# Copyright (C) 2023 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # Exercise reading/writing ZA registers when there is ZA state. # Exercise reading/writing to ZT0 when there is ZA state available. load_lib aarch64-scalable.exp # # Cycle through all ZA registers and pseudo-registers and validate that their # contents are available for vector length SVL. # # Make sure reading/writing to ZA registers work as expected. # proc check_regs { mode vl svl } { # Check VG to make sure it is correct set expected_vg [expr $vl / 8] gdb_test "print \$vg" "= ${expected_vg}" # Check SVG to make sure it is correct set expected_svg [expr $svl / 8] gdb_test "print \$svg" "= ${expected_svg}" # If svl is adjusted by prctl, we will have ZA enabled. If gdb is # adjusting svl, ZA will not be enabled by default. It will only be # enabled when ZA is written to. set za_state "= \\\[ ZA \\\]" if {$mode == "gdb"} { set za_state "= \\\[ \\\]" } # Check SVCR. if [gdb_test "print \$svcr" $za_state "svcr before assignments" ] { fail "incorrect za state" return -1 } # Check the size of ZA. set expected_za_size [expr $svl * $svl] gdb_test "print sizeof \$za" " = $expected_za_size" # Check the size of Z0. gdb_test "print sizeof \$z0" " = $vl" # Exercise reading/writing from/to ZA. initialize_2d_array "\$za" 255 $svl $svl set pattern [string_to_regexp [2d_array_value_pattern 255 $svl $svl]] gdb_test "print \$za" " = $pattern" "read back from za" # Exercise reading/writing from/to the tile pseudo-registers. set last_tile 1 set expected_size [expr $svl * $svl] set tile_svl $svl set za_state "= \\\[ ZA \\\]" foreach_with_prefix granularity {"b" "h" "s" "d" "q"} { for {set tile 0} {$tile < $last_tile} {incr tile} { set register_name "\$za${tile}${granularity}" # Test the size. gdb_test "print sizeof ${register_name}" " = ${expected_size}" # Test reading/writing initialize_2d_array $register_name 255 $tile_svl $tile_svl # Make sure we have ZA state. if [gdb_test "print \$svcr" $za_state "svcr after assignment to ${register_name}" ] { fail "incorrect za state" return -1 } set pattern [string_to_regexp [2d_array_value_pattern 255 $tile_svl $tile_svl]] gdb_test "print $register_name" " = $pattern" "read back from $register_name" } set last_tile [expr $last_tile * 2] set expected_size [expr $expected_size / 2] set tile_svl [expr $tile_svl / 2] } # Exercise reading/writing from/to the tile slice pseudo-registers. set last_tile 1 set last_slice $svl set expected_size $svl set num_elements $svl foreach_with_prefix granularity {"b" "h" "s" "d" "q"} { for {set tile 0} {$tile < $last_tile} {incr tile} { for {set slice 0} {$slice < $last_slice} {incr slice} { foreach_with_prefix direction {"h" "v"} { set register_name "\$za${tile}${direction}${granularity}${slice}" # Test the size. gdb_test "print sizeof ${register_name}" " = ${expected_size}" # Test reading/writing initialize_1d_array $register_name 255 $num_elements # Make sure we have ZA state. if [gdb_test "print \$svcr" $za_state "svcr after assignment of ${register_name}" ] { fail "incorrect za state" return -1 } set pattern [string_to_regexp [1d_array_value_pattern 255 $num_elements]] gdb_test "print $register_name" " = $pattern" "read back from $register_name" } } } set last_tile [expr $last_tile * 2] set last_slice [expr ($last_slice / 2)] set num_elements [expr $num_elements / 2] } # Exercise reading/writing from/to SME2 registers. if [is_sme2_available] { # The target supports SME2. set zt_size 64 gdb_test "print sizeof \$zt0" " = $zt_size" # Initially, when ZA is activated, ZT0 will be all zeroes. set zt_pattern [string_to_regexp [1d_array_value_pattern 0 $zt_size]] gdb_test "print \$zt0" " = $zt_pattern" "validate zeroed zt0" # Validate that writing to ZT0 does the right