# Copyright 2022-2023 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # Format hex value VAL for language LANG. proc hex_for_lang { lang val } { set neg_p [regexp ^- $val] set val [regsub ^-?0x $val ""] if { $lang == "modula-2" } { set val 0[string toupper $val]H } else { set val 0x$val } if { $neg_p } { return -$val } else { return $val } } # Determine whether N fits in type with TYPE_BITS and TYPE_SIGNEDNESS. proc fits_in_type { n type_bits type_signedness } { if { $type_signedness == "s" } { set type_signed_p 1 } elseif { $type_signedness == "u" } { set type_signed_p 0 } else { error "unreachable" } if { $n < 0 && !$type_signed_p } { # Can't fit a negative number in an unsigned type. return 0 } if { $n < 0} { set n_sign -1 set n [expr -$n] } else { set n_sign 1 } set smax [expr 1 << ($type_bits - 1)]; if { $n_sign == -1 } { # Negative number, signed type. return [expr ($n <= $smax)] } elseif { $n_sign == 1 && $type_signed_p } { # Positive number, signed type. return [expr ($n < $smax)] } elseif { $n_sign == 1 && !$type_signed_p } { # Positive number, unsigned type. return [expr ($n >> $type_bits) == 0] } else { error "unreachable" } } # Return 1 if LANG is a c-like language, in the sense that it uses the same # parser. proc c_like { lang } { set res 0 switch $lang { c - c++ - asm - objective-c - opencl - minimal {set res 1} } return $res } # Parse number N for LANG, and return a list of expected type and value. proc parse_number { lang n } { global re_overflow set hex_p [regexp ^-?0x $n] global hex decimal if { $hex_p } { set any $hex } else { set any $decimal } global sizeof_long_long sizeof_long sizeof_int set long_long_bits [expr $sizeof_long_long * 8] set long_bits [expr $sizeof_long * 8] set int_bits [expr $sizeof_int * 8] if { $lang == "rust" } { if { [fits_in_type $n 32 s] } { return [list "i32" $n] } elseif { [fits_in_type $n 64 s] } { return [list "i64" $n] } elseif { [fits_in_type $n 64 u] } { # Note: Interprets MAX_U64 as -1. return [list "i64" $n] } else { # Overflow. return [list $re_overflow $re_overflow] } } elseif { $lang == "d" } { if { [fits_in_type $n 32 s] } { return [list int $n] } elseif { [fits_in_type $n 32 u] } { if { $hex_p } { return [list uint $n] } else { return [list long $n] } } elseif { [fits_in_type $n 64 s] } { return [list long $n] } elseif { [fits_in_type $n 64 u] } { return [list ulong $n] } else { # Overflow. return [list $re_overflow $re_overflow] } } elseif { $lang == "ada" } { if { [fits_in_type $n $int_bits s] } { return [list "<$sizeof_int-byte integer>" $n] } elseif { [fits_in_type $n $long_bits s] } { return [list "<$sizeof_long-byte integer>" $n] } elseif { [fits_in_type $n $long_bits u] } { return [list "<$sizeof_long-byte integer>" $n] } elseif { [fits_in_type $n $long_long_bits s] } { return [list "<$sizeof_long_long-byte integer>" $n] } elseif { [fits_in_type $n $long_long_bits u] } { # Note: Interprets ULLONG_MAX as -1. return [list "<$sizeof_long_long-byte integer>" $n] } else { # Overflow. return [list $re_overflow $re_overflow] } } elseif { $lang == "modula-2" } { if { [string equal $n -0] } { # Note: 0 is CARDINAL, but -0 is an INTEGER. return [list "INTEGER" 0] } if { $n < 0 && [fits_in_type $n $int_bits s] } { return [list "INTEGER" $n] } elseif { [fits_in_type $n $int_bits u] } { return [list "CARDINAL" $n] } else { # Overflow. return [list $re_overflow $re_overflow] } } elseif { $lang == "fortran" } { if { [fits_in_type $n $int_bits s] } { return [list int $n] } elseif { [fits_in_type $n $int_bits u] } { return [list "unsigned int" $n] } elseif { [fits_in_type $n $long_bits s] } { return [list long $n] } elseif { [fits_in_type $n $long_bits u] } { return [list "unsigned long" $n] } else { # Overflow. return [list $re_overflow $re_overflow] } } else { if { [c_like $lang] } { if { $hex_p } { # C Hex. set have_unsigned 1 } else { # C Decimal. Unsigned not allowed according. if { [fits_in_type $n $long_long_bits s] } { # Fits in largest signed type. set have_unsigned 0 } else { # Doesn't fit in largest signed type, so ill-formed, but # allow unsigned as a convenience, as compilers do (though # with a warning). set have_unsigned 1 } } } else { # Non-C. set have_unsigned 1 } if { [fits_in_type $n $int_bits s] } { return [list int $n] } elseif { $have_unsigned && [fits_in_type $n $int_bits u] } { return [list "unsigned int" $n] } elseif { [fits_in_type $n $long_bits s] } { return [list long $n] } elseif { $have_unsigned && [fits_in_type $n $long_bits