/* Multi-process/thread control for GDB, the GNU debugger. Copyright (C) 1986, 1987, 1988, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008 Free Software Foundation, Inc. Contributed by Lynx Real-Time Systems, Inc. Los Gatos, CA. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "symtab.h" #include "frame.h" #include "inferior.h" #include "environ.h" #include "value.h" #include "target.h" #include "gdbthread.h" #include "exceptions.h" #include "command.h" #include "gdbcmd.h" #include "regcache.h" #include "gdb.h" #include "gdb_string.h" #include #include #include #include "ui-out.h" #include "observer.h" #include "annotate.h" #include "cli/cli-decode.h" /* Definition of struct thread_info exported to gdbthread.h */ /* Prototypes for exported functions. */ void _initialize_thread (void); /* Prototypes for local functions. */ static struct thread_info *thread_list = NULL; static int highest_thread_num; static void thread_command (char *tidstr, int from_tty); static void thread_apply_all_command (char *, int); static int thread_alive (struct thread_info *); static void info_threads_command (char *, int); static void thread_apply_command (char *, int); static void restore_current_thread (ptid_t); static void prune_threads (void); /* Frontend view of the thread state. Possible extensions: stepping, finishing, until(ling),... */ enum thread_state { THREAD_STOPPED, THREAD_RUNNING, THREAD_EXITED, }; static enum thread_state main_thread_state = THREAD_STOPPED; static int main_thread_executing = 0; extern struct thread_info* inferior_thread (void) { struct thread_info *tp = find_thread_pid (inferior_ptid); gdb_assert (tp); return tp; } void delete_step_resume_breakpoint (struct thread_info *tp) { if (tp && tp->step_resume_breakpoint) { delete_breakpoint (tp->step_resume_breakpoint); tp->step_resume_breakpoint = NULL; } } static void clear_thread_inferior_resources (struct thread_info *tp) { /* NOTE: this will take care of any left-over step_resume breakpoints, but not any user-specified thread-specific breakpoints. We can not delete the breakpoint straight-off, because the inferior might not be stopped at the moment. */ if (tp->step_resume_breakpoint) { tp->step_resume_breakpoint->disposition = disp_del_at_next_stop; tp->step_resume_breakpoint = NULL; } bpstat_clear (&tp->stop_bpstat); } static void free_thread (struct thread_info *tp) { clear_thread_inferior_resources (tp); /* FIXME: do I ever need to call the back-end to give it a chance at this private data before deleting the thread? */ if (tp->private) xfree (tp->private); xfree (tp); } void init_thread_list (void) { struct thread_info *tp, *tpnext; highest_thread_num = 0; main_thread_state = THREAD_STOPPED; main_thread_executing = 0; if (!thread_list) return; for (tp = thread_list; tp; tp = tpnext) { tpnext = tp->next; free_thread (tp); } thread_list = NULL; } struct thread_info * add_thread_silent (ptid_t ptid) { struct thread_info *tp; tp = find_thread_pid (ptid); if (tp) /* Found an old thread with the same id. It has to be dead, otherwise we wouldn't be adding a new thread with the same id. The OS is reusing this id --- delete it, and recreate a new one. */ { /* In addition to deleting the thread, if this is the current thread, then we need to also get rid of the current infrun context, and take care that delete_thread doesn't really delete the thread if it is inferior_ptid. Create a new template thread in the list with an invalid ptid, context switch to it, delete the original thread, reset the new thread's ptid, and switch to it. */ if (ptid_equal (inferior_ptid, ptid)) { tp = xmalloc (sizeof (*tp)); memset (tp, 0, sizeof (*tp)); tp->ptid = minus_one_ptid; tp->num = ++highest_thread_num; tp->next = thread_list; thread_list = tp; context_switch_to (minus_one_ptid); /* Now we can delete it. */ delete_thread (ptid); /* Since