/* Select target systems and architectures at runtime for GDB. Copyright (C) 1990-2015 Free Software Foundation, Inc. Contributed by Cygnus Support. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "target.h" #include "target-dcache.h" #include "gdbcmd.h" #include "symtab.h" #include "inferior.h" #include "infrun.h" #include "bfd.h" #include "symfile.h" #include "objfiles.h" #include "dcache.h" #include #include "regcache.h" #include "gdbcore.h" #include "target-descriptions.h" #include "gdbthread.h" #include "solib.h" #include "exec.h" #include "inline-frame.h" #include "tracepoint.h" #include "gdb/fileio.h" #include "agent.h" #include "auxv.h" #include "target-debug.h" static void target_info (char *, int); static void generic_tls_error (void) ATTRIBUTE_NORETURN; static void default_terminal_info (struct target_ops *, const char *, int); static int default_watchpoint_addr_within_range (struct target_ops *, CORE_ADDR, CORE_ADDR, int); static int default_region_ok_for_hw_watchpoint (struct target_ops *, CORE_ADDR, int); static void default_rcmd (struct target_ops *, const char *, struct ui_file *); static ptid_t default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid); static int default_follow_fork (struct target_ops *self, int follow_child, int detach_fork); static void default_mourn_inferior (struct target_ops *self); static int default_search_memory (struct target_ops *ops, CORE_ADDR start_addr, ULONGEST search_space_len, const gdb_byte *pattern, ULONGEST pattern_len, CORE_ADDR *found_addrp); static int default_verify_memory (struct target_ops *self, const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size); static struct address_space *default_thread_address_space (struct target_ops *self, ptid_t ptid); static void tcomplain (void) ATTRIBUTE_NORETURN; static int return_zero (struct target_ops *); static int return_zero_has_execution (struct target_ops *, ptid_t); static void target_command (char *, int); static struct target_ops *find_default_run_target (char *); static struct gdbarch *default_thread_architecture (struct target_ops *ops, ptid_t ptid); static int dummy_find_memory_regions (struct target_ops *self, find_memory_region_ftype ignore1, void *ignore2); static char *dummy_make_corefile_notes (struct target_ops *self, bfd *ignore1, int *ignore2); static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid); static enum exec_direction_kind default_execution_direction (struct target_ops *self); static struct target_ops debug_target; #include "target-delegates.c" static void init_dummy_target (void); static void update_current_target (void); /* Vector of existing target structures. */ typedef struct target_ops *target_ops_p; DEF_VEC_P (target_ops_p); static VEC (target_ops_p) *target_structs; /* The initial current target, so that there is always a semi-valid current target. */ static struct target_ops dummy_target; /* Top of target stack. */ static struct target_ops *target_stack; /* The target structure we are currently using to talk to a process or file or whatever "inferior" we have. */ struct target_ops current_target; /* Command list for target. */ static struct cmd_list_element *targetlist = NULL; /* Nonzero if we should trust readonly sections from the executable when reading memory. */ static int trust_readonly = 0; /* Nonzero if we should show true memory content including memory breakpoint inserted by gdb. */ static int show_memory_breakpoints = 0; /* These globals control whether GDB attempts to perform these operations; they are useful for targets that need to prevent inadvertant disruption, such as in non-stop mode. */ int may_write_registers = 1; int may_write_memory = 1; int may_insert_breakpoints = 1; int may_insert_tracepoints = 1; int may_insert_fast_tracepoints = 1; int may_stop = 1; /* Non-zero if we want to see trace of target level stuff. */ static unsigned int targetdebug = 0; static void set_targetdebug (char *args, int from_tty, struct cmd_list_element *c) { update_current_target (); } static void show_targetdebug (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("Target debugging is %s.\n"), value); } static void setup_target_debug (void); /* The user just typed 'target' without the name of a target. */ static void target_command (char *arg, int from_tty) { fputs_filtered ("Argument required (target name). Try `help target'\n", gdb_stdout); } /* Default target_has_* methods for process_stratum targets. */ int default_child_has_all_memory (struct target_ops *ops) { /* If no inferior selected, then we can't read memory here. */ if (ptid_equal (inferior_ptid, null_ptid)) return 0; return 1; } int default_child_has_memory (struct target_ops *ops) { /* If no inferior selected, then we can't read memory here. */ if (ptid_equal (inferior_ptid, null_ptid)) return 0; return 1; } int default_child_has_stack (struct target_ops *ops) { /* If no inferior selected, there's no stack. */ if (ptid_equal (inferior_ptid, null_ptid)) return 0; return 1; } int default_child_has_registers (struct target_ops *ops) { /* Can't read registers from no inferior. */ if (ptid_equal (inferior_ptid, null_ptid)) return 0; return 1; } int default_child_has_execution (struct target_ops *ops, ptid_t the_ptid) { /* If there's no thread selected, then we can't make it run through hoops. */ if (ptid_equal (the_ptid, null_ptid)) return 0; return 1; } int target_has_all_memory_1 (void) { struct target_ops *t; for (t = current_target.beneath; t != NULL; t = t->beneath) if (t->to_has_all_memory (t)) return 1; return 0; } int target_has_memory_1 (void) { struct target_ops *t; for (t = current_target.beneath; t != NULL; t = t->beneath) if (t->to_has_memory (t)) return 1; return 0; } int target_has_stack_1 (void) { struct target_ops *t; for (t = current_target.beneath; t != NULL; t = t->beneath) if (t->to_has_stack (t)) return 1; return 0; } int target_has_registers_1 (void) { struct target_ops *t; for (t = current_target.beneath; t != NULL; t = t->beneath) if (t->to_has_registers (t)) return 1; return 0; } int target_has_execution_1 (ptid_t the_ptid) { struct target_ops *t; for (t = current_target.beneath; t != NULL; t = t->beneath) if (t->to_has_execution (t, the_ptid)) return 1; return 0; } int target_has_execution_current (void) { return target_has_execution_1 (inferior_ptid); } /* Complete initialization of T. This ensures that various fields in T are set, if needed by the target implementation. */ void complete_target_initialization (struct target_ops *t) { /* Provide default values for all "must have" methods. */ if (t->to_has_all_memory == NULL) t->to_has_all_memory = return_zero; if (t->to_has_memory == NULL) t->to_has_memory = return_zero; if (t->to_has_stack == NULL) t->to_has_stack = return_zero; if (t->to_has_registers == NULL) t->to_has_registers = return_zero; if (t->to_has_execution == NULL) t->to_has_execution = return_zero_has_execution; /* These methods can be called on an unpushed target and so require a default implementation if the target might plausibly be the default run target. */ gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL && t->to_supports_non_stop != NULL)); install_delegators (t); } /* This is used to implement the various target commands. */ static void open_target (char *args, int from_tty, struct cmd_list_element *command) { struct target_ops *ops = get_cmd_context (command); if (targetdebug) fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n", ops->to_shortname); ops->to_open (args, from_tty); if (targetdebug) fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n", ops->to_shortname, args, from_tty); } /* Add possible target architecture T to the list and add a new command 'target T->to_shortname'. Set COMPLETER as the command's completer if not NULL. */ void add_target_with_completer (struct target_ops *t, completer_ftype *completer) { struct cmd_list_element *c; complete_target_initialization (t); VEC_safe_push (target_ops_p, target_structs, t); if (targetlist == NULL) add_prefix_cmd ("target", class_run, target_command, _("\ Connect to a target machine or process.\n\ The first argument is the type or protocol of the target machine.\n\ Remaining arguments are interpreted by the target protocol. For more\n\ information on the arguments for a particular protocol, type\n\ `help target ' followed by the protocol name."), &targetlist, "target ", 0, &cmdlist); c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist); set_cmd_sfunc (c, open_target); set_cmd_context (c, t); if (completer != NULL) set_cmd_completer (c, completer); } /* Add a possible target architecture to the list. */ void add_target (struct target_ops *t) { add_target_with_completer (t, NULL); } /* See target.h. */ void add_deprecated_target_alias (struct target_ops *t, char *alias) { struct cmd_list_element *c; char *alt; /* If we use add_alias_cmd, here, we do not get the deprecated warning, see PR cli/15104. */ c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist); set_cmd_sfunc (c, open_target); set_cmd_context (c, t); alt = xstrprintf ("target %s", t->to_shortname); deprecate_cmd (c, alt); } /* Stub functions */ void target_kill (void) { current_target.to_kill (¤t_target); } void target_load (const char *arg, int from_tty) { target_dcache_invalidate (); (*current_target.to_load) (¤t_target, arg, from_tty); } /* Possible terminal states. */ enum terminal_state { /* The inferior's terminal settings are in effect. */ terminal_is_inferior = 0, /* Some of our terminal settings are in effect, enough to get proper output. */ terminal_is_ours_for_output = 1, /* Our terminal settings are in effect, for output and input. */ terminal_is_ours = 2 }; static enum terminal_state terminal_state; /* See target.h. */ void target_terminal_init (void) { (*current_target.to_terminal_init) (¤t_target); terminal_state = terminal_is_ours; } /* See target.h. */ int target_terminal_is_inferior (void) { return (terminal_state == terminal_is_inferior); } /* See target.h. */ void target_terminal_inferior (void) { /* A background resume (``run&'') should leave GDB in control of the terminal. Use target_can_async_p, not target_is_async_p, since at this point the target is not async yet. However, if sync_execution is not set, we know it will become async prior to resume. */ if (target_can_async_p () && !sync_execution) return; if (terminal_state == terminal_is_inferior) return; /* If GDB is resuming the inferior in the foreground, install inferior's terminal modes. */ (*current_target.to_terminal_inferior) (¤t_target); terminal_state = terminal_is_inferior; } /* See target.h. */ void target_terminal_ours (void) { if (terminal_state == terminal_is_ours) return; (*current_target.to_terminal_ours) (¤t_target); terminal_state = terminal_is_ours; } /* See target.h. */ void target_terminal_ours_for_output (void) { if (terminal_state != terminal_is_inferior) return; (*current_target.to_terminal_ours_for_output) (¤t_target); terminal_state = terminal_is_ours_for_output; } /* See target.h. */ int target_supports_terminal_ours (void) { struct target_ops *t; for (t = current_target.beneath; t != NULL; t = t->beneath) { if (t->to_terminal_ours != delegate_terminal_ours && t->to_terminal_ours != tdefault_terminal_ours) return 1; } return 0; } /* Restore the terminal to its previous state (helper for make_cleanup_restore_target_terminal). */ static void cleanup_restore_target_terminal (void *arg) { enum terminal_state *previous_state = arg; switch (*previous_state) { case terminal_is_ours: target_terminal_ours (); break; case terminal_is_ours_for_output: target_terminal_ours_for_output (); break; case terminal_is_inferior: target_terminal_inferior (); break; } } /* See target.h. */ struct cleanup * make_cleanup_restore_target_terminal (void) { enum terminal_state *ts = xmalloc (sizeof (*ts)); *ts = terminal_state; return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree); } static void tcomplain (void) { error (_("You can't do that when your target is `%s'"), current_target.to_shortname); } void noprocess (void) { error (_("You can't do that without a process to debug.")); } static void default_terminal_info (struct target_ops *self, const char *args, int from_tty) { printf_unfiltered (_("No saved terminal information.\n")); } /* A default implementation for the to_get_ada_task_ptid target method. This function builds the PTID by using both LWP and TID as part of the PTID lwp and tid elements. The pid used is the pid of the inferior_ptid. */ static ptid_t default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid) { return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid); } static enum exec_direction_kind default_execution_direction (struct target_ops *self) { if (!target_can_execute_reverse) return EXEC_FORWARD; else if (!target_can_async_p ()) return EXEC_FORWARD; else gdb_assert_not_reached ("\ to_execution_direction must be implemented for reverse async"); } /* Go through the target stack from top to bottom, copying over zero entries in current_target, then filling in still empty entries. In effect, we are doing class inheritance through the pushed target vectors. NOTE: cagney/2003-10-17: The problem with this inheritance, as it is currently implemented, is that it discards any knowledge of which target an inherited method originally belonged to. Consequently, new new target methods should instead explicitly and locally search the target stack for the target that can handle the request. */ static void update_current_target (void) { struct target_ops *t; /* First, reset current's contents. */ memset (¤t_target, 0, sizeof (current_target)); /* Install the delegators. */ install_delegators (¤t_target); current_target.to_stratum = target_stack->to_stratum; #define INHERIT(FIELD, TARGET) \ if (!current_target.FIELD) \ current_target.FIELD = (TARGET)->FIELD /* Do not add any new INHERITs here. Instead, use the delegation mechanism provided by make-target-delegates. */ for (t = target_stack; t; t = t->beneath) { INHERIT (to_shortname, t); INHERIT (to_longname, t); INHERIT (to_attach_no_wait, t); INHERIT (to_have_steppable_watchpoint, t); INHERIT (to_have_continuable_watchpoint, t); INHERIT (to_has_thread_control, t); } #undef INHERIT /* Finally, position the target-stack beneath the squashed "current_target". That way code looking for a non-inherited target method can quickly and simply find it. */ current_target.beneath = target_stack; if (targetdebug) setup_target_debug (); } /* Push a new target type into the stack of the existing target accessors, possibly superseding some of the existing accessors. Rather than allow an empty stack, we always have the dummy target at the bottom stratum, so we can call the function vectors without checking them. */ void push_target (struct target_ops *t) { struct target_ops **cur; /* Check magic number. If wrong, it probably means someone changed the struct definition, but not all the places that initialize one. */ if (t->to_magic != OPS_MAGIC) { fprintf_unfiltered (gdb_stderr, "Magic number of %s target struct wrong\n", t->to_shortname); internal_error (__FILE__, __LINE__, _("failed internal consistency check")); } /* Find the proper stratum to install this target in. */ for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath) { if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum) break; } /* If there's already targets at this stratum, remove them. */ /* FIXME: cagney/2003-10-15: I think this should be popping all targets to CUR, and not just those at this stratum level. */ while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum) { /* There's already something at this stratum level. Close it, and un-hook it from the stack. */ struct target_ops *tmp = (*cur); (*cur) = (*cur)->beneath; tmp->beneath = NULL; target_close (tmp); } /* We have removed all targets in our stratum, now add the new one. */ t->beneath = (*cur); (*cur) = t; update_current_target (); } /* Remove a target_ops vector from the stack, wherever it may be. Return how many times it was removed (0 or 1). */ int unpush_target (struct target_ops *t) { struct target_ops **cur; struct target_ops *tmp; if (t->to_stratum == dummy_stratum) internal_error (__FILE__, __LINE__, _("Attempt to unpush the dummy target")); /* Look for the specified target. Note that we assume that a target can only occur once in the target stack. */ for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath) { if ((*cur) == t) break; } /* If we don't find target_ops, quit. Only open targets should be closed. */ if ((*cur) == NULL) return 0; /* Unchain the target. */ tmp = (*cur); (*cur) = (*cur)->beneath; tmp->beneath = NULL; update_current_target (); /* Finally close the target. Note we do this after unchaining, so any target method calls from within the target_close implementation