name, (char *)NULL); var->kind = INTERNALVAR_VOID; var->next = internalvars; internalvars = var; return var; } /* Create an internal variable with name NAME and register FUN as the function that value_of_internalvar uses to create a value whenever this variable is referenced. NAME should not normally include a dollar sign. DATA is passed uninterpreted to FUN when it is called. CLEANUP, if not NULL, is called when the internal variable is destroyed. It is passed DATA as its only argument. */ struct internalvar * create_internalvar_type_lazy (const char *name, const struct internalvar_funcs *funcs, void *data) { struct internalvar *var = create_internalvar (name); var->kind = INTERNALVAR_MAKE_VALUE; var->u.make_value.functions = funcs; var->u.make_value.data = data; return var; } /* See documentation in value.h. */ int compile_internalvar_to_ax (struct internalvar *var, struct agent_expr *expr, struct axs_value *value) { if (var->kind != INTERNALVAR_MAKE_VALUE || var->u.make_value.functions->compile_to_ax == NULL) return 0; var->u.make_value.functions->compile_to_ax (var, expr, value, var->u.make_value.data); return 1; } /* Look up an internal variable with name NAME. NAME should not normally include a dollar sign. If the specified internal variable does not exist, one is created, with a void value. */ struct internalvar * lookup_internalvar (const char *name) { struct internalvar *var; var = lookup_only_internalvar (name); if (var) return var; return create_internalvar (name); } /* Return current value of internal variable VAR. For variables that are not inherently typed, use a value type appropriate for GDBARCH. */ struct value * value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var) { struct value *val; struct trace_state_variable *tsv; /* If there is a trace state variable of the same name, assume that is what we really want to see. */ tsv = find_trace_state_variable (var->name); if (tsv) { tsv->value_known = target_get_trace_state_variable_value (tsv->number, &(tsv->value)); if (tsv->value_known) val = value_from_longest (builtin_type (gdbarch)->builtin_int64, tsv->value); else val = allocate_value (builtin_type (gdbarch)->builtin_void); return val; } switch (var->kind) { case INTERNALVAR_VOID: val = allocate_value (builtin_type (gdbarch)->builtin_void); break; case INTERNALVAR_FUNCTION: val = allocate_value (builtin_type (gdbarch)->internal_fn); break; case INTERNALVAR_INTEGER: if (!var->u.integer.type) val = value_from_longest (builtin_type (gdbarch)->builtin_int, var->u.integer.val); else val = value_from_longest (var->u.integer.type, var->u.integer.val); break; case INTERNALVAR_STRING: val = value_cstring (var->u.string, strlen (var->u.string), builtin_type (gdbarch)->builtin_char); break; case INTERNALVAR_VALUE: val = value_copy (var->u.value); if (value_lazy (val)) value_fetch_lazy (val); break; case INTERNALVAR_MAKE_VALUE: val = (*var->u.make_value.functions->make_value) (gdbarch, var, var->u.make_value.data); break; default: internal_error (__FILE__, __LINE__, _("bad kind")); } /* Change the VALUE_LVAL to lval_internalvar so that future operations on this value go back to affect the original internal variable. Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have no underlying modifyable state in the internal variable. Likewise, if the variable's value is a computed lvalue, we want references to it to produce another computed lvalue, where references and assignments actually operate through the computed value's functions. This means that internal variables with computed values behave a little differently from other internal variables: assignments to them don't just replace the previous value altogether. At the moment, this seems like the behavior we want. */ if (var->kind != INTERNALVAR_MAKE_VALUE && val->lval != lval_computed) { VALUE_LVAL (val) = lval_internalvar; VALUE_INTERNALVAR (val) = var; } return val; } int get_internalvar_integer (struct internalvar *var, LONGEST *result) { if (var->kind == INTERNALVAR_INTEGER) { *result = var->u.integer.val; return 1; } if (var->kind == INTERNALVAR_VALUE) { struct type *type = check_typedef (value_type (var->u.value)); if (TYPE_CODE (type) == TYPE_CODE_INT) { *result = value_as_long (var->u.value); return 1; } } return 0; } static int get_internalvar_function (struct internalvar *var, struct internal_function **result) { switch (var->kind) { case INTERNALVAR_FUNCTION: *result = var->u.fn.function; return 1; default: return 0; } } void set_internalvar_component (struct internalvar *var, LONGEST offset, LONGEST bitpos, LONGEST bitsize, struct value *newval) { gdb_byte *addr; struct gdbarch *arch; int unit_size; switch (var->kind) { case INTERNALVAR_VALUE: addr = value_contents_writeable (var->u.value); arch = get_value_arch (var->u.value); unit_size = gdbarch_addressable_memory_unit_size (arch); if (bitsize) modify_field (value_type (var->u.value), addr + offset, value_as_long (newval), bitpos, bitsize); else memcpy (addr + offset * unit_size, value_contents (newval), TYPE_LENGTH (value_type (newval))); break; default: /* We can never get a component of any other kind. */ internal_error (__FILE__, __LINE__, _("set_internalvar_component")); } } void set_internalvar (struct internalvar *var, struct value *val) { enum internalvar_kind new_kind; union internalvar_data new_data = { 0 }; if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical) error (_("Cannot overwrite convenience function %s"), var->name); /* Prepare new contents. */ switch (TYPE_CODE (check_typedef (value_type (val)))) { case TYPE_CODE_VOID: new_kind = INTERNALVAR_VOID; break; case TYPE_CODE_INTERNAL_FUNCTION: gdb_assert (VALUE_LVAL (val) == lval_internalvar); new_kind = INTERNALVAR_FUNCTION; get_internalvar_function (VALUE_INTERNALVAR (val), &new_data.fn.function); /* Copies created here are never canonical. */ break; default: new_kind = INTERNALVAR_VALUE; new_data.value = value_copy (val); new_data.value->modifiable = 1; /* Force the value to be fetched from the target now, to avoid problems later when this internalvar is referenced and the target is gone or has changed. */ if (value_lazy (new_data.value)) value_fetch_lazy (new_data.value); /* Release the value from the value chain to prevent it from being deleted by free_all_values. From here on this function should not call error () until new_data is installed into the var->u to avoid leaking memory. */ release_value (new_data.value); /* Internal variables which are created from values with a dynamic location don't need the location property of the origin anymore. The resolved dynamic location is used prior then any other address when accessing the value. If