/* Perform arithmetic and other operations on values, for GDB. Copyright 1986, 1989, 1991, 1992, 1993, 1994 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "defs.h" #include "value.h" #include "symtab.h" #include "gdbtypes.h" #include "expression.h" #include "target.h" #include "language.h" #include "demangle.h" #include "gdb_string.h" /* Define whether or not the C operator '/' truncates towards zero for differently signed operands (truncation direction is undefined in C). */ #ifndef TRUNCATION_TOWARDS_ZERO #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) #endif static value_ptr value_subscripted_rvalue PARAMS ((value_ptr, value_ptr, int)); value_ptr value_add (arg1, arg2) value_ptr arg1, arg2; { register value_ptr valint, valptr; register int len; COERCE_ARRAY (arg1); COERCE_ARRAY (arg2); if ((TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR || TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_PTR) && (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT || TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_INT)) /* Exactly one argument is a pointer, and one is an integer. */ { if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR) { valptr = arg1; valint = arg2; } else { valptr = arg2; valint = arg1; } len = TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (valptr))); if (len == 0) len = 1; /* For (void *) */ return value_from_longest (VALUE_TYPE (valptr), value_as_long (valptr) + (len * value_as_long (valint))); } return value_binop (arg1, arg2, BINOP_ADD); } value_ptr value_sub (arg1, arg2) value_ptr arg1, arg2; { COERCE_ARRAY (arg1); COERCE_ARRAY (arg2); if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR) { if (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_INT) { /* pointer - integer. */ return value_from_longest (VALUE_TYPE (arg1), value_as_long (arg1) - (TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) * value_as_long (arg2))); } else if (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_PTR && TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (arg2)))) { /* pointer to <type x> - pointer to <type x>. */ return value_from_longest (builtin_type_long, /* FIXME -- should be ptrdiff_t */ (value_as_long (arg1) - value_as_long (arg2)) / (LONGEST) (TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))))); } else { error ("\ First argument of `-' is a pointer and second argument is neither\n\ an integer nor a pointer of the same type."); } } return value_binop (arg1, arg2, BINOP_SUB); } /* Return the value of ARRAY[IDX]. See comments in value_coerce_array() for rationale for reason for doing lower bounds adjustment here rather than there. FIXME: Perhaps we should validate that the index is valid and if verbosity is set, warn about invalid indices (but still use them). */ value_ptr value_subscript (array, idx) value_ptr array, idx; { value_ptr bound; int c_style = current_language->c_style_arrays; COERCE_REF (array); COERCE_VARYING_ARRAY (array); if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_ARRAY || TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_STRING) { struct type *range_type = TYPE_FIELD_TYPE (VALUE_TYPE (array), 0); int lowerbound = TYPE_LOW_BOUND (range_type); int upperbound = TYPE_HIGH_BOUND (range_type); if (VALUE_LVAL (array) != lval_memory) return value_subscripted_rvalue (array, idx, lowerbound); if (c_style == 0) { LONGEST index = value_as_long (idx); if (index >= lowerbound && index <= upperbound) return value_subscripted_rvalue (array, idx, lowerbound); warning ("array or string index out of range"); /* fall doing C stuff */ c_style = 1; } if (lowerbound != 0) { bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound); idx = value_sub (idx, bound); } array = value_coerce_array (array); } if (c_style) return value_ind (value_add (array, idx)); else error ("not an array or string"); } /* Return the value of EXPR[IDX], expr an aggregate rvalue (eg, a vector register). This routine used to promote floats to doubles, but no longer does. */ static value_ptr value_subscripted_rvalue (array, idx, lowerbound) value_ptr array, idx; int lowerbound; { struct type *elt_type = TYPE_TARGET_TYPE (VALUE_TYPE (array)); int elt_size = TYPE_LENGTH (elt_type); LONGEST index = value_as_long (idx); int elt_offs = elt_size * longest_to_int (index - lowerbound); value_ptr v; if (index < lowerbound || elt_offs >= TYPE_LENGTH (VALUE_TYPE (array))) error ("no such vector element"); v = allocate_value (elt_type); if (VALUE_LAZY (array)) VALUE_LAZY (v) = 1; else memcpy (VALUE_CONTENTS (v), VALUE_CONTENTS (array) + elt_offs, elt_size); if (VALUE_LVAL (array) == lval_internalvar) VALUE_LVAL (v) = lval_internalvar_component; else VALUE_LVAL (v) = VALUE_LVAL (array); VALUE_ADDRESS (v) = VALUE_ADDRESS (array); VALUE_OFFSET (v) = VALUE_OFFSET (array) + elt_offs; VALUE_BITSIZE (v) = elt_size * 8; return v; } /* Check to see if either argument is a structure. This is called so we know whether to go ahead with the normal binop or look for a user defined function instead. For now, we do not overload the `=' operator. */ int binop_user_defined_p (op, arg1, arg2) enum exp_opcode op; value_ptr arg1, arg2; { if (op == BINOP_ASSIGN) return 0; return (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRUCT || TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_STRUCT || (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_REF && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_STRUCT) || (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_REF && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg2))) == TYPE_CODE_STRUCT)); } /* Check to see if argument is a structure. This is called so we know whether to go ahead with the normal unop or look for a user defined function instead. For now, we do not overload the `&' operator. */ int unop_user_defined_p (op, arg1) enum exp_opcode op; value_ptr arg1; { if (op == UNOP_ADDR) return 0; return (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRUCT || (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_REF && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_STRUCT)); } /* We know either arg1 or arg2 is a structure, so try to find the right user defined function. Create an argument vector that calls arg1.operator @ (arg1,arg2) and return that value (where '@' is any binary operator which is legal for GNU C++). OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP is the opcode saying how to modify it. Otherwise, OTHEROP is unused. */ value_ptr value_x_binop (arg1, arg2, op, otherop) value_ptr arg1, arg2; enum exp_opcode op, otherop; { value_ptr * argvec; char *ptr; char tstr[13]; int static_memfuncp; COERCE_REF (arg1); COERCE_REF (arg2); COERCE_ENUM (arg1); COERCE_ENUM (arg2); /* now we know that what we have to do is construct our arg vector and find the right function to call it with. */ if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_STRUCT) error ("Can't do that binary op on that type"); /* FIXME be explicit */ argvec = (value_ptr *) alloca (sizeof (value_ptr) * 4); argvec[1] = value_addr (arg1); argvec[2] = arg2; argvec[3] = 0; /* make the right function name up */ strcpy(tstr, "operator__"); ptr = tstr+8; switch (op) { case BINOP_ADD: strcpy(ptr,"+"); break; case BINOP_SUB: strcpy(ptr,"-"); break; case BINOP_MUL: strcpy(ptr,"*"); break; case BINOP_DIV: strcpy(ptr,"/"); break; case BINOP_REM: strcpy(ptr,"%"); break; case BINOP_LSH: strcpy(ptr,"<<"); break; case BINOP_RSH: strcpy(ptr,">>"); break; case BINOP_BITWISE_AND: strcpy(ptr,"&"); break; case BINOP_BITWISE_IOR: strcpy(ptr,"|"); break; case BINOP_BITWISE_XOR: strcpy(ptr,"^"); break; case BINOP_LOGICAL_AND: strcpy(ptr,"&&"); break; case BINOP_LOGICAL_OR: strcpy(ptr,"||"); break; case BINOP_MIN: strcpy(ptr,"<?"); break; case BINOP_MAX: strcpy(ptr,">?"); break; case BINOP_ASSIGN: strcpy(ptr,"="); break; case BINOP_ASSIGN_MODIFY: switch (otherop) { case BINOP_ADD: strcpy(ptr,"+="); break; case BINOP_SUB: strcpy(ptr,"-="); break; case BINOP_MUL: strcpy(ptr,"*="); break; case BINOP_DIV: strcpy(ptr,"/="); break; case BINOP_REM: strcpy(ptr,"%="); break; case BINOP_BITWISE_AND: strcpy(ptr,"&="); break; case BINOP_BITWISE_IOR: strcpy(ptr,"|="); break; case BINOP_BITWISE_XOR: strcpy(ptr,"^="); break; case BINOP_MOD: /* invalid */ default: error ("Invalid binary operation specified."); } break; case BINOP_SUBSCRIPT: strcpy(ptr,"[]"); break; case BINOP_EQUAL: strcpy(ptr,"=="); break; case BINOP_NOTEQUAL: strcpy(ptr,"!="); break; case BINOP_LESS: strcpy(ptr,"<"); break; case BINOP_GTR: strcpy(ptr,">"); break; case BINOP_GEQ: strcpy(ptr,">="); break; case BINOP_LEQ: strcpy(ptr,"<="); break; case BINOP_MOD: /* invalid */ default: error ("Invalid binary operation specified."); } argvec[0] = value_struct_elt (&arg1, argvec+1, tstr, &static_memfuncp, "structure"); if (argvec[0]) { if (static_memfuncp) { argvec[1] = argvec[0]; argvec++; } return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1); } error ("member function %s not found", tstr); #ifdef lint return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1); #endif } /* We know that arg1 is a structure, so try to find a unary user defined operator that matches the operator in question. Create an argument vector that calls arg1.operator @ (arg1) and return that value (where '@' is (almost) any unary operator which is legal for GNU C++). */ value_ptr value_x_unop (arg1, op) value_ptr arg1; enum exp_opcode op; { value_ptr * argvec; char *ptr, *mangle_ptr; char tstr[13], mangle_tstr[13]; int static_memfuncp; COERCE_ENUM (arg1); /* now we know that what we have to do is construct our arg vector and find the right function to call it with. */ if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_STRUCT) error ("Can't do that unary op on that type"); /* FIXME be explicit */ argvec = (value_ptr *) alloca (sizeof (value_ptr) * 3); argvec[1] = value_addr (arg1); argvec[2] = 0; /* make the right function name up */ strcpy(tstr,"operator__"); ptr = tstr+8; strcpy(mangle_tstr, "__"); mangle_ptr = mangle_tstr+2; switch (op) { case UNOP_PREINCREMENT: strcpy(ptr,"++"); break; case UNOP_PREDECREMENT: strcpy(ptr,"++"); break; case UNOP_POSTINCREMENT: strcpy(ptr,"++"); break; case UNOP_POSTDECREMENT: strcpy(ptr,"++"); break; case UNOP_LOGICAL_NOT: strcpy(ptr,"!"); break; case UNOP_COMPLEMENT: strcpy(ptr,"~"); break; case UNOP_NEG: strcpy(ptr,"-"); break; default: error ("Invalid binary operation specified."); } argvec[0] = value_struct_elt (&arg1, argvec+1, tstr, &static_memfuncp, "structure"); if (argvec[0]) { if (static_memfuncp) { argvec[1] = argvec[0]; argvec++; } return call_function_by_hand (argvec[0], 1 - static_memfuncp, argvec + 1); } error ("member function %s not found", tstr); return 0; /* For lint -- never reached */ } /* Concatenate two values with the following conditions: (1) Both values must be either bitstring values or character string values and the resulting value consists of the concatenation of ARG1 followed by ARG2. or One value must be an integer value and the other value must be either a bitstring value or character string value, which is to be repeated by the number of times specified by the integer value. (2) Boolean values are also allowed and are treated as bit string values of length 1. (3) Character values are also allowed and are treated as character string values of length 1. */ value_ptr value_concat (arg1, arg2) value_ptr arg1, arg2; { register value_ptr inval1, inval2, outval; int inval1len, inval2len; int count, idx; char *ptr; char inchar; /* First figure out if we are dealing with two values to be concatenated or a repeat count and a value to be repeated. INVAL1 is set to the first of two concatenated values, or the repeat count. INVAL2 is set to the