the context is already set to this new thread, reset its ptid, and reswitch inferior_ptid to it. */ tp->ptid = ptid; switch_to_thread (ptid); observer_notify_new_thread (tp); /* All done. */ return tp; } else /* Just go ahead and delete it. */ delete_thread (ptid); } tp = (struct thread_info *) xmalloc (sizeof (*tp)); memset (tp, 0, sizeof (*tp)); tp->ptid = ptid; tp->num = ++highest_thread_num; tp->next = thread_list; thread_list = tp; observer_notify_new_thread (tp); return tp; } struct thread_info * add_thread_with_info (ptid_t ptid, struct private_thread_info *private) { struct thread_info *result = add_thread_silent (ptid); result->private = private; if (print_thread_events) printf_unfiltered (_("[New %s]\n"), target_pid_to_str (ptid)); annotate_new_thread (); return result; } struct thread_info * add_thread (ptid_t ptid) { return add_thread_with_info (ptid, NULL); } /* Delete thread PTID. If SILENT, don't notify the observer of this exit. */ static void delete_thread_1 (ptid_t ptid, int silent) { struct thread_info *tp, *tpprev; tpprev = NULL; for (tp = thread_list; tp; tpprev = tp, tp = tp->next) if (ptid_equal (tp->ptid, ptid)) break; if (!tp) return; /* If this is the current thread, or there's code out there that relies on it existing (refcount > 0) we can't delete yet. Mark it as exited, and notify it. */ if (tp->refcount > 0 || ptid_equal (tp->ptid, inferior_ptid)) { if (tp->state_ != THREAD_EXITED) { if (!silent) observer_notify_thread_exit (tp); /* Tag it as exited. */ tp->state_ = THREAD_EXITED; /* Clear breakpoints, etc. associated with this thread. */ clear_thread_inferior_resources (tp); } /* Will be really deleted some other time. */ return; } if (tpprev) tpprev->next = tp->next; else thread_list = tp->next; /* Notify thread exit, but only if we haven't already. */ if (!silent && tp->state_ != THREAD_EXITED) observer_notify_thread_exit (tp); free_thread (tp); } /* Delete thread PTID and notify of thread exit. If this is inferior_ptid, don't actually delete it, but tag it as exited and do the notification. If PTID is the user selected thread, clear it. */ void delete_thread (ptid_t ptid) { delete_thread_1 (ptid, 0 /* not silent */); } void delete_thread_silent (ptid_t ptid) { delete_thread_1 (ptid, 1 /* silent */); } struct thread_info * find_thread_id (int num) { struct thread_info *tp; for (tp = thread_list; tp; tp = tp->next) if (tp->num == num) return tp; return NULL; } /* Find a thread_info by matching PTID. */ struct thread_info * find_thread_pid (ptid_t ptid) { struct thread_info *tp; for (tp = thread_list; tp; tp = tp->next) if (ptid_equal (tp->ptid, ptid)) return tp; return NULL; } /* * Thread iterator function. * * Calls a callback function once for each thread, so long as * the callback function returns false. If the callback function * returns true, the iteration will end and the current thread * will be returned. This can be useful for implementing a * search for a thread with arbitrary attributes, or for applying * some operation to every thread. * * FIXME: some of the existing functionality, such as * "Thread apply all", might be rewritten using this functionality. */ struct thread_info * iterate_over_threads (int (*callback) (struct thread_info *, void *), void *data) { struct thread_info *tp, *next; for (tp = thread_list; tp; tp = next) { next = tp->next; if ((*callback) (tp, data)) return tp; } return NULL; } int thread_count (void) { int result = 0; struct thread_info *tp; for (tp = thread_list; tp; tp = tp->next) ++result; return result; } int valid_thread_id (int num) { struct thread_info *tp; for (tp = thread_list; tp; tp = tp->next) if (tp->num == num) return 1; return 0; } int pid_to_thread_id (ptid_t ptid) { struct thread_info *tp; for (tp = thread_list; tp; tp = tp->next) if (ptid_equal (tp->ptid, ptid)) return tp->num; return 