we keep it, we would still refer to the origin value. Remove the location property in case it exist. */ remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value)); break; } /* Clean up old contents. */ clear_internalvar (var); /* Switch over. */ var->kind = new_kind; var->u = new_data; /* End code which must not call error(). */ } void set_internalvar_integer (struct internalvar *var, LONGEST l) { /* Clean up old contents. */ clear_internalvar (var); var->kind = INTERNALVAR_INTEGER; var->u.integer.type = NULL; var->u.integer.val = l; } void set_internalvar_string (struct internalvar *var, const char *string) { /* Clean up old contents. */ clear_internalvar (var); var->kind = INTERNALVAR_STRING; var->u.string = xstrdup (string); } static void set_internalvar_function (struct internalvar *var, struct internal_function *f) { /* Clean up old contents. */ clear_internalvar (var); var->kind = INTERNALVAR_FUNCTION; var->u.fn.function = f; var->u.fn.canonical = 1; /* Variables installed here are always the canonical version. */ } void clear_internalvar (struct internalvar *var) { /* Clean up old contents. */ switch (var->kind) { case INTERNALVAR_VALUE: value_free (var->u.value); break; case INTERNALVAR_STRING: xfree (var->u.string); break; case INTERNALVAR_MAKE_VALUE: if (var->u.make_value.functions->destroy != NULL) var->u.make_value.functions->destroy (var->u.make_value.data); break; default: break; } /* Reset to void kind. */ var->kind = INTERNALVAR_VOID; } char * internalvar_name (const struct internalvar *var) { return var->name; } static struct internal_function * create_internal_function (const char *name, internal_function_fn handler, void *cookie) { struct internal_function *ifn = XNEW (struct internal_function); ifn->name = xstrdup (name); ifn->handler = handler; ifn->cookie = cookie; return ifn; } char * value_internal_function_name (struct value *val) { struct internal_function *ifn; int result; gdb_assert (VALUE_LVAL (val) == lval_internalvar); result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn); gdb_assert (result); return ifn->name; } struct value * call_internal_function (struct gdbarch *gdbarch, const struct language_defn *language, struct value *func, int argc, struct value **argv) { struct internal_function *ifn; int result; gdb_assert (VALUE_LVAL (func) == lval_internalvar); result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn); gdb_assert (result); return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv); } /* The 'function' command. This does nothing -- it is just a placeholder to let "help function NAME" work. This is also used as the implementation of the sub-command that is created when registering an internal function. */ static void function_command (const char *command, int from_tty) { /* Do nothing. */ } /* Clean up if an internal function's command is destroyed. */ static void function_destroyer (struct cmd_list_element *self, void *ignore) { xfree ((char *) self->name); xfree ((char *) self->doc); } /* Add a new internal function. NAME is the name of the function; DOC is a documentation string describing the function. HANDLER is called when the function is invoked. COOKIE is an arbitrary pointer which is passed to HANDLER and is intended for "user data". */ void add_internal_function (const char *name, const char *doc, internal_function_fn handler, void *cookie) { struct cmd_list_element *cmd; struct internal_function *ifn; struct internalvar *var = lookup_internalvar (name); ifn = create_internal_function (name, handler, cookie); set_internalvar_function (var, ifn); cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc, &functionlist); cmd->destroyer = function_destroyer; } /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to prevent cycles / duplicates. */ void preserve_one_value (struct value *value, struct objfile *objfile, htab_t copied_types) { if (TYPE_OBJFILE (value->type) == objfile) value->type = copy_type_recursive (objfile, value->type, copied_types); if (TYPE_OBJFILE (value->enclosing_type) == objfile) value->enclosing_type = copy_type_recursive (objfile, value->enclosing_type, copied_types); } /* Likewise for internal variable VAR. */ static void preserve_one_internalvar (struct internalvar *var, struct objfile *objfile, htab_t copied_types) { switch (var->kind) { case INTERNALVAR_INTEGER: if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile) var->u.integer.type = copy_type_recursive (objfile, var->u.integer.type, copied_types); break; case INTERNALVAR_VALUE: preserve_one_value (var->u.value, objfile, copied_types); break; } } /* Update the internal variables and value history when OBJFILE is discarded; we must copy the types out of the objfile. New global types will be created for every convenience variable which currently points to this objfile's types, and the convenience variables will be adjusted to use the new global types. */ void preserve_values (struct objfile *objfile) { htab_t copied_types; struct value_history_chunk *cur; struct internalvar *var; int i; /* Create the hash table. We allocate on the objfile's obstack, since it is soon to be deleted. */ copied_types = create_copied_types_hash (objfile); for (cur = value_history_chain; cur; cur = cur->next) for (i = 0; i < VALUE_HISTORY_CHUNK; i++) if (cur->values[i]) preserve_one_value (cur->values[i], objfile, copied_types); for (var = internalvars; var; var = var->next) preserve_one_internalvar (var, objfile, copied_types); preserve_ext_lang_values (objfile, copied_types); htab_delete (copied_types); } static void show_convenience (const char *ignore, int from_tty) { struct gdbarch *gdbarch = get_current_arch (); struct internalvar *var; int varseen = 0; struct value_print_options opts; get_user_print_options (&opts); for (var = internalvars; var; var = var->next) { if (!varseen) { varseen = 1; } printf_filtered (("$%s = "), var->name); TRY { struct value *val; val = value_of_internalvar (gdbarch, var); value_print (val, gdb_stdout, &opts); } CATCH (ex, RETURN_MASK_ERROR) { fprintf_filtered (gdb_stdout, _(""), ex.message); } END_CATCH printf_filtered (("\n")); } if (!varseen) { /* This text does not mention convenience functions on purpose. The user can't create them except via Python, and if Python support is installed this message will never be printed ($_streq will exist). */ printf_unfiltered (_("No debugger convenience variables now defined.\n" "Convenience variables have " "names starting with \"$\";\n" "use \"set\" as in \"set " "$foo = 5\" to define them.