second of the two concatenated values or the value to be repeated. */ if (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_INT) { inval1 = arg2; inval2 = arg1; } else { inval1 = arg1; inval2 = arg2; } /* Now process the input values. */ if (TYPE_CODE (VALUE_TYPE (inval1)) == TYPE_CODE_INT) { /* We have a repeat count. Validate the second value and then construct a value repeated that many times. */ if (TYPE_CODE (VALUE_TYPE (inval2)) == TYPE_CODE_STRING || TYPE_CODE (VALUE_TYPE (inval2)) == TYPE_CODE_CHAR) { count = longest_to_int (value_as_long (inval1)); inval2len = TYPE_LENGTH (VALUE_TYPE (inval2)); ptr = (char *) alloca (count * inval2len); if (TYPE_CODE (VALUE_TYPE (inval2)) == TYPE_CODE_CHAR) { inchar = (char) unpack_long (VALUE_TYPE (inval2), VALUE_CONTENTS (inval2)); for (idx = 0; idx < count; idx++) { *(ptr + idx) = inchar; } } else { for (idx = 0; idx < count; idx++) { memcpy (ptr + (idx * inval2len), VALUE_CONTENTS (inval2), inval2len); } } outval = value_string (ptr, count * inval2len); } else if (TYPE_CODE (VALUE_TYPE (inval2)) == TYPE_CODE_BITSTRING || TYPE_CODE (VALUE_TYPE (inval2)) == TYPE_CODE_BOOL) { error ("unimplemented support for bitstring/boolean repeats"); } else { error ("can't repeat values of that type"); } } else if (TYPE_CODE (VALUE_TYPE (inval1)) == TYPE_CODE_STRING || TYPE_CODE (VALUE_TYPE (inval1)) == TYPE_CODE_CHAR) { /* We have two character strings to concatenate. */ if (TYPE_CODE (VALUE_TYPE (inval2)) != TYPE_CODE_STRING && TYPE_CODE (VALUE_TYPE (inval2)) != TYPE_CODE_CHAR) { error ("Strings can only be concatenated with other strings."); } inval1len = TYPE_LENGTH (VALUE_TYPE (inval1)); inval2len = TYPE_LENGTH (VALUE_TYPE (inval2)); ptr = (char *) alloca (inval1len + inval2len); if (TYPE_CODE (VALUE_TYPE (inval1)) == TYPE_CODE_CHAR) { *ptr = (char) unpack_long (VALUE_TYPE (inval1), VALUE_CONTENTS (inval1)); } else { memcpy (ptr, VALUE_CONTENTS (inval1), inval1len); } if (TYPE_CODE (VALUE_TYPE (inval2)) == TYPE_CODE_CHAR) { *(ptr + inval1len) = (char) unpack_long (VALUE_TYPE (inval2), VALUE_CONTENTS (inval2)); } else { memcpy (ptr + inval1len, VALUE_CONTENTS (inval2), inval2len); } outval = value_string (ptr, inval1len + inval2len); } else if (TYPE_CODE (VALUE_TYPE (inval1)) == TYPE_CODE_BITSTRING || TYPE_CODE (VALUE_TYPE (inval1)) == TYPE_CODE_BOOL) { /* We have two bitstrings to concatenate. */ if (TYPE_CODE (VALUE_TYPE (inval2)) != TYPE_CODE_BITSTRING && TYPE_CODE (VALUE_TYPE (inval2)) != TYPE_CODE_BOOL) { error ("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."); } error ("unimplemented support for bitstring/boolean concatenation."); } else { /* We don't know how to concatenate these operands. */ error ("illegal operands for concatenation."); } return (outval); } /* Perform a binary operation on two operands which have reasonable representations as integers or floats. This includes booleans, characters, integers, or floats. Does not support addition and subtraction on pointers; use value_add or value_sub if you want to handle those possibilities. */ value_ptr value_binop (arg1, arg2, op) value_ptr arg1, arg2; enum exp_opcode op; { register value_ptr val; COERCE_ENUM (arg1); COERCE_ENUM (arg2); if ((TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_FLT && TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_CHAR && TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_INT && TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_BOOL && TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_RANGE) || (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_FLT && TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_CHAR && TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_INT && TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_BOOL && TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_RANGE)) error ("Argument to arithmetic operation not a number or