don't end up in T anymore. */ target_close (t); return 1; } void pop_all_targets_above (enum strata above_stratum) { while ((int) (current_target.to_stratum) > (int) above_stratum) { if (!unpush_target (target_stack)) { fprintf_unfiltered (gdb_stderr, "pop_all_targets couldn't find target %s\n", target_stack->to_shortname); internal_error (__FILE__, __LINE__, _("failed internal consistency check")); break; } } } void pop_all_targets (void) { pop_all_targets_above (dummy_stratum); } /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */ int target_is_pushed (struct target_ops *t) { struct target_ops *cur; /* Check magic number. If wrong, it probably means someone changed the struct definition, but not all the places that initialize one. */ if (t->to_magic != OPS_MAGIC) { fprintf_unfiltered (gdb_stderr, "Magic number of %s target struct wrong\n", t->to_shortname); internal_error (__FILE__, __LINE__, _("failed internal consistency check")); } for (cur = target_stack; cur != NULL; cur = cur->beneath) if (cur == t) return 1; return 0; } /* Default implementation of to_get_thread_local_address. */ static void generic_tls_error (void) { throw_error (TLS_GENERIC_ERROR, _("Cannot find thread-local variables on this target")); } /* Using the objfile specified in OBJFILE, find the address for the current thread's thread-local storage with offset OFFSET. */ CORE_ADDR target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset) { volatile CORE_ADDR addr = 0; struct target_ops *target = ¤t_target; if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ())) { ptid_t ptid = inferior_ptid; TRY { CORE_ADDR lm_addr; /* Fetch the load module address for this objfile. */ lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (), objfile); addr = target->to_get_thread_local_address (target, ptid, lm_addr, offset); } /* If an error occurred, print TLS related messages here. Otherwise, throw the error to some higher catcher. */ CATCH (ex, RETURN_MASK_ALL) { int objfile_is_library = (objfile->flags & OBJF_SHARED); switch (ex.error) { case TLS_NO_LIBRARY_SUPPORT_ERROR: error (_("Cannot find thread-local variables " "in this thread library.")); break; case TLS_LOAD_MODULE_NOT_FOUND_ERROR: if (objfile_is_library) error (_("Cannot find shared library `%s' in dynamic" " linker's load module list"), objfile_name (objfile)); else error (_("Cannot find executable file `%s' in dynamic" " linker's load module list"), objfile_name (objfile)); break; case TLS_NOT_ALLOCATED_YET_ERROR: if (objfile_is_library) error (_("The inferior has not yet allocated storage for" " thread-local variables in\n" "the shared library `%s'\n" "for %s"), objfile_name (objfile), target_pid_to_str (ptid)); else error (_("The inferior has not yet allocated storage for" " thread-local variables in\n" "the executable `%s'\n" "for %s"), objfile_name (objfile), target_pid_to_str (ptid)); break; case TLS_GENERIC_ERROR: if (objfile_is_library) error (_("Cannot find thread-local storage for %s, " "shared library %s:\n%s"), target_pid_to_str (ptid), objfile_name (objfile), ex.message); else error (_("Cannot find thread-local storage for %s, " "executable file %s:\n%s"), target_pid_to_str (ptid), objfile_name (objfile), ex.message); break; default: throw_exception (ex); break; } } END_CATCH } /* It wouldn't be wrong here to try a gdbarch method, too; finding TLS is an ABI-specific thing. But we don't do that yet. */ else error (_("Cannot find thread-local variables on this target")); return addr; } const char * target_xfer_status_to_string (enum target_xfer_status status) { #define CASE(X) case X: return #X switch (status) { CASE(TARGET_XFER_E_IO); CASE(TARGET_XFER_UNAVAILABLE); default: return ""; } #undef CASE }; #undef MIN #define MIN(A, B) (((A) <= (B)) ? (A) : (B)) /* target_read_string -- read a null terminated string, up to LEN bytes, from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful. Set *STRING to a pointer to malloc'd memory containing the data; the caller is responsible for freeing it. Return the number of bytes successfully read. */ int target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop) { int tlen, offset, i; gdb_byte buf[4]; int errcode = 0; char *buffer; int buffer_allocated; char *bufptr; unsigned int nbytes_read = 0; gdb_assert (string); /* Small for testing. */ buffer_allocated = 4; buffer = xmalloc (buffer_allocated); bufptr = buffer; while (len > 0) { tlen = MIN (len, 4 - (memaddr & 3)); offset = memaddr & 3; errcode = target_read_memory (memaddr & ~3, buf, sizeof buf); if (errcode != 0) { /* The transfer request might have crossed the boundary to an unallocated region of memory. Retry the transfer, requesting a single byte. */ tlen = 1; offset = 0; errcode = target_read_memory (memaddr, buf, 1); if (errcode != 0) goto done; } if (bufptr - buffer + tlen > buffer_allocated) { unsigned int bytes; bytes = bufptr - buffer; buffer_allocated *= 2; buffer = xrealloc (buffer, buffer_allocated); bufptr = buffer + bytes; } for (i = 0; i < tlen; i++) { *bufptr++ = buf[i + offset]; if (buf[i + offset] == '\000') { nbytes_read += i + 1; goto done; } } memaddr += tlen; len -= tlen; nbytes_read += tlen; } done: *string = buffer; if (errnop != NULL) *errnop = errcode; return nbytes_read; } struct target_section_table * target_get_section_table (struct target_ops *target) { return (*target->to_get_section_table) (target); } /* Find a section containing ADDR. */ struct target_section * target_section_by_addr (struct target_ops *target, CORE_ADDR addr) { struct target_section_table *table = target_get_section_table (target); struct