\n")); } } /* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */ struct value * value_of_xmethod (struct xmethod_worker *worker) { if (worker->value == NULL) { struct value *v; v = allocate_value (builtin_type (target_gdbarch ())->xmethod); v->lval = lval_xcallable; v->location.xm_worker = worker; v->modifiable = 0; worker->value = v; } return worker->value; } /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */ struct type * result_type_of_xmethod (struct value *method, int argc, struct value **argv) { gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD && method->lval == lval_xcallable && argc > 0); return get_xmethod_result_type (method->location.xm_worker, argv[0], argv + 1, argc - 1); } /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */ struct value * call_xmethod (struct value *method, int argc, struct value **argv) { gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD && method->lval == lval_xcallable && argc > 0); return invoke_xmethod (method->location.xm_worker, argv[0], argv + 1, argc - 1); } /* Extract a value as a C number (either long or double). Knows how to convert fixed values to double, or floating values to long. Does not deallocate the value. */ LONGEST value_as_long (struct value *val) { /* This coerces arrays and functions, which is necessary (e.g. in disassemble_command). It also dereferences references, which I suspect is the most logical thing to do. */ val = coerce_array (val); return unpack_long (value_type (val), value_contents (val)); } /* Extract a value as a C pointer. Does not deallocate the value. Note that val's type may not actually be a pointer; value_as_long handles all the cases. */ CORE_ADDR value_as_address (struct value *val) { struct gdbarch *gdbarch = get_type_arch (value_type (val)); /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure whether we want this to be true eventually. */ #if 0 /* gdbarch_addr_bits_remove is wrong if we are being called for a non-address (e.g. argument to "signal", "info break", etc.), or for pointers to char, in which the low bits *are* significant. */ return gdbarch_addr_bits_remove (gdbarch, value_as_long (val)); #else /* There are several targets (IA-64, PowerPC, and others) which don't represent pointers to functions as simply the address of the function's entry point. For example, on the IA-64, a function pointer points to a two-word descriptor, generated by the linker, which contains the function's entry point, and the value the IA-64 "global pointer" register should have --- to support position-independent code. The linker generates descriptors only for those functions whose addresses are taken. On such targets, it's difficult for GDB to convert an arbitrary function address into a function pointer; it has to either find an existing descriptor for that function, or call malloc and build its own. On some targets, it is impossible for GDB to build a descriptor at all: the descriptor must contain a jump instruction; data memory cannot be executed; and code memory cannot be modified. Upon entry to this function, if VAL is a value of type `function' (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then value_address (val) is the address of the function. This is what you'll get if you evaluate an expression like `main'. The call to COERCE_ARRAY below actually does all the usual unary conversions, which includes converting values of type `function' to `pointer to function'. This is the challenging conversion discussed above. Then, `unpack_long' will convert that pointer back into an address. So, suppose the user types `disassemble foo' on an architecture with a strange function pointer representation, on which GDB cannot build its own descriptors, and suppose further that `foo' has no linker-built descriptor. The address->pointer conversion will signal an error and prevent the command from running, even though the next step would have been to convert the pointer directly back into the same address. The following shortcut avoids this whole mess. If VAL is a function, just return its address directly. */ if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD) return value_address (val); val = coerce_array (val); /* Some architectures (e.g. Harvard), map instruction and data addresses onto a single large unified address space. For instance: An architecture may consider a large integer in the range 0x10000000 .. 0x1000ffff to already represent a data addresses (hence not need a pointer to address conversion) while a small integer would still need to be converted integer to pointer to address. Just assume such architectures handle all integer conversions in a single function. */ /* JimB writes: I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we must admonish GDB hackers to make sure its behavior matches the compiler's, whenever possible. In general, I think GDB should evaluate expressions the same way the compiler does. When the user copies an expression out of their source code and hands it to a `print' command, they should get the same value the compiler would have computed. Any deviation from this rule can cause major confusion and annoyance, and needs to be justified carefully. In other words, GDB doesn't really have the freedom to do these conversions in clever and useful ways. AndrewC pointed out that users aren't complaining about how GDB casts integers to pointers; they are complaining that they can't take an address from a disassembly listing and give it to `x/i'. This is certainly important. Adding an architecture method like integer_to_address() certainly makes it possible for GDB to "get it right" in all circumstances --- the target has complete control over how things get done, so people can Do The Right Thing for their target without breaking anyone else. The standard doesn't specify how integers get converted to pointers; usually, the ABI doesn't either, but ABI-specific code is a more reasonable place to handle it. */ if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR && !TYPE_IS_REFERENCE (value_type (val)) && gdbarch_integer_to_address_p (gdbarch)) return gdbarch_integer_to_address (gdbarch, value_type (val), value_contents (val)); return unpack_long (value_type (val), value_contents (val)); #endif } /* Unpack raw data (copied from debugee, target byte order) at VALADDR as a long, or as a double, assuming the raw data is described by type TYPE. Knows how to convert different sizes of values and can convert between fixed and floating point. We don't assume any alignment for the raw data. Return value is in host byte order. If you want functions and arrays to be coerced to pointers, and references to be dereferenced, call value_as_long() instead. C++: It is assumed that the front-end has taken care of all matters concerning pointers to members. A pointer to