0; } ptid_t thread_id_to_pid (int num) { struct thread_info *thread = find_thread_id (num); if (thread) return thread->ptid; else return pid_to_ptid (-1); } int in_thread_list (ptid_t ptid) { struct thread_info *tp; for (tp = thread_list; tp; tp = tp->next) if (ptid_equal (tp->ptid, ptid)) return 1; return 0; /* Never heard of 'im */ } /* Print a list of thread ids currently known, and the total number of threads. To be used from within catch_errors. */ static int do_captured_list_thread_ids (struct ui_out *uiout, void *arg) { struct thread_info *tp; int num = 0; struct cleanup *cleanup_chain; prune_threads (); target_find_new_threads (); cleanup_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "thread-ids"); for (tp = thread_list; tp; tp = tp->next) { if (tp->state_ == THREAD_EXITED) continue; num++; ui_out_field_int (uiout, "thread-id", tp->num); } do_cleanups (cleanup_chain); ui_out_field_int (uiout, "number-of-threads", num); return GDB_RC_OK; } /* Official gdblib interface function to get a list of thread ids and the total number. */ enum gdb_rc gdb_list_thread_ids (struct ui_out *uiout, char **error_message) { if (catch_exceptions_with_msg (uiout, do_captured_list_thread_ids, NULL, error_message, RETURN_MASK_ALL) < 0) return GDB_RC_FAIL; return GDB_RC_OK; } /* Load infrun state for the thread PID. */ void load_infrun_state (ptid_t ptid, struct continuation **continuations, struct continuation **intermediate_continuations, int *proceed_to_finish, int *stop_step, int *step_multi, enum target_signal *stop_signal) { struct thread_info *tp; /* If we can't find the thread, then we're debugging a single threaded process. No need to do anything in that case. */ tp = find_thread_id (pid_to_thread_id (ptid)); if (tp == NULL) return; /* In all-stop mode, these are global state, while in non-stop mode, they are per thread. */ if (non_stop) { *continuations = tp->continuations; tp->continuations = NULL; *intermediate_continuations = tp->intermediate_continuations; tp->intermediate_continuations = NULL; *proceed_to_finish = tp->proceed_to_finish; *stop_step = tp->stop_step; *step_multi = tp->step_multi; *stop_signal = tp->stop_signal; } } /* Save infrun state for the thread PID. */ void save_infrun_state (ptid_t ptid, struct continuation *continuations, struct continuation *intermediate_continuations, int proceed_to_finish, int stop_step, int step_multi, enum target_signal stop_signal) { struct thread_info *tp; /* If we can't find the thread, then we're debugging a single-threaded process. Nothing to do in that case. */ tp = find_thread_id (pid_to_thread_id (ptid)); if (tp == NULL) return; /* In all-stop mode, these are global state, while in non-stop mode, they are per thread. */ if (non_stop) { tp->continuations = continuations; tp->intermediate_continuations = intermediate_continuations; tp->proceed_to_finish = proceed_to_finish; tp->stop_step = stop_step; tp->step_multi = step_multi; tp->stop_signal = stop_signal; } } /* Return true if TP is an active thread. */ static int thread_alive (struct thread_info *tp) { if (tp->state_ == THREAD_EXITED) return 0; if (!target_thread_alive (tp->ptid)) return 0; return 1; } static void prune_threads (void) { struct thread_info *tp, *next; for (tp = thread_list; tp; tp = next) { next = tp->next; if (!thread_alive (tp)) delete_thread (tp->ptid); } } void thread_change_ptid (ptid_t old_ptid, ptid_t new_ptid) { struct thread_info * tp = find_thread_pid (old_ptid); tp->ptid = new_ptid; observer_notify_thread_ptid_changed (old_ptid, new_ptid); } void set_running (ptid_t ptid, int running) { struct thread_info *tp; if (!thread_list) { /* This is one of the targets that does not add main thread to the thread list. Just use a single global flag to indicate that a thread is running. This problem is unique to ST programs. For MT programs, the main