target_section *secp; if (table == NULL) return NULL; for (secp = table->sections; secp < table->sections_end; secp++) { if (addr >= secp->addr && addr < secp->endaddr) return secp; } return NULL; } /* Helper for the memory xfer routines. Checks the attributes of the memory region of MEMADDR against the read or write being attempted. If the access is permitted returns true, otherwise returns false. REGION_P is an optional output parameter. If not-NULL, it is filled with a pointer to the memory region of MEMADDR. REG_LEN returns LEN trimmed to the end of the region. This is how much the caller can continue requesting, if the access is permitted. A single xfer request must not straddle memory region boundaries. */ static int memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len, struct mem_region **region_p) { struct mem_region *region; region = lookup_mem_region (memaddr); if (region_p != NULL) *region_p = region; switch (region->attrib.mode) { case MEM_RO: if (writebuf != NULL) return 0; break; case MEM_WO: if (readbuf != NULL) return 0; break; case MEM_FLASH: /* We only support writing to flash during "load" for now. */ if (writebuf != NULL) error (_("Writing to flash memory forbidden in this context")); break; case MEM_NONE: return 0; } /* region->hi == 0 means there's no upper bound. */ if (memaddr + len < region->hi || region->hi == 0) *reg_len = len; else *reg_len = region->hi - memaddr; return 1; } /* Read memory from more than one valid target. A core file, for instance, could have some of memory but delegate other bits to the target below it. So, we must manually try all targets. */ static enum target_xfer_status raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len, ULONGEST *xfered_len) { enum target_xfer_status res; do { res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL, readbuf, writebuf, memaddr, len, xfered_len); if (res == TARGET_XFER_OK) break; /* Stop if the target reports that the memory is not available. */ if (res == TARGET_XFER_UNAVAILABLE) break; /* We want to continue past core files to executables, but not past a running target's memory. */ if (ops->to_has_all_memory (ops)) break; ops = ops->beneath; } while (ops != NULL); /* The cache works at the raw memory level. Make sure the cache gets updated with raw contents no matter what kind of memory object was originally being written. Note we do write-through first, so that if it fails, we don't write to the cache contents that never made it to the target. */ if (writebuf != NULL && !ptid_equal (inferior_ptid, null_ptid) && target_dcache_init_p () && (stack_cache_enabled_p () || code_cache_enabled_p ())) { DCACHE *dcache = target_dcache_get (); /* Note that writing to an area of memory which wasn't present in the cache doesn't cause it to be loaded in. */ dcache_update (dcache, res, memaddr, writebuf, *xfered_len); } return res; } /* Perform a partial memory transfer. For docs see target.h, to_xfer_partial. */ static enum target_xfer_status memory_xfer_partial_1 (struct target_ops *ops, enum target_object object, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len) { enum target_xfer_status res; ULONGEST reg_len; struct mem_region *region; struct inferior *inf; /* For accesses to unmapped overlay sections, read directly from files. Must do this first, as MEMADDR may need adjustment. */ if (readbuf != NULL && overlay_debugging) { struct obj_section *section = find_pc_overlay (memaddr); if (pc_in_unmapped_range (memaddr, section)) { struct target_section_table *table = target_get_section_table (ops); const char *section_name = section->the_bfd_section->name; memaddr = overlay_mapped_address (memaddr, section); return section_table_xfer_memory_partial (readbuf, writebuf, memaddr, len, xfered_len, table->sections, table->sections_end, section_name); } } /* Try the executable files, if "trust-readonly-sections" is set. */ if (readbuf != NULL && trust_readonly) { struct target_section *secp; struct target_section_table *table; secp = target_section_by_addr (ops, memaddr); if (secp != NULL && (bfd_get_section_flags (secp->the_bfd_section->owner, secp->the_bfd_section) & SEC_READONLY)) { table = target_get_section_table (ops); return section_table_xfer_memory_partial (readbuf, writebuf, memaddr, len, xfered_len, table->sections, table->sections_end, NULL); } } /* Try GDB's internal data cache. */ if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len, ®ion)) return TARGET_XFER_E_IO; if (!ptid_equal (inferior_ptid, null_ptid)) inf = find_inferior_ptid (inferior_ptid); else inf = NULL; if (inf != NULL && readbuf != NULL /* The dcache reads whole cache lines; that doesn't play well with reading from a trace buffer, because reading outside of the collected memory range fails. */ && get_traceframe_number () == -1 && (region->attrib.cache || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY) || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY))) { DCACHE *dcache = target_dcache_get_or_init (); return dcache_read_memory_partial (ops, dcache, memaddr, readbuf, reg_len, xfered_len); } /* If none of those methods found the memory we wanted, fall back to a target partial transfer. Normally a single call to to_xfer_partial is enough; if it doesn't recognize an object it will call the to_xfer_partial of the next target down. But for memory this won't do. Memory is the only target object which can be read from more than one valid target. A core file, for instance, could have some of memory but delegate other bits to the target below it. So, we must manually try all targets. */ res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len, xfered_len); /* If