member which reaches here is considered to be equivalent to an INT (or some size). After all, it is only an offset. */ LONGEST unpack_long (struct type *type, const gdb_byte *valaddr) { enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); enum type_code code = TYPE_CODE (type); int len = TYPE_LENGTH (type); int nosign = TYPE_UNSIGNED (type); switch (code) { case TYPE_CODE_TYPEDEF: return unpack_long (check_typedef (type), valaddr); case TYPE_CODE_ENUM: case TYPE_CODE_FLAGS: case TYPE_CODE_BOOL: case TYPE_CODE_INT: case TYPE_CODE_CHAR: case TYPE_CODE_RANGE: case TYPE_CODE_MEMBERPTR: if (nosign) return extract_unsigned_integer (valaddr, len, byte_order); else return extract_signed_integer (valaddr, len, byte_order); case TYPE_CODE_FLT: case TYPE_CODE_DECFLOAT: return target_float_to_longest (valaddr, type); case TYPE_CODE_PTR: case TYPE_CODE_REF: case TYPE_CODE_RVALUE_REF: /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure whether we want this to be true eventually. */ return extract_typed_address (valaddr, type); default: error (_("Value can't be converted to integer.")); } return 0; /* Placate lint. */ } /* Unpack raw data (copied from debugee, target byte order) at VALADDR as a CORE_ADDR, assuming the raw data is described by type TYPE. We don't assume any alignment for the raw data. Return value is in host byte order. If you want functions and arrays to be coerced to pointers, and references to be dereferenced, call value_as_address() instead. C++: It is assumed that the front-end has taken care of all matters concerning pointers to members. A pointer to member which reaches here is considered to be equivalent to an INT (or some size). After all, it is only an offset. */ CORE_ADDR unpack_pointer (struct type *type, const gdb_byte *valaddr) { /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure whether we want this to be true eventually. */ return unpack_long (type, valaddr); } bool is_floating_value (struct value *val) { struct type *type = check_typedef (value_type (val)); if (is_floating_type (type)) { if (!target_float_is_valid (value_contents (val), type)) error (_("Invalid floating value found in program.")); return true; } return false; } /* Get the value of the FIELDNO'th field (which must be static) of TYPE. */ struct value * value_static_field (struct type *type, int fieldno) { struct value *retval; switch (TYPE_FIELD_LOC_KIND (type, fieldno)) { case FIELD_LOC_KIND_PHYSADDR: retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno), TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)); break; case FIELD_LOC_KIND_PHYSNAME: { const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); /* TYPE_FIELD_NAME (type, fieldno); */ struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0); if (sym.symbol == NULL) { /* With some compilers, e.g. HP aCC, static data members are reported as non-debuggable symbols. */ struct bound_minimal_symbol msym = lookup_minimal_symbol (phys_name, NULL, NULL); if (!msym.minsym) return allocate_optimized_out_value (type); else { retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno), BMSYMBOL_VALUE_ADDRESS (msym)); } } else retval = value_of_variable (sym.symbol, sym.block); break; } default: gdb_assert_not_reached ("unexpected field location kind"); } return retval; } /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE. You have to be careful here, since the size of the data area for the value is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger than the old enclosing type, you have to allocate more space for the data. */ void set_value_enclosing_type (struct value *val, struct type *new_encl_type) { if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val))) { check_type_length_before_alloc (new_encl_type); val->contents = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type)); } val->enclosing_type = new_encl_type; } /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type ARG_TYPE, extract and return the value of one of its (non-static) fields. FIELDNO says which field. */ struct value * value_primitive_field (struct value *arg1, LONGEST offset, int fieldno, struct type *arg_type) { struct value *v; struct type *type; struct gdbarch *arch = get_value_arch (arg1); int unit_size = gdbarch_addressable_memory_unit_size (arch); arg_type = check_typedef (arg_type); type = TYPE_FIELD_TYPE (arg_type, fieldno); /* Call check_typedef on our type to make sure that, if TYPE is a TYPE_CODE_TYPEDEF, its length is set to the length of the target type instead of zero. However, we do not replace the typedef type by the target type, because we want to keep the typedef in order to be able to print the type description correctly. */ check_typedef (type); if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) { /* Handle packed fields. Create a new value for the bitfield, with bitpos and bitsize set. If possible, arrange offset and bitpos so that we can do a single aligned read of the size of the containing type. Otherwise, adjust offset to the byte containing the first bit. Assume that the address, offset, and embedded offset are sufficiently aligned. */ LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno); LONGEST container_bitsize = TYPE_LENGTH (type) * 8; v = allocate_value_lazy (type); v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno); if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)) v->bitpos = bitpos % container_bitsize; else v->bitpos = bitpos % 8; v->offset = (value_embedded_offset (arg1) + offset + (bitpos - v->bitpos) / 8); set_value_parent (v, arg1); if (!value_lazy (arg1)) value_fetch_lazy (v); } else if (fieldno < TYPE_N_BASECLASSES (arg_type)) { /* This field is actually a base subobject, so preserve the entire object's contents for later references to virtual bases, etc. */ LONGEST boffset; /* Lazy register values with offsets are not supported. */ if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) value_fetch_lazy (arg1); /* We special case virtual inheritance here because this requires access to the contents, which we would rather avoid for references to ordinary fields of unavailable values. */ if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno)) boffset = baseclass_offset (arg_type, fieldno, value_contents (arg1), value_embedded_offset (arg1), value_address (arg1), arg1); else boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; if (value_lazy (arg1)) v = allocate_value_lazy (value_enclosing_type (arg1)); else { v = allocate_value (value_enclosing_type (arg1)); value_contents_copy_raw (v, 0, arg1, 0, TYPE_LENGTH (value_enclosing_type (arg1))); } v->type = type; v->offset = value_offset (arg1); v->embedded_offset = offset + value_embedded_offset (arg1) + boffset; } else if (NULL != TYPE_DATA_LOCATION (type)) { /* Field is a dynamic data member. */ gdb_assert (0 == offset); /* We expect an already resolved data location. */ gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type)); /* For dynamic data types defer memory allocation until we actual access the value. */ v = allocate_value_lazy (type); } else { /* Plain old data member */ offset += (TYPE_FIELD_BITPOS (arg_type, fieldno) / (HOST_CHAR_BIT * unit_size)); /* Lazy register values with offsets are not supported. */ if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) value_fetch_lazy (arg1); if (value_lazy (arg1)) v = allocate_value_lazy (type); else { v = allocate_value (type); value_contents_copy_raw (v, value_embedded_offset (v), arg1, value_embedded_offset (arg1) + offset, type_length_units (type)); } v->offset = (value_offset (arg1) + offset + value_embedded_offset (arg1)); } set_value_component_location (v, arg1); return v; } /* Given a value ARG1 of a struct or union type, extract and return the value of one of its (non-static) fields. FIELDNO says which field. */ struct value * value_field (struct value *arg1, int fieldno) { return value_primitive_field (arg1, 0, fieldno, value_type (arg1)); } /* Return a non-virtual function as a value. F is the list of member functions which contains the desired method. J is an index into F which provides the desired method. We only use the symbol for its address, so be happy with either a full symbol or a minimal symbol. */ struct value * value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type, LONGEST offset) { struct value *v; struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j); struct symbol *sym; struct bound_minimal_symbol msym; sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol; if (sym != NULL) { memset (&msym, 0, sizeof (msym)); } else { gdb_assert (sym == NULL); msym = lookup_bound_minimal_symbol (physname); if (msym.minsym == NULL) return NULL; } v = allocate_value (ftype); VALUE_LVAL (v) = lval_memory; if (sym) { set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym))); } else { /* The minimal symbol might point to a function descriptor; resolve it to the actual code address instead. */ struct objfile *objfile = msym.objfile; struct gdbarch *gdbarch = get_objfile_arch (objfile); set_value_address (v, gdbarch_convert_from_func_ptr_addr (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), ¤t_target)); } if (arg1p) { if (type != value_type (*arg1p)) *arg1p = value_ind (value_cast (lookup_pointer_type (type), value_addr (*arg1p))); /* Move the `this' pointer according to the offset. VALUE_OFFSET (*arg1p) += offset; */ } return v; } /* Unpack a bitfield of the specified FIELD_TYPE, from the object at VALADDR, and store the result in *RESULT. The bitfield starts at BITPOS bits and contains BITSIZE bits. Extracting bits depends on endianness of the machine. Compute the number of least significant bits to discard. For big endian machines, we compute the total number of bits in the anonymous object, subtract off the bit count from the MSB of the object to the MSB of the bitfield, then the size of the bitfield, which leaves the LSB discard count. For little endian machines, the discard count is simply the number of bits from the LSB of the anonymous object to the LSB of the bitfield. If the field is signed, we also do sign extension. */ static LONGEST unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr, LONGEST bitpos, LONGEST bitsize) { enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type)); ULONGEST val; ULONGEST valmask; int lsbcount; LONGEST bytes_read; LONGEST read_offset; /* Read the minimum number of bytes required; there may not be enough bytes to read an entire ULONGEST. */ field_type = check_typedef (field_type); if (bitsize) bytes_read = ((bitpos % 8) + bitsize + 7) / 8; else bytes_read = TYPE_LENGTH (field_type); read_offset = bitpos / 8; val = extract_unsigned_integer (valaddr + read_offset, bytes_read, byte_order); /* Extract bits. See comment above. */ if (gdbarch_bits_big_endian (get_type_arch (field_type))) lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize); else lsbcount = (bitpos % 8); val >>= lsbcount; /* If the field does not entirely fill a LONGEST, then zero the sign bits. If the field is signed, and is negative, then sign extend. */ if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val))) { valmask = (((ULONGEST) 1) << bitsize) - 1; val &= valmask; if (!TYPE_UNSIGNED (field_type)) { if (val & (valmask ^ (valmask >> 1))) { val |= ~valmask; } } } return val; } /* Unpack a field FIELDNO of the specified TYPE, from the object at VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of ORIGINAL_VALUE, which must not be NULL. See unpack_value_bits_as_long for more details. */ int unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr, LONGEST embedded_offset, int fieldno, const struct value *val, LONGEST *result) { int bitpos = TYPE_FIELD_BITPOS (type, fieldno); int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); struct type *field_type = TYPE_FIELD_TYPE (type, fieldno); int bit_offset; gdb_assert (val != NULL); bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos; if (value_bits_any_optimized_out (val, bit_offset, bitsize) || !value_bits_available (val, bit_offset, bitsize)) return 0; *result = unpack_bits_as_long (field_type, valaddr + embedded_offset, bitpos, bitsize); return 1; } /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at VALADDR. See unpack_bits_as_long for more details. */ LONGEST unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno) { int bitpos = TYPE_FIELD_BITPOS (type, fieldno); int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); struct type *field_type = TYPE_FIELD_TYPE (type, fieldno); return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize); } /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store the contents in DEST_VAL, zero or sign extending if the type of DEST_VAL is wider than BITSIZE. VALADDR points to the contents of VAL. If the VAL's contents required to extract the bitfield from are unavailable/optimized out, DEST_VAL is correspondingly marked unavailable/optimized out. */ void unpack_value_bitfield (struct value *dest_val, LONGEST bitpos, LONGEST bitsize, const gdb_byte *valaddr, LONGEST embedded_offset, const struct value *val) { enum bfd_endian byte_order; int src_bit_offset; int dst_bit_offset; struct type *field_type = value_type (dest_val); byte_order = gdbarch_byte_order (get_type_arch (field_type)); /* First, unpack and sign extend the bitfield as if it was wholly valid. Optimized out/unavailable bits