boolean."); if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_FLT || TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_FLT) { /* FIXME-if-picky-about-floating-accuracy: Should be doing this in target format. real.c in GCC probably has the necessary code. */ double v1, v2, v; v1 = value_as_double (arg1); v2 = value_as_double (arg2); switch (op) { case BINOP_ADD: v = v1 + v2; break; case BINOP_SUB: v = v1 - v2; break; case BINOP_MUL: v = v1 * v2; break; case BINOP_DIV: v = v1 / v2; break; default: error ("Integer-only operation on floating point number."); } val = allocate_value (builtin_type_double); store_floating (VALUE_CONTENTS_RAW (val), TYPE_LENGTH (VALUE_TYPE (val)), v); } else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_BOOL && TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_BOOL) { LONGEST v1, v2, v; v1 = value_as_long (arg1); v2 = value_as_long (arg2); switch (op) { case BINOP_BITWISE_AND: v = v1 & v2; break; case BINOP_BITWISE_IOR: v = v1 | v2; break; case BINOP_BITWISE_XOR: v = v1 ^ v2; break; default: error ("Invalid operation on booleans."); } val = allocate_value (builtin_type_chill_bool); store_signed_integer (VALUE_CONTENTS_RAW (val), TYPE_LENGTH (VALUE_TYPE (val)), v); } else /* Integral operations here. */ /* FIXME: Also mixed integral/booleans, with result an integer. */ /* FIXME: This implements ANSI C rules (also correct for C++). What about FORTRAN and chill? */ { struct type *type1 = VALUE_TYPE (arg1); struct type *type2 = VALUE_TYPE (arg2); int promoted_len1 = TYPE_LENGTH (type1); int promoted_len2 = TYPE_LENGTH (type2); int is_unsigned1 = TYPE_UNSIGNED (type1); int is_unsigned2 = TYPE_UNSIGNED (type2); int result_len; int unsigned_operation; /* Determine type length and signedness after promotion for both operands. */ if (promoted_len1 < TYPE_LENGTH (builtin_type_int)) { is_unsigned1 = 0; promoted_len1 = TYPE_LENGTH (builtin_type_int); } if (promoted_len2 < TYPE_LENGTH (builtin_type_int)) { is_unsigned2 = 0; promoted_len2 = TYPE_LENGTH (builtin_type_int); } /* Determine type length of the result, and if the operation should be done unsigned. Use the signedness of the operand with the greater length. If both operands are of equal length, use unsigned operation if one of the operands is unsigned. */ if (promoted_len1 > promoted_len2) { unsigned_operation = is_unsigned1; result_len = promoted_len1; } else if (promoted_len2 > promoted_len1) { unsigned_operation = is_unsigned2; result_len = promoted_len2; } else { unsigned_operation = is_unsigned1 || is_unsigned2; result_len = promoted_len1; } if (unsigned_operation) { unsigned LONGEST v1, v2, v; v1 = (unsigned LONGEST) value_as_long (arg1); v2 = (unsigned LONGEST) value_as_long (arg2); /* Truncate values to the type length of the result. */ if (result_len < sizeof (unsigned LONGEST)) { v1 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1; v2 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1; } switch (op) { case BINOP_ADD: v = v1 + v2; break; case BINOP_SUB: v = v1 - v2; break; case BINOP_MUL: v = v1 * v2; break; case BINOP_DIV: v = v1 / v2; break; case BINOP_REM: v = v1 % v2; break; case BINOP_MOD: /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, v1 mod 0 has a defined value, v1. */ /* Chill specifies that v2 must be > 0, so check for that. */ if (current_language -> la_language == language_chill && value_as_long (arg2) <= 0) { error ("Second operand of MOD must be greater than zero."); } if (v2 == 0) { v = v1; } else { v = v1/v2; /* Note floor(v1/v2) == v1/v2 for unsigned. */ v = v1 - (v2 * v); } break; case BINOP_LSH: v = v1 << v2; break; case BINOP_RSH: v = v1 >> v2; break; case BINOP_BITWISE_AND: v = v1 & v2; break; case BINOP_BITWISE_IOR: v = v1 | v2; break; case BINOP_BITWISE_XOR: v = v1 ^ v2; break; case BINOP_LOGICAL_AND: v = v1 && v2; break; case BINOP_LOGICAL_OR: v = v1 || v2; break; case BINOP_MIN: v = v1 < v2 ? v1 : v2; break; case