thread is always present in the thread list. If it's not, the first call to context_switch will mess up GDB internal state. */ if (running && main_thread_state != THREAD_RUNNING && !suppress_resume_observer) observer_notify_target_resumed (ptid); main_thread_state = running ? THREAD_RUNNING : THREAD_STOPPED; return; } /* We try not to notify the observer if no thread has actually changed the running state -- merely to reduce the number of messages to frontend. Frontend is supposed to handle multiple *running just fine. */ if (PIDGET (ptid) == -1) { int any_started = 0; for (tp = thread_list; tp; tp = tp->next) { if (tp->state_ == THREAD_EXITED) continue; if (running && tp->state_ == THREAD_STOPPED) any_started = 1; tp->state_ = running ? THREAD_RUNNING : THREAD_STOPPED; } if (any_started && !suppress_resume_observer) observer_notify_target_resumed (ptid); } else { int started = 0; tp = find_thread_pid (ptid); gdb_assert (tp); gdb_assert (tp->state_ != THREAD_EXITED); if (running && tp->state_ == THREAD_STOPPED) started = 1; tp->state_ = running ? THREAD_RUNNING : THREAD_STOPPED; if (started && !suppress_resume_observer) observer_notify_target_resumed (ptid); } } static int is_thread_state (ptid_t ptid, enum thread_state state) { struct thread_info *tp; if (!target_has_execution) return 0; if (!thread_list) return main_thread_state == state; tp = find_thread_pid (ptid); gdb_assert (tp); return tp->state_ == state; } int is_stopped (ptid_t ptid) { /* Without execution, this property is always true. */ if (!target_has_execution) return 1; return is_thread_state (ptid, THREAD_STOPPED); } int is_exited (ptid_t ptid) { /* Without execution, this property is always false. */ if (!target_has_execution) return 0; return is_thread_state (ptid, THREAD_EXITED); } int is_running (ptid_t ptid) { /* Without execution, this property is always false. */ if (!target_has_execution) return 0; return is_thread_state (ptid, THREAD_RUNNING); } int any_running (void) { struct thread_info *tp; if (!target_has_execution) return 0; if (!thread_list) return main_thread_state == THREAD_RUNNING; for (tp = thread_list; tp; tp = tp->next) if (tp->state_ == THREAD_RUNNING) return 1; return 0; } int is_executing (ptid_t ptid) { struct thread_info *tp; if (!target_has_execution) return 0; if (!thread_list) return main_thread_executing; tp = find_thread_pid (ptid); gdb_assert (tp); return tp->executing_; } void set_executing (ptid_t ptid, int executing) { struct thread_info *tp; if (!thread_list) { /* This target does not add the main thread to the thread list. Use a global flag to indicate that the thread is executing. */ main_thread_executing = executing; return; } if (PIDGET (ptid) == -1) { for (tp = thread_list; tp; tp = tp->next) tp->executing_ = executing; } else { tp = find_thread_pid (ptid); gdb_assert (tp); tp->executing_ = executing; } } /* Prints the list of threads and their details on UIOUT. This is a version of 'info_thread_command' suitable for use from MI. If REQUESTED_THREAD is not -1, it's the GDB id of the thread that should be printed. Otherwise, all threads are printed. */ void print_thread_info (struct ui_out *uiout, int requested_thread) { struct thread_info *tp; ptid_t current_ptid; struct cleanup *old_chain; char *extra_info; int current_thread = -1; prune_threads (); target_find_new_threads (); current_ptid = inferior_ptid; /* We'll be switching threads temporarily. */ old_chain = make_cleanup_restore_current_thread (); make_cleanup_ui_out_list_begin_end (uiout, "threads"); for (tp = thread_list; tp; tp = tp->next) { struct cleanup *chain2; if (requested_thread != -1 && tp->num != requested_thread) continue; if (ptid_equal (tp->ptid, current_ptid)) current_thread = tp->num; if (tp->state_ == THREAD_EXITED) continue; chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL); if (ptid_equal (tp->ptid, current_ptid)) ui_out_text (uiout, "* "); else ui_out_text (uiout, " "); ui_out_field_int (uiout, "id", tp->num); ui_out_text (uiout, " "); ui_out_field_string (uiout, "target-id", target_tid_to_str (tp->ptid)); if (tp->state_ != THREAD_EXITED) { extra_info = target_extra_thread_info (tp); if (extra_info) { ui_out_text (uiout, " ("); ui_out_field_string (uiout, "details", extra_info); ui_out_text (uiout, ")"); } ui_out_text (uiout, " "); } if (tp->state_ == THREAD_RUNNING) ui_out_text (uiout, "(running)\n"); else { /* The switch below puts us at the top of the stack (leaf frame). */ switch_to_thread (tp->ptid); print_stack_frame (get_selected_frame (NULL), /* For MI output, print frame level. */ ui_out_is_mi_like_p (uiout), LOCATION); } if (ui_out_is_mi_like_p (uiout)) { char *state = "stopped"; if (tp->state_ == THREAD_EXITED) state = "exited"; else if (tp->state_ == THREAD_RUNNING) state = "running"; ui_out_field_string (uiout, "state", state); } do_cleanups (chain2); } /* Restores the current thread and the frame selected before the "info threads" command. */ do_cleanups (old_chain); if (requested_thread == -1) { gdb_assert (current_thread != -1 || !thread_list); if (current_thread != -1 && ui_out_is_mi_like_p (uiout)) ui_out_field_int (uiout, "current-thread-id", current_thread); if (current_thread != -1 && is_exited (current_ptid)) ui_out_message (uiout, 0, "\n\ The current thread has terminated. See `help thread'.\n", current_thread); } } /* Print information about currently known threads * Note: this has the drawback that it _really_ switches * threads, which frees the frame cache. A no-side * effects info-threads command would be nicer. */ static void info_threads_command (char *arg, int from_tty) { print_thread_info (uiout, -1); } /* Switch from one thread to another. */ void switch_to_thread (ptid_t ptid) { if (ptid_equal (ptid, inferior_ptid)) return; inferior_ptid = ptid; reinit_frame_cache (); registers_changed (); /* We don't check for is_stopped, because we're called at times while in the TARGET_RUNNING state, e.g., while handling an internal event. */ if (!is_exited (ptid) && !is_executing (ptid)) stop_pc = read_pc (); else stop_pc = ~(CORE_ADDR) 0; } static void restore_current_thread (ptid_t ptid) { if (!ptid_equal (ptid, inferior_ptid)) { if (non_stop) context_switch_to (ptid); else switch_to_thread (ptid); } } static void restore_selected_frame (struct frame_id a_frame_id, int frame_level) { struct frame_info *frame = NULL; int count; gdb_assert (frame_level >= 0); /* Restore by level first, check if the frame id is the same as expected. If that fails, try restoring by frame id. If that fails, nothing to do, just warn the user. */ count = frame_level; frame = find_relative_frame (get_current_frame (), &count); if (count == 0 && frame != NULL /* Either the frame ids match, of they're both invalid. The latter case is not failsafe, but since it's highly unlikely the search by level finds the wrong frame, it's 99.9(9)% of the time (for all practical purposes) safe. */ && (frame_id_eq (get_frame_id (frame), a_frame_id) /* Note: could be better to check every frame_id member for equality here. */ || (!frame_id_p (get_frame_id (frame)) && !frame_id_p (a_frame_id)))) { /* Cool, all is fine. */ select_frame (frame); return; } frame = frame_find_by_id (a_frame_id); if (frame != NULL) { /* Cool, refound it. */ select_frame (frame); return; } /* Nothing else to do, the frame layout really changed. Select the innermost stack frame. */ select_frame (get_current_frame ()); /* Warn the user. */ if (!ui_out_is_mi_like_p (uiout)) { warning (_("\ Couldn't restore frame #%d in current thread, at reparsed frame #0\n"), frame_level); /* For MI, we should probably have a notification about current frame change. But this error is not very likely, so don't bother for now. */ print_stack_frame (get_selected_frame (NULL), 1, SRC_LINE); } } struct current_thread_cleanup { ptid_t inferior_ptid; struct frame_id selected_frame_id; int selected_frame_level; int was_stopped; }; static void do_restore_current_thread_cleanup (void *arg) { struct thread_info *tp; struct current_thread_cleanup *old = arg; restore_current_thread (old->inferior_ptid); /* The running state of the originally selected thread may have changed, so we have to recheck it here. */ if (old->was_stopped && is_stopped (inferior_ptid) && target_has_registers && target_has_stack && target_has_memory) restore_selected_frame (old->selected_frame_id, old->selected_frame_level); } static void restore_current_thread_cleanup_dtor (void *arg) { struct current_thread_cleanup *old = arg; struct thread_info *tp; tp = find_thread_pid (old->inferior_ptid); if (tp) tp->refcount--; xfree (old); } struct cleanup * make_cleanup_restore_current_thread (void) { struct thread_info *tp; struct frame_info *frame; struct current_thread_cleanup *old; old = xmalloc (sizeof (struct current_thread_cleanup)); old->inferior_ptid = inferior_ptid; old->was_stopped = is_stopped (inferior_ptid); if (old->was_stopped && target_has_registers && target_has_stack && target_has_memory) frame = get_selected_frame (NULL); else frame = NULL; old->selected_frame_id = get_frame_id (frame); old->selected_frame_level = frame_relative_level (frame); tp = find_thread_pid (inferior_ptid); if (tp) tp->refcount++; return make_cleanup_dtor (do_restore_current_thread_cleanup, old, restore_current_thread_cleanup_dtor); } /* Apply a GDB command to a list of threads. List syntax is a whitespace seperated list of numbers, or ranges, or the keyword `all'. Ranges consist of two numbers seperated by a hyphen. Examples: thread apply 1 2 7 4 backtrace Apply backtrace cmd to threads 1,2,7,4 thread apply 2-7 9 p foo(1) Apply p foo(1) cmd to threads 2->7 & 9 thread apply all p x/i $pc Apply x/i $pc cmd to all threads */ static void thread_apply_all_command (char *cmd, int from_tty) { struct thread_info *tp; struct cleanup *old_chain; char *saved_cmd; if (cmd == NULL || *cmd == '\000') error (_("Please specify a command following the thread ID list")); prune_threads (); target_find_new_threads (); old_chain = make_cleanup_restore_current_thread (); /* Save a copy of the command in case it is clobbered by execute_command */ saved_cmd = xstrdup (cmd); make_cleanup (xfree, saved_cmd); for (tp = thread_list; tp; tp = tp->next) if (thread_alive (tp)) { if (non_stop) context_switch_to (tp->ptid); else switch_to_thread (tp->ptid); printf_filtered (_("\nThread %d (%s):\n"), tp->num, target_tid_to_str (inferior_ptid)); execute_command (cmd, from_tty); strcpy (cmd, saved_cmd); /* Restore exact command used previously */ } do_cleanups (old_chain); } static void thread_apply_command (char *tidlist, int from_tty) { char *cmd; char *p; struct cleanup *old_chain; char *saved_cmd; if (tidlist == NULL || *tidlist == '\000') error (_("Please specify a thread ID list")); for (cmd = tidlist; *cmd != '\000' && !isalpha (*cmd); cmd++); if (*cmd == '\000') error (_("Please specify a command following the thread ID list")); /* Save a copy of the command in case it is clobbered by execute_command */ saved_cmd = xstrdup (cmd); old_chain = make_cleanup (xfree, saved_cmd); while (tidlist < cmd) { struct thread_info *tp; int start, end; start = strtol (tidlist, &p, 10); if (p == tidlist) error (_("Error parsing %s"), tidlist); tidlist = p; while (*tidlist == ' ' || *tidlist == '\t') tidlist++; if (*tidlist == '-') /* Got a range of IDs? */ { tidlist++; /* Skip the - */ end = strtol (tidlist, &p, 10); if (p == tidlist) error (_("Error parsing %s"), tidlist); tidlist = p; while (*tidlist == ' ' || *tidlist == '\t') tidlist++; } else end = start; make_cleanup_restore_current_thread (); for (; start <= end; start++) { tp = find_thread_id (start); if (!tp) warning (_("Unknown thread %d."), start); else if (!thread_alive (tp)) warning (_("Thread %d has terminated."), start); else { if (non_stop) context_switch_to (tp->ptid); else switch_to_thread (tp->ptid); printf_filtered (_("\nThread %d (%s):\n"), tp->num, target_tid_to_str (inferior_ptid)); execute_command (cmd, from_tty); /* Restore exact command used previously. */ strcpy (cmd, saved_cmd); } } } do_cleanups (old_chain); } /* Switch to the specified thread. Will dispatch off to thread_apply_command if prefix of arg is `apply'. */ static void thread_command (char *tidstr, int from_tty) { if (!tidstr) { if (target_has_stack) { if (is_exited (inferior_ptid)) printf_filtered (_("[Current thread is %d (%s) (exited)]\n"), pid_to_thread_id (inferior_ptid), target_tid_to_str (inferior_ptid)); else printf_filtered (_("[Current thread is %d (%s)]\n"), pid_to_thread_id (inferior_ptid), target_tid_to_str (inferior_ptid)); } else error (_("No stack.")); return; } annotate_thread_changed (); gdb_thread_select (uiout, tidstr, NULL); } /* Print notices when new threads are attached and detached. */ int print_thread_events = 1; static void show_print_thread_events (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("\ Printing of thread events is %s.\n"), value); } static int do_captured_thread_select (struct ui_out *uiout, void *tidstr) { int num; struct thread_info *tp; num = value_as_long (parse_and_eval (tidstr)); tp = find_thread_id (num); if (!tp) error (_("Thread ID %d not known."), num); if (!thread_alive (tp)) error (_("Thread ID %d has terminated."), num); if (non_stop) context_switch_to (tp->ptid); else switch_to_thread (tp->ptid); ui_out_text (uiout, "[Switching to thread "); ui_out_field_int (uiout, "new-thread-id", pid_to_thread_id (inferior_ptid)); ui_out_text (uiout, " ("); ui_out_text (uiout, target_tid_to_str (inferior_ptid)); ui_out_text (uiout, ")]"); /* Note that we can't reach this with an exited thread, due to the thread_alive check above. */ if (tp->state_ == THREAD_RUNNING) ui_out_text (uiout, "(running)\n"); else print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC); /* Since the current thread may have changed, see if there is any exited thread we can now delete. */ prune_threads (); return GDB_RC_OK; } enum gdb_rc gdb_thread_select (struct ui_out *uiout, char *tidstr, char **error_message) { if (catch_exceptions_with_msg (uiout, do_captured_thread_select, tidstr, error_message, RETURN_MASK_ALL) < 0) return GDB_RC_FAIL; return GDB_RC_OK; } /* Commands with a prefix of `thread'. */ struct cmd_list_element *thread_cmd_list = NULL; void _initialize_thread (void) { static struct cmd_list_element *thread_apply_list = NULL; struct cmd_list_element *c; c = add_info ("threads", info_threads_command, _("IDs of currently known threads.")); set_cmd_no_selected_thread_ok (c); c = add_prefix_cmd ("thread", class_run, thread_command, _("\ Use this command to switch between threads.\n\ The new thread ID must be currently known."), &thread_cmd_list, "thread ", 1, &cmdlist); set_cmd_no_selected_thread_ok (c); c = add_prefix_cmd ("apply", class_run, thread_apply_command, _("Apply a command to a list of threads."), &thread_apply_list, "thread apply ", 1, &thread_cmd_list); set_cmd_no_selected_thread_ok (c); c = add_cmd ("all", class_run, thread_apply_all_command, _("Apply a command to all threads."), &thread_apply_list); set_cmd_no_selected_thread_ok (c); if (!xdb_commands) add_com_alias ("t", "thread", class_run, 1); add_setshow_boolean_cmd ("thread-events", no_class, &print_thread_events, _("\ Set printing of thread events (such as thread start and exit)."), _("\ Show printing of thread events (such as thread start and exit)."), NULL, NULL, show_print_thread_events, &setprintlist, &showprintlist); }