are read as zero, but that's OK, as they'll end up marked below. If the VAL is wholly-invalid we may have skipped allocating its contents, though. See allocate_optimized_out_value. */ if (valaddr != NULL) { LONGEST num; num = unpack_bits_as_long (field_type, valaddr + embedded_offset, bitpos, bitsize); store_signed_integer (value_contents_raw (dest_val), TYPE_LENGTH (field_type), byte_order, num); } /* Now copy the optimized out / unavailability ranges to the right bits. */ src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos; if (byte_order == BFD_ENDIAN_BIG) dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize; else dst_bit_offset = 0; value_ranges_copy_adjusted (dest_val, dst_bit_offset, val, src_bit_offset, bitsize); } /* Return a new value with type TYPE, which is FIELDNO field of the object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents of VAL. If the VAL's contents required to extract the bitfield from are unavailable/optimized out, the new value is correspondingly marked unavailable/optimized out. */ struct value * value_field_bitfield (struct type *type, int fieldno, const gdb_byte *valaddr, LONGEST embedded_offset, const struct value *val) { int bitpos = TYPE_FIELD_BITPOS (type, fieldno); int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno)); unpack_value_bitfield (res_val, bitpos, bitsize, valaddr, embedded_offset, val); return res_val; } /* Modify the value of a bitfield. ADDR points to a block of memory in target byte order; the bitfield starts in the byte pointed to. FIELDVAL is the desired value of the field, in host byte order. BITPOS and BITSIZE indicate which bits (in target bit order) comprise the bitfield. Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */ void modify_field (struct type *type, gdb_byte *addr, LONGEST fieldval, LONGEST bitpos, LONGEST bitsize) { enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); ULONGEST oword; ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize); LONGEST bytesize; /* Normalize BITPOS. */ addr += bitpos / 8; bitpos %= 8; /* If a negative fieldval fits in the field in question, chop off the sign extension bits. */ if ((~fieldval & ~(mask >> 1)) == 0) fieldval &= mask; /* Warn if value is too big to fit in the field in question. */ if (0 != (fieldval & ~mask)) { /* FIXME: would like to include fieldval in the message, but we don't have a sprintf_longest. */ warning (_("Value does not fit in %s bits."), plongest (bitsize)); /* Truncate it, otherwise adjoining fields may be corrupted. */ fieldval &= mask; } /* Ensure no bytes outside of the modified ones get accessed as it may cause false valgrind reports. */ bytesize = (bitpos + bitsize + 7) / 8; oword = extract_unsigned_integer (addr, bytesize, byte_order); /* Shifting for bit field depends on endianness of the target machine. */ if (gdbarch_bits_big_endian (get_type_arch (type))) bitpos = bytesize * 8 - bitpos - bitsize; oword &= ~(mask << bitpos); oword |= fieldval << bitpos; store_unsigned_integer (addr, bytesize, byte_order, oword); } /* Pack NUM into BUF using a target format of TYPE. */ void pack_long (gdb_byte *buf, struct type *type, LONGEST num) { enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); LONGEST len; type = check_typedef (type); len = TYPE_LENGTH (type); switch (TYPE_CODE (type)) { case TYPE_CODE_INT: case TYPE_CODE_CHAR: case TYPE_CODE_ENUM: case TYPE_CODE_FLAGS: case TYPE_CODE_BOOL: case TYPE_CODE_RANGE: case TYPE_CODE_MEMBERPTR: store_signed_integer (buf, len, byte_order, num); break; case TYPE_CODE_REF: case TYPE_CODE_RVALUE_REF: case TYPE_CODE_PTR: store_typed_address (buf, type, (CORE_ADDR) num); break; case TYPE_CODE_FLT: case TYPE_CODE_DECFLOAT: target_float_from_longest (buf, type, num); break; default: error (_("Unexpected type (%d) encountered for integer constant."), TYPE_CODE (type)); } } /* Pack NUM into BUF using a target format of TYPE. */ static void pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num) { LONGEST len; enum bfd_endian byte_order; type = check_typedef (type); len = TYPE_LENGTH (type); byte_order = gdbarch_byte_order (get_type_arch (type)); switch (TYPE_CODE (type)) { case TYPE_CODE_INT: case TYPE_CODE_CHAR: case TYPE_CODE_ENUM: case TYPE_CODE_FLAGS: case TYPE_CODE_BOOL: case TYPE_CODE_RANGE: case TYPE_CODE_MEMBERPTR: store_unsigned_integer (buf, len, byte_order, num); break; case TYPE_CODE_REF: case TYPE_CODE_RVALUE_REF: case TYPE_CODE_PTR: store_typed_address (buf, type, (CORE_ADDR) num); break; case TYPE_CODE_FLT: case TYPE_CODE_DECFLOAT: target_float_from_ulongest (buf, type, num); break; default: error (_("Unexpected type (%d) encountered " "for unsigned integer constant."), TYPE_CODE (type)); } } /* Convert C numbers into newly allocated values. */ struct value * value_from_longest (struct type *type, LONGEST num) { struct value *val = allocate_value (type); pack_long (value_contents_raw (val), type, num); return val; } /* Convert C unsigned numbers into newly allocated values. */ struct value * value_from_ulongest (struct type *type, ULONGEST num) { struct value *val = allocate_value (type); pack_unsigned_long (value_contents_raw (val), type, num); return val; } /* Create a value representing a pointer of type TYPE to the address ADDR. */ struct value * value_from_pointer (struct type *type, CORE_ADDR addr) { struct value *val = allocate_value (type); store_typed_address (value_contents_raw (val), check_typedef (type), addr); return val; } /* Create a value of type TYPE whose contents come from VALADDR, if it is non-null, and whose memory address (in the inferior) is ADDRESS. The type of the created value may differ from the passed type TYPE. Make sure to retrieve values new type after this call. Note that TYPE is not passed through resolve_dynamic_type; this is a special API intended for use only by Ada. */ struct value * value_from_contents_and_address_unresolved (struct type *type, const gdb_byte *valaddr, CORE_ADDR address) { struct value *v; if (valaddr == NULL) v = allocate_value_lazy (type); else v = value_from_contents (type, valaddr); VALUE_LVAL (v) = lval_memory; set_value_address (v, address); return v; } /* Create a value of type TYPE whose contents come from VALADDR, if it is non-null, and whose memory address (in the inferior) is ADDRESS. The type of the created value may differ from the passed type TYPE. Make sure to retrieve values new type after this call. */ struct value * value_from_contents_and_address (struct type *type, const gdb_byte *valaddr, CORE_ADDR address) { struct type *resolved_type = resolve_dynamic_type (type, valaddr, address); struct type *resolved_type_no_typedef = check_typedef (resolved_type); struct