thing. initialize_1d_array "\$zt0" 255 $zt_size set zt_pattern [string_to_regexp [1d_array_value_pattern 255 $zt_size]] gdb_test "print \$zt0" " = $zt_pattern" "read back from zt0" } } # # Cycle through all ZA registers and pseudo-registers and validate their # contents. # proc test_sme_registers_available { id_start id_end } { set compile_flags {"debug" "macros"} lappend compile_flags "additional_flags=-DID_START=${id_start}" lappend compile_flags "additional_flags=-DID_END=${id_end}" standard_testfile ${::srcdir}/${::subdir}/aarch64-sme-regs-available.c set executable "${::testfile}-${id_start}-${id_end}" if {[prepare_for_testing "failed to prepare" ${executable} ${::srcfile} ${compile_flags}]} { return -1 } set binfile [standard_output_file ${executable}] if ![runto_main] { untested "could not run to main" return -1 } # Check if we are talking to a remote target. If so, bail out, as right now # remote targets can't communicate vector length (vl or svl) changes to gdb # via the RSP. When this restriction is lifted, we can remove this guard. if {[gdb_is_target_remote]} { unsupported "aarch64 sve/sme tests not supported for remote targets" return -1 } gdb_test_no_output "set print repeats 1" set prctl_breakpoint "stop 1" gdb_breakpoint [gdb_get_line_number $prctl_breakpoint] for {set id $id_start} {$id <= $id_end} {incr id} { set vl [test_id_to_vl $id] set svl [test_id_to_svl $id] set skip_unsupported 0 if {![aarch64_supports_sve_vl $vl] || ![aarch64_supports_sme_svl $svl]} { # We have a vector length or streaming vector length that # is not supported by this target. Skip to the next iteration # since it is no use running tests for an unsupported vector # length. if {![aarch64_supports_sve_vl $vl]} { verbose -log "SVE vector length $vl not supported." } elseif {![aarch64_supports_sme_svl $svl]} { verbose -log "SME streaming vector length $svl not supported." } verbose -log "Skipping test." set skip_unsupported 1 } set mode "prctl" with_test_prefix "$mode, vl=${vl} svl=${svl}" { # If the SVE or SME vector length is not supported, just skip # these next tests. if {$skip_unsupported} { untested "unsupported configuration on target" continue } # Run the program until it has adjusted svl. gdb_continue_to_breakpoint $prctl_breakpoint check_regs $mode $vl $svl } } set non_prctl_breakpoint "stop 2" gdb_breakpoint [gdb_get_line_number $non_prctl_breakpoint] for {set id $id_start} {$id <= $id_end} {incr id} { set vl [test_id_to_vl $id] set svl [test_id_to_svl $id] set skip_unsupported 0 if {![aarch64_supports_sve_vl $vl] || ![aarch64_supports_sme_svl $svl]} { # We have a vector length or streaming vector length that # is not supported by this target. Skip to the next iteration # since it is no use running tests for an unsupported vector # length. if {![aarch64_supports_sve_vl $vl]} { verbose -log "SVE vector length $vl not supported." } elseif {![aarch64_supports_sme_svl $svl]} { verbose -log "SME streaming vector length $svl not supported." } verbose -log "Skipping test." set skip_unsupported 1 } set mode "gdb" with_test_prefix "$mode, vl=${vl} svl=${svl}" { # If the SVE or SME vector length is not supported, just skip # these next tests. if {$skip_unsupported} { untested "unsupported configuration on target" continue } # Run the program until we stop at the point where gdb should # adjust the SVE and SME vector lengths. gdb_continue_to_breakpoint $non_prctl_breakpoint # Adjust svl via gdb. set vg_value [expr $vl / 8] set svg_value [expr $svl / 8] gdb_test_no_output "set \$vg = ${vg_value}" gdb_test_no_output "set \$svg = ${svg_value}" check_regs $mode $vl $svl } } } require is_aarch64_target require allow_aarch64_sve_tests require allow_aarch64_sme_tests test_sme_registers_available $id_start $id_end