BINOP_MAX: v = v1 > v2 ? v1 : v2; break; case BINOP_EQUAL: v = v1 == v2; break; case BINOP_LESS: v = v1 < v2; break; default: error ("Invalid binary operation on numbers."); } /* This is a kludge to get around the fact that we don't know how to determine the result type from the types of the operands. (I'm not really sure how much we feel the need to duplicate the exact rules of the current language. They can get really hairy. But not to do so makes it hard to document just what we *do* do). */ /* Can't just call init_type because we wouldn't know what name to give the type. */ val = allocate_value (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT ? builtin_type_unsigned_long_long : builtin_type_unsigned_long); store_unsigned_integer (VALUE_CONTENTS_RAW (val), TYPE_LENGTH (VALUE_TYPE (val)), v); } else { LONGEST v1, v2, v; v1 = value_as_long (arg1); v2 = value_as_long (arg2); switch (op) { case BINOP_ADD: v = v1 + v2; break; case BINOP_SUB: v = v1 - v2; break; case BINOP_MUL: v = v1 * v2; break; case BINOP_DIV: v = v1 / v2; break; case BINOP_REM: v = v1 % v2; break; case BINOP_MOD: /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, X mod 0 has a defined value, X. */ /* Chill specifies that v2 must be > 0, so check for that. */ if (current_language -> la_language == language_chill && v2 <= 0) { error ("Second operand of MOD must be greater than zero."); } if (v2 == 0) { v = v1; } else { v = v1/v2; /* Compute floor. */ if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0)) { v--; } v = v1 - (v2 * v); } break; case BINOP_LSH: v = v1 << v2; break; case BINOP_RSH: v = v1 >> v2; break; case BINOP_BITWISE_AND: v = v1 & v2; break; case BINOP_BITWISE_IOR: v = v1 | v2; break; case BINOP_BITWISE_XOR: v = v1 ^ v2; break; case BINOP_LOGICAL_AND: v = v1 && v2; break; case BINOP_LOGICAL_OR: v = v1 || v2; break; case BINOP_MIN: v = v1 < v2 ? v1 : v2; break; case BINOP_MAX: v = v1 > v2 ? v1 : v2; break; case BINOP_EQUAL: v = v1 == v2; break; case BINOP_LESS: v = v1 < v2; break; default: error ("Invalid binary operation on numbers."); } /* This is a kludge to get around the fact that we don't know how to determine the result type from the types of the operands. (I'm not really sure how much we feel the need to duplicate the exact rules of the current language. They can get really hairy. But not to do so makes it hard to document just what we *do* do). */ /* Can't just call init_type because we wouldn't know what name to give the type. */ val = allocate_value (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT ? builtin_type_long_long : builtin_type_long); store_signed_integer (VALUE_CONTENTS_RAW (val), TYPE_LENGTH (VALUE_TYPE (val)), v); } } return val; } /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */ int value_logical_not (arg1) value_ptr arg1; { register int len; register char *p; COERCE_ARRAY (arg1); if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_FLT) return 0 == value_as_double (arg1); len = TYPE_LENGTH (VALUE_TYPE (arg1)); p = VALUE_CONTENTS (arg1); while (--len >= 0) { if (*p++) break; } return len < 0; } /* Simulate the C operator == by returning a 1 iff ARG1 and ARG2 have equal contents. */ int value_equal (arg1, arg2) register value_ptr arg1, arg2; { register int len; register char *p1, *p2; enum type_code code1; enum type_code code2; COERCE_ARRAY (arg1); COERCE_ARRAY (arg2); code1 = TYPE_CODE (VALUE_TYPE (arg1)); code2 = TYPE_CODE (VALUE_TYPE (arg2)); if (code1 == TYPE_CODE_INT && code2 == TYPE_CODE_INT) return longest_to_int (value_as_long (value_binop (arg1, arg2, BINOP_EQUAL))); else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT) && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT)) return value_as_double (arg1) == value_as_double (arg2); /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever is bigger. */ else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_INT) return value_as_pointer (arg1) == (CORE_ADDR) value_as_long (arg2); else if (code2 == TYPE_CODE_PTR && code1 == TYPE_CODE_INT) return (CORE_ADDR) value_as_long (arg1) == value_as_pointer (arg2); else if (code1 == code2 && ((len = TYPE_LENGTH (VALUE_TYPE (arg1))) == TYPE_LENGTH (VALUE_TYPE (arg2)))) { p1 = VALUE_CONTENTS (arg1); p2 = VALUE_CONTENTS (arg2); while (--len >= 0) { if (*p1++ != *p2++) break; } return len < 0; } else { error ("Invalid type combination in equality test."); return 0; /* For lint -- never reached */ } } /* Simulate the C operator < by returning 1 iff ARG1's contents are less than ARG2's. */ int value_less (arg1, arg2) register value_ptr arg1, arg2; { register enum type_code code1; register enum type_code code2; COERCE_ARRAY (arg1); COERCE_ARRAY (arg2); code1 = TYPE_CODE (VALUE_TYPE (arg1)); code2 = TYPE_CODE (VALUE_TYPE (arg2)); if (code1 == TYPE_CODE_INT && code2 == TYPE_CODE_INT) return longest_to_int (value_as_long (value_binop (arg1, arg2, BINOP_LESS))); else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT) && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT)) return value_as_double (arg1) < value_as_double (arg2); else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) return value_as_pointer (arg1) < value_as_pointer (arg2); /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever is bigger. */ else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_INT) return value_as_pointer (arg1) < (CORE_ADDR) value_as_long (arg2); else if (code2 == TYPE_CODE_PTR && code1 == TYPE_CODE_INT) return (CORE_ADDR) value_as_long (arg1) < value_as_pointer (arg2); else { error ("Invalid type combination in ordering comparison."); return 0; } } /* The unary operators - and ~. Both free the argument ARG1. */ value_ptr value_neg (arg1) register value_ptr arg1; { register struct type *type; COERCE_ENUM (arg1); type = VALUE_TYPE (arg1); if (TYPE_CODE (type) == TYPE_CODE_FLT) return value_from_double (type, - value_as_double (arg1)); else if (TYPE_CODE (type) == TYPE_CODE_INT) return value_from_longest (type, - value_as_long (arg1)); else { error ("Argument to negate operation not a number."); return 0; /* For lint -- never reached */ } } value_ptr value_complement (arg1) register value_ptr arg1; { COERCE_ENUM (arg1); if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_INT) error ("Argument to complement operation not an integer."); return value_from_longest (VALUE_TYPE (arg1), ~ value_as_long (arg1)); } /* The INDEX'th bit of SET value whose VALUE_TYPE is TYPE, and whose VALUE_CONTENTS is valaddr. Return -1 if out of range, -2 other error. */ int value_bit_index (type, valaddr, index) struct type *type; char *valaddr; int index; { struct type *range; int low_bound, high_bound; LONGEST word; unsigned rel_index; range = TYPE_FIELD_TYPE (type, 0); if (TYPE_CODE (range) != TYPE_CODE_RANGE) return -2; low_bound = TYPE_LOW_BOUND (range); high_bound = TYPE_HIGH_BOUND (range); if (index < low_bound || index > high_bound) return -1; rel_index = index - low_bound; word = unpack_long (builtin_type_unsigned_char, valaddr + (rel_index / TARGET_CHAR_BIT)); rel_index %= TARGET_CHAR_BIT; if (BITS_BIG_ENDIAN) rel_index = TARGET_CHAR_BIT - 1 - rel_index; return (word >> rel_index) & 1; } value_ptr value_in (element, set) value_ptr element, set; { int member; if (TYPE_CODE (VALUE_TYPE (set)) != TYPE_CODE_SET) error ("Second argument of 'IN' has wrong type"); if (TYPE_CODE (VALUE_TYPE (element)) != TYPE_CODE_INT && TYPE_CODE (VALUE_TYPE (element)) != TYPE_CODE_CHAR && TYPE_CODE (VALUE_TYPE (element)) != TYPE_CODE_ENUM && TYPE_CODE (VALUE_TYPE (element)) != TYPE_CODE_BOOL) error ("First argument of 'IN' has wrong type"); member = value_bit_index (VALUE_TYPE (set), VALUE_CONTENTS (set), value_as_long (element)); if (member < 0) error ("First argument of 'IN' not in range"); return value_from_longest (builtin_type_int, member); } void _initialize_valarith () { }