value *v; if (valaddr == NULL) v = allocate_value_lazy (resolved_type); else v = value_from_contents (resolved_type, valaddr); if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST) address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef); VALUE_LVAL (v) = lval_memory; set_value_address (v, address); return v; } /* Create a value of type TYPE holding the contents CONTENTS. The new value is `not_lval'. */ struct value * value_from_contents (struct type *type, const gdb_byte *contents) { struct value *result; result = allocate_value (type); memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type)); return result; } /* Extract a value from the history file. Input will be of the form $digits or $$digits. See block comment above 'write_dollar_variable' for details. */ struct value * value_from_history_ref (const char *h, const char **endp) { int index, len; if (h[0] == '$') len = 1; else return NULL; if (h[1] == '$') len = 2; /* Find length of numeral string. */ for (; isdigit (h[len]); len++) ; /* Make sure numeral string is not part of an identifier. */ if (h[len] == '_' || isalpha (h[len])) return NULL; /* Now collect the index value. */ if (h[1] == '$') { if (len == 2) { /* For some bizarre reason, "$$" is equivalent to "$$1", rather than to "$$0" as it ought to be! */ index = -1; *endp += len; } else { char *local_end; index = -strtol (&h[2], &local_end, 10); *endp = local_end; } } else { if (len == 1) { /* "$" is equivalent to "$0". */ index = 0; *endp += len; } else { char *local_end; index = strtol (&h[1], &local_end, 10); *endp = local_end; } } return access_value_history (index); } /* Get the component value (offset by OFFSET bytes) of a struct or union WHOLE. Component's type is TYPE. */ struct value * value_from_component (struct value *whole, struct type *type, LONGEST offset) { struct value *v; if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole)) v = allocate_value_lazy (type); else { v = allocate_value (type); value_contents_copy (v, value_embedded_offset (v), whole, value_embedded_offset (whole) + offset, type_length_units (type)); } v->offset = value_offset (whole) + offset + value_embedded_offset (whole); set_value_component_location (v, whole); return v; } struct value * coerce_ref_if_computed (const struct value *arg) { const struct lval_funcs *funcs; if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg)))) return NULL; if (value_lval_const (arg) != lval_computed) return NULL; funcs = value_computed_funcs (arg); if (funcs->coerce_ref == NULL) return NULL; return funcs->coerce_ref (arg); } /* Look at value.h for description. */ struct value * readjust_indirect_value_type (struct value *value, struct type *enc_type, const struct type *original_type, const struct value *original_value) { /* Re-adjust type. */ deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type)); /* Add embedding info. */ set_value_enclosing_type (value, enc_type); set_value_embedded_offset (value, value_pointed_to_offset (original_value)); /* We may be pointing to an object of some derived type. */ return value_full_object (value, NULL, 0, 0, 0); } struct value * coerce_ref (struct value *arg) { struct type *value_type_arg_tmp = check_typedef (value_type (arg)); struct value *retval; struct type *enc_type; retval = coerce_ref_if_computed (arg); if (retval) return retval; if (!TYPE_IS_REFERENCE (value_type_arg_tmp)) return arg; enc_type = check_typedef (value_enclosing_type (arg)); enc_type = TYPE_TARGET_TYPE (enc_type); retval = value_at_lazy (enc_type, unpack_pointer (value_type (arg), value_contents (arg))); enc_type = value_type (retval); return readjust_indirect_value_type (retval, enc_type, value_type_arg_tmp, arg); } struct value * coerce_array (struct value *arg) { struct type *type; arg = coerce_ref (arg); type = check_typedef (value_type (arg)); switch (TYPE_CODE (type)) { case TYPE_CODE_ARRAY: if (!TYPE_VECTOR (type) && current_language->c_style_arrays) arg = value_coerce_array (arg); break; case TYPE_CODE_FUNC: arg = value_coerce_function (arg); break; } return arg; } /* Return the return value convention that will be used for the specified type. */ enum return_value_convention struct_return_convention (struct gdbarch *gdbarch, struct value *function, struct type *value_type) { enum type_code code = TYPE_CODE (value_type); if (code == TYPE_CODE_ERROR) error (_("Function return type unknown.")); /* Probe the architecture for the return-value convention. */ return gdbarch_return_value (gdbarch, function, value_type, NULL, NULL, NULL); } /* Return true if the function returning the specified type is using the convention of returning structures in memory (passing in the address as a hidden first parameter). */ int using_struct_return (struct gdbarch *gdbarch, struct value *function, struct type *value_type) { if (TYPE_CODE (value_type) == TYPE_CODE_VOID) /* A void return value is never in memory. See also corresponding code in "print_return_value". */ return 0; return (struct_return_convention (gdbarch, function, value_type) != RETURN_VALUE_REGISTER_CONVENTION); } /* Set the initialized field in a value struct. */ void set_value_initialized (struct value *val, int status) { val->initialized = status; } /* Return the initialized field in a value struct. */ int value_initialized (const struct value *val) { return val->initialized; } /* Load the actual content of a lazy value. Fetch the data from the user's process and clear the lazy flag to indicate that the data in the buffer is valid. If the value is zero-length, we avoid calling read_memory, which would abort. We mark the value as fetched anyway -- all 0 bytes of it. */ void value_fetch_lazy (struct value *val) { gdb_assert (value_lazy (val)); allocate_value_contents (val); /* A value is either lazy, or fully fetched. The availability/validity is only established as we try to fetch a value. */ gdb_assert (VEC_empty (range_s, val->optimized_out)); gdb_assert (VEC_empty (range_s, val->unavailable)); if (value_bitsize (val)) { /* To read a lazy bitfield, read the entire enclosing value. This prevents reading the same block of (possibly volatile) memory once per bitfield. It would be even better to read only the containing word, but we have no way to record that just specific bits of a value have been fetched. */ struct type *type = check_typedef (value_type (val)); struct value *parent = value_parent (val); if (value_lazy (parent)) value_fetch_lazy (parent); unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val), value_contents_for_printing (parent), value_offset (val), parent); } else if (VALUE_LVAL (val) == lval_memory) { CORE_ADDR addr = value_address (val); struct