we still haven't got anything, return the last error. We give up. */ return res; } /* Perform a partial memory transfer. For docs see target.h, to_xfer_partial. */ static enum target_xfer_status memory_xfer_partial (struct target_ops *ops, enum target_object object, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len) { enum target_xfer_status res; /* Zero length requests are ok and require no work. */ if (len == 0) return TARGET_XFER_EOF; /* Fill in READBUF with breakpoint shadows, or WRITEBUF with breakpoint insns, thus hiding out from higher layers whether there are software breakpoints inserted in the code stream. */ if (readbuf != NULL) { res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len, xfered_len); if (res == TARGET_XFER_OK && !show_memory_breakpoints) breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len); } else { void *buf; struct cleanup *old_chain; /* A large write request is likely to be partially satisfied by memory_xfer_partial_1. We will continually malloc and free a copy of the entire write request for breakpoint shadow handling even though we only end up writing a small subset of it. Cap writes to 4KB to mitigate this. */ len = min (4096, len); buf = xmalloc (len); old_chain = make_cleanup (xfree, buf); memcpy (buf, writebuf, len); breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len); res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len, xfered_len); do_cleanups (old_chain); } return res; } static void restore_show_memory_breakpoints (void *arg) { show_memory_breakpoints = (uintptr_t) arg; } struct cleanup * make_show_memory_breakpoints_cleanup (int show) { int current = show_memory_breakpoints; show_memory_breakpoints = show; return make_cleanup (restore_show_memory_breakpoints, (void *) (uintptr_t) current); } /* For docs see target.h, to_xfer_partial. */ enum target_xfer_status target_xfer_partial (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) { enum target_xfer_status retval; gdb_assert (ops->to_xfer_partial != NULL); /* Transfer is done when LEN is zero. */ if (len == 0) return TARGET_XFER_EOF; if (writebuf && !may_write_memory) error (_("Writing to memory is not allowed (addr %s, len %s)"), core_addr_to_string_nz (offset), plongest (len)); *xfered_len = 0; /* If this is a memory transfer, let the memory-specific code have a look at it instead. Memory transfers are more complicated. */ if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY || object == TARGET_OBJECT_CODE_MEMORY) retval = memory_xfer_partial (ops, object, readbuf, writebuf, offset, len, xfered_len); else if (object == TARGET_OBJECT_RAW_MEMORY) { /* Skip/avoid accessing the target if the memory region attributes block the access. Check this here instead of in raw_memory_xfer_partial as otherwise we'd end up checking this twice in the case of the memory_xfer_partial path is taken; once before checking the dcache, and another in the tail call to raw_memory_xfer_partial. */ if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len, NULL)) return TARGET_XFER_E_IO; /* Request the normal memory object from other layers. */ retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len, xfered_len); } else retval = ops->to_xfer_partial (ops, object, annex, readbuf, writebuf, offset, len, xfered_len); if (targetdebug) { const unsigned char *myaddr = NULL; fprintf_unfiltered (gdb_stdlog, "%s:target_xfer_partial " "(%d, %s, %s, %s, %s, %s) = %d, %s", ops->to_shortname, (int) object, (annex ? annex : "(null)"), host_address_to_string (readbuf), host_address_to_string (writebuf), core_addr_to_string_nz (offset), pulongest (len), retval, pulongest (*xfered_len)); if (readbuf) myaddr = readbuf; if (writebuf) myaddr = writebuf; if (retval == TARGET_XFER_OK && myaddr != NULL) { int i; fputs_unfiltered (", bytes =", gdb_stdlog); for (i = 0; i < *xfered_len; i++) { if ((((intptr_t) &(myaddr[i])) & 0xf) == 0) { if (targetdebug < 2 && i > 0) { fprintf_unfiltered (gdb_stdlog, " ..."); break; } fprintf_unfiltered (gdb_stdlog, "\n"); } fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff); } } fputc_unfiltered ('\n', gdb_stdlog); } /* Check implementations of to_xfer_partial update *XFERED_LEN properly. Do assertion after printing debug messages, so that we can find more clues on assertion failure from debugging messages. */ if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE) gdb_assert (*xfered_len > 0); return retval; } /* Read LEN bytes of target memory at address MEMADDR, placing the results in GDB's memory at MYADDR. Returns either 0 for success or TARGET_XFER_E_IO if any error occurs. If an error occurs, no guarantee is made about the contents of the data at MYADDR. In particular, the caller should not depend upon partial reads filling the buffer with good data. There is no way for the caller to know how much good data might have been transfered anyway. Callers that can deal with partial reads should call target_read (which will retry until it makes no progress, and then return how much was transferred). */ int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) { /* Dispatch to the topmost target, not the flattened current_target. Memory accesses check target->to_has_(all_)memory, and the flattened target doesn't inherit those. */ if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL, myaddr, memaddr, len) == len) return 0; else return TARGET_XFER_E_IO; } /* See target/target.h. */ int target_read_uint32 (CORE_ADDR memaddr, uint32_t *result) { gdb_byte buf[4]; int r; r = target_read_memory (memaddr, buf, sizeof buf); if (r != 