u] } { return [list "unsigned long" $n] } elseif { [fits_in_type $n $long_long_bits s] } { return [list "long long" $n] } elseif { $have_unsigned && [fits_in_type $n $long_long_bits u] } { return [list "unsigned long long" $n] } else { # Overflow. return [list $re_overflow $re_overflow] } } error "unreachable" } # Test parsing numbers. Several language parsers had the same bug # around parsing large 64-bit numbers, hitting undefined behavior, and # thus crashing a GDB built with UBSan. This testcase goes over all # languages exercising printing the max 64-bit number, making sure # that GDB doesn't crash. ARCH is the architecture to test with. proc test_parse_numbers {arch} { global full_arch_testing global tested_archs global verbose set arch_re [string_to_regexp $arch] gdb_test "set architecture $arch" "The target architecture is set to \"$arch_re\"." gdb_test_no_output "set language c" # Types have different sizes depending on the architecture. # Figure out type sizes before matching patterns in the upcoming # tests. global sizeof_long_long sizeof_long sizeof_int sizeof_short set sizeof_long_long [get_sizeof "long long" -1] set sizeof_long [get_sizeof "long" -1] set sizeof_int [get_sizeof "int" -1] set sizeof_short [get_sizeof "short" -1] if { ! $full_arch_testing } { set arch_id \ [list $sizeof_long_long $sizeof_long $sizeof_long $sizeof_int \ $sizeof_short] if { [lsearch $tested_archs $arch_id] == -1 } { lappend tested_archs $arch_id } else { return } } foreach_with_prefix lang $::all_languages { if { $lang == "unknown" } { # Tested outside $supported_archs loop. continue } elseif { $lang == "auto" || $lang == "local" } { # Avoid duplicate testing. continue } gdb_test_no_output "set language $lang" global re_overflow if { $lang == "modula-2" || $lang == "fortran" } { set re_overflow "Overflow on numeric constant\\." } elseif { $lang == "ada" } { set re_overflow "Integer literal out of range" } elseif { $lang == "rust" } { set re_overflow "Integer literal is too large" } else { set re_overflow "Numeric constant too large\\." } set basevals { 0xffffffffffffffff 0x7fffffffffffffff 0xffffffff 0x7fffffff 0xffff 0x7fff 0xff 0x7f 0x0 } if { $lang == "modula-2" } { # Modula-2 is the only language that changes the type of an # integral literal based on whether it's prefixed with "-", # so test both scenarios. set prefixes { "" "-" } } else { # For all the other languages, we'd just be testing the # parsing twice, so just test the basic scenario of no prefix. set prefixes { "" } } foreach_with_prefix prefix $prefixes { foreach baseval $basevals { foreach offset { -2 -1 0 1 2 } { set dec_val [expr $baseval + $offset] set hex_val [format "0x%llx" $dec_val] if { $dec_val < 0 } { continue } set dec_val $prefix$dec_val lassign [parse_number $lang $dec_val] type out if { $verbose >= 1 } { verbose -log "EXPECTED: $out" 2 } if { $prefix == "" } { gdb_test "p/u $dec_val" "$out" } else { gdb_test "p/d $dec_val" "$out" } if { $verbose >= 1 } { verbose -log "EXPECTED: $type" 2 } gdb_test "ptype $dec_val" "$type" if { $prefix == "-" } { # Printing with /x below means negative numbers are # converted to unsigned representation. We could # support this by updating the expected patterns. # Possibly, we could print with /u and /d instead of # /x here as well (which would also require updating # expected patterns). # For now, this doesn't seem worth the trouble, # so skip. continue } set hex_val $prefix$hex_val lassign [parse_number $lang $hex_val] type out set hex_val [hex_for_lang $lang $hex_val] if { $verbose >= 1 } { verbose -log "EXPECTED: $out" 2 } gdb_test "p/x $hex_val" "$out" if { $verbose >= 1 } { verbose -log "EXPECTED: $type" 2 } gdb_test "ptype $hex_val" "$type" } } } } } clean_restart set supported_archs [get_set_option_choices "set architecture"] # There should be at least one more than "auto". gdb_assert {[llength $supported_archs] > 1} "at least one architecture" set all_languages [get_set_option_choices "set language"] gdb_test_no_output "set language unknown" gdb_test "p/x 0" \ "expression parsing not implemented for language \"Unknown\"" # If 1, test each arch. If 0, test one arch for each sizeof # short/int/long/longlong configuration. # For a build with --enable-targets=all, full_arch_testing == 0 takes 15s, # while full_arch_testing == 1 takes 9m20s. set full_arch_testing 0 set tested_archs {} foreach_with_prefix arch $supported_archs { if {$arch == "auto"} { # Avoid duplicate testing. continue } test_parse_numbers $arch }