type *type = check_typedef (value_enclosing_type (val)); if (TYPE_LENGTH (type)) read_value_memory (val, 0, value_stack (val), addr, value_contents_all_raw (val), type_length_units (type)); } else if (VALUE_LVAL (val) == lval_register) { struct frame_info *next_frame; int regnum; struct type *type = check_typedef (value_type (val)); struct value *new_val = val, *mark = value_mark (); /* Offsets are not supported here; lazy register values must refer to the entire register. */ gdb_assert (value_offset (val) == 0); while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val)) { struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val); next_frame = frame_find_by_id (next_frame_id); regnum = VALUE_REGNUM (new_val); gdb_assert (next_frame != NULL); /* Convertible register routines are used for multi-register values and for interpretation in different types (e.g. float or int from a double register). Lazy register values should have the register's natural type, so they do not apply. */ gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame), regnum, type)); /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID. Since a "->next" operation was performed when setting this field, we do not need to perform a "next" operation again when unwinding the register. That's why frame_unwind_register_value() is called here instead of get_frame_register_value(). */ new_val = frame_unwind_register_value (next_frame, regnum); /* If we get another lazy lval_register value, it means the register is found by reading it from NEXT_FRAME's next frame. frame_unwind_register_value should never return a value with the frame id pointing to NEXT_FRAME. If it does, it means we either have two consecutive frames with the same frame id in the frame chain, or some code is trying to unwind behind get_prev_frame's back (e.g., a frame unwind sniffer trying to unwind), bypassing its validations. In any case, it should always be an internal error to end up in this situation. */ if (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val) && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id)) internal_error (__FILE__, __LINE__, _("infinite loop while fetching a register")); } /* If it's still lazy (for instance, a saved register on the stack), fetch it. */ if (value_lazy (new_val)) value_fetch_lazy (new_val); /* Copy the contents and the unavailability/optimized-out meta-data from NEW_VAL to VAL. */ set_value_lazy (val, 0); value_contents_copy (val, value_embedded_offset (val), new_val, value_embedded_offset (new_val), type_length_units (type)); if (frame_debug) { struct gdbarch *gdbarch; struct frame_info *frame; /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID, so that the frame level will be shown correctly. */ frame = frame_find_by_id (VALUE_FRAME_ID (val)); regnum = VALUE_REGNUM (val); gdbarch = get_frame_arch (frame); fprintf_unfiltered (gdb_stdlog, "{ value_fetch_lazy " "(frame=%d,regnum=%d(%s),...) ", frame_relative_level (frame), regnum, user_reg_map_regnum_to_name (gdbarch, regnum)); fprintf_unfiltered (gdb_stdlog, "->"); if (value_optimized_out (new_val)) { fprintf_unfiltered (gdb_stdlog, " "); val_print_optimized_out (new_val, gdb_stdlog); } else { int i; const gdb_byte *buf = value_contents (new_val); if (VALUE_LVAL (new_val) == lval_register) fprintf_unfiltered (gdb_stdlog, " register=%d", VALUE_REGNUM (new_val)); else if (VALUE_LVAL (new_val) == lval_memory) fprintf_unfiltered (gdb_stdlog, " address=%s", paddress (gdbarch, value_address (new_val))); else fprintf_unfiltered (gdb_stdlog, " computed"); fprintf_unfiltered (gdb_stdlog, " bytes="); fprintf_unfiltered (gdb_stdlog, "["); for (i = 0; i < register_size (gdbarch, regnum); i++) fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]); fprintf_unfiltered (gdb_stdlog, "]"); } fprintf_unfiltered (gdb_stdlog, " }\n"); } /* Dispose of the intermediate values. This prevents watchpoints from trying to watch the saved frame pointer. */ value_free_to_mark (mark); } else if (VALUE_LVAL (val) == lval_computed && value_computed_funcs (val)->read != NULL) value_computed_funcs (val)->read (val); else internal_error (__FILE__, __LINE__, _("Unexpected lazy value type.")); set_value_lazy (val, 0); } /* Implementation of the convenience function $_isvoid. */ static struct value * isvoid_internal_fn (struct gdbarch *gdbarch, const struct language_defn *language, void *cookie, int argc, struct value **argv) { int ret; if (argc != 1) error (_("You must provide one argument for $_isvoid.")); ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID; return value_from_longest (builtin_type (gdbarch)->builtin_int, ret); } void _initialize_values (void) { add_cmd ("convenience", no_class, show_convenience, _("\ Debugger convenience (\"$foo\") variables and functions.\n\ Convenience variables are created when you assign them values;\n\ thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\ \n\ A few convenience variables are given values automatically:\n\ \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ \"$__\" holds the contents of the last address examined with \"x\"." #ifdef HAVE_PYTHON "\n\n\ Convenience functions are defined via the Python API." #endif ), &showlist); add_alias_cmd ("conv", "convenience", no_class, 1, &showlist); add_cmd ("values", no_set_class, show_values, _("\ Elements of value history around item number IDX (or last ten)."), &showlist); add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\ Initialize a convenience variable if necessary.\n\ init-if-undefined VARIABLE = EXPRESSION\n\ Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\ exist or does not contain a value. The EXPRESSION is not evaluated if the\n\ VARIABLE is already initialized.")); add_prefix_cmd ("function", no_class, function_command, _("\ Placeholder command for showing help on convenience functions."), &functionlist, "function ", 0, &cmdlist); add_internal_function ("_isvoid", _("\ Check whether an expression is void.\n\ Usage: $_isvoid (expression)\n\ Return 1 if the expression is void, zero otherwise."), isvoid_internal_fn, NULL); add_setshow_zuinteger_unlimited_cmd ("max-value-size", class_support, &max_value_size, _("\ Set maximum sized value gdb will load from the inferior."), _("\ Show maximum sized value gdb will load from the inferior."), _("\ Use this to control the maximum size, in bytes, of a value that gdb\n\ will load from the inferior. Setting this value to 'unlimited'\n\ disables checking.\n\ Setting this does not invalidate already allocated values, it only\n\ prevents future values, larger than this size, from being allocated."), set_max_value_size, show_max_value_size, &setlist, &showlist); }