0) return r; *result = extract_unsigned_integer (buf, sizeof buf, gdbarch_byte_order (target_gdbarch ())); return 0; } /* Like target_read_memory, but specify explicitly that this is a read from the target's raw memory. That is, this read bypasses the dcache, breakpoint shadowing, etc. */ int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) { /* See comment in target_read_memory about why the request starts at current_target.beneath. */ if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL, myaddr, memaddr, len) == len) return 0; else return TARGET_XFER_E_IO; } /* Like target_read_memory, but specify explicitly that this is a read from the target's stack. This may trigger different cache behavior. */ int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) { /* See comment in target_read_memory about why the request starts at current_target.beneath. */ if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL, myaddr, memaddr, len) == len) return 0; else return TARGET_XFER_E_IO; } /* Like target_read_memory, but specify explicitly that this is a read from the target's code. This may trigger different cache behavior. */ int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len) { /* See comment in target_read_memory about why the request starts at current_target.beneath. */ if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL, myaddr, memaddr, len) == len) return 0; else return TARGET_XFER_E_IO; } /* Write LEN bytes from MYADDR to target memory at address MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO if any error occurs. If an error occurs, no guarantee is made about how much data got written. Callers that can deal with partial writes should call target_write. */ int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len) { /* See comment in target_read_memory about why the request starts at current_target.beneath. */ if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL, myaddr, memaddr, len) == len) return 0; else return TARGET_XFER_E_IO; } /* Write LEN bytes from MYADDR to target raw memory at address MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO if any error occurs. If an error occurs, no guarantee is made about how much data got written. Callers that can deal with partial writes should call target_write. */ int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len) { /* See comment in target_read_memory about why the request starts at current_target.beneath. */ if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL, myaddr, memaddr, len) == len) return 0; else return TARGET_XFER_E_IO; } /* Fetch the target's memory map. */ VEC(mem_region_s) * target_memory_map (void) { VEC(mem_region_s) *result; struct mem_region *last_one, *this_one; int ix; struct target_ops *t; result = current_target.to_memory_map (¤t_target); if (result == NULL) return NULL; qsort (VEC_address (mem_region_s, result), VEC_length (mem_region_s, result), sizeof (struct mem_region), mem_region_cmp); /* Check that regions do not overlap. Simultaneously assign a numbering for the "mem" commands to use to refer to each region. */ last_one = NULL; for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++) { this_one->number = ix; if (last_one && last_one->hi > this_one->lo) { warning (_("Overlapping regions in memory map: ignoring")); VEC_free (mem_region_s, result); return NULL; } last_one = this_one; } return result; } void target_flash_erase (ULONGEST address, LONGEST length) { current_target.to_flash_erase (¤t_target, address, length); } void target_flash_done (void) { current_target.to_flash_done (¤t_target); } static void show_trust_readonly (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("Mode for reading from readonly sections is %s.\n"), value); } /* Target vector read/write partial wrapper functions. */ static enum target_xfer_status target_read_partial (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *buf, ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) { return target_xfer_partial (ops, object, annex, buf, NULL, offset, len, xfered_len); } static enum target_xfer_status target_write_partial (struct target_ops *ops, enum target_object object, const char *annex, const gdb_byte *buf, ULONGEST offset, LONGEST len, ULONGEST *xfered_len) { return target_xfer_partial (ops, object, annex, NULL, buf, offset, len, xfered_len); } /* Wrappers to perform the full transfer. */ /* For docs on target_read see target.h. */ LONGEST target_read (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *buf, ULONGEST offset, LONGEST len) { LONGEST xfered = 0; while (xfered < len) { ULONGEST xfered_len; enum target_xfer_status status; status = target_read_partial (ops, object, annex, (gdb_byte *) buf + xfered, offset + xfered, len - xfered, &xfered_len); /* Call an observer, notifying them of the xfer progress? */ if (status == TARGET_XFER_EOF) return xfered; else if (status == TARGET_XFER_OK) { xfered += xfered_len; QUIT; } else return -1; } return len; } /* Assuming that the entire [begin, end) range of memory cannot be read, try to read whatever subrange is possible to read. The function returns, in RESULT, either zero or one memory block. If there's a readable subrange at the beginning, it is completely read and returned. Any further readable subrange will not be read. Otherwise, if there's a readable subrange at the end, it will be completely read and returned. Any readable subranges before it (obviously, not starting at the beginning), will be ignored. In other cases -- either no readable subrange, or readable subrange(s) that is neither at the beginning, or end, nothing is returned. The purpose of this function is to handle a read across a boundary of accessible memory in a case when memory map is not available. The above restrictions are fine for this case, but will give incorrect results if the memory is 'patchy'. However, supporting 'patchy' memory would require trying to read every single byte, and it seems unacceptable solution. Explicit memory map is recommended for this case -- and target_read_memory_robust will take care of reading multiple ranges then. */ static void read_whatever_is_readable (struct target_ops *ops, ULONGEST begin, ULONGEST end, VEC(memory_read_result_s) **result) { gdb_byte *buf = xmalloc (end - begin); ULONGEST current_begin = begin; ULONGEST current_end = end; int forward; memory_read_result_s r; ULONGEST xfered_len; /* If we previously failed to read 1 byte, nothing can be done here. */ if (end - begin <= 1) { xfree (buf); return; } /* Check that either first or the last byte is readable, and give up if not. This heuristic is meant to permit reading accessible memory at the boundary of accessible region. */ if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL, buf, begin, 1, &xfered_len) == TARGET_XFER_OK) { forward = 1; ++current_begin; } else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL, buf + (end-begin) - 1, end - 1, 1, &xfered_len) == TARGET_XFER_OK) { forward = 0; --current_end; } else { xfree (buf); return; } /* Loop invariant is that the [current_begin, current_end) was previously found to be not readable as a whole. Note loop condition -- if the range has 1 byte, we can't divide the range so there's no point trying further. */ while (current_end - current_begin > 1) { ULONGEST first_half_begin, first_half_end; ULONGEST second_half_begin, second_half_end; LONGEST xfer; ULONGEST middle = current_begin + (current_end - current_begin)/2; if (forward) { first_half_begin = current_begin; first_half_end = middle; second_half_begin = middle; second_half_end = current_end; } else { first_half_begin = middle; first_half_end = current_end; second_half_begin = current_begin; second_half_end = middle; } xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf + (first_half_begin - begin), first_half_begin, first_half_end - first_half_begin); if (xfer == first_half_end - first_half_begin) { /* This half reads up fine. So, the error must be in the other half. */ current_begin = second_half_begin; current_end = second_half_end; } else { /* This half is not readable. Because we've tried one byte, we know some part of this half if actually redable. Go to the next iteration to divide again and try to read. We don't handle the other half, because this function only tries to read a single readable subrange. */ current_begin = first_half_begin; current_end = first_half_end; } } if (forward) { /* The [begin, current_begin) range has been read. */ r.begin = begin; r.end = current_begin; r.data = buf; } else { /* The [current_end, end) range has been read. */ LONGEST rlen = end - current_end; r.data = xmalloc (rlen); memcpy (r.data, buf + current_end - begin, rlen); r.begin = current_end; r.end = end; xfree (buf); } VEC_safe_push(memory_read_result_s, (*result), &r); } void free_memory_read_result_vector (void *x) { VEC(memory_read_result_s) *v = x; memory_read_result_s *current; int ix; for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix) { xfree (current->data); } VEC_free (memory_read_result_s, v); } VEC(memory_read_result_s) * read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len) { VEC(memory_read_result_s) *result = 0; LONGEST xfered = 0; while (xfered < len) { struct mem_region *region = lookup_mem_region (offset + xfered); LONGEST rlen; /* If there is no explicit region, a fake one should be created. */ gdb_assert (region); if (region->hi == 0) rlen = len - xfered; else rlen = region->hi - offset; if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO) { /* Cannot read this region. Note that we can end up here only if the region is explicitly marked inaccessible, or 'inaccessible-by-default' is in effect. */ xfered += rlen; } else { LONGEST to_read = min (len - xfered, rlen); gdb_byte *buffer = (gdb_byte *)xmalloc (to_read); LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL, (gdb_byte *) buffer, offset + xfered, to_read); /* Call an observer, notifying them of the xfer progress? */ if (xfer <= 0) { /* Got an error reading full chunk. See if maybe we can read some subrange. */ xfree (buffer); read_whatever_is_readable (ops, offset + xfered, offset + xfered + to_read, &result); xfered += to_read; } else { struct memory_read_result r; r.data = buffer; r.begin = offset + xfered; r.end = r.begin + xfer; VEC_safe_push (memory_read_result_s, result, &r); xfered += xfer; } QUIT; } } return result; } /* An alternative to target_write with progress callbacks. */ LONGEST target_write_with_progress (struct target_ops *ops, enum target_object object, const char *annex, const gdb_byte *buf, ULONGEST offset, LONGEST len, void (*progress) (ULONGEST, void *), void *baton) { LONGEST xfered = 0; /* Give the progress callback a chance to set up. */ if (progress) (*progress) (0, baton); while (xfered < len) { ULONGEST xfered_len; enum target_xfer_status status; status = target_write_partial (ops, object, annex, (gdb_byte *) buf + xfered, offset + xfered, len - xfered, &xfered_len); if (status != TARGET_XFER_OK) return status == TARGET_XFER_EOF ? xfered : -1; if (progress) (*progress) (xfered_len, baton); xfered += xfered_len; QUIT; } return len; } /* For docs on target_write see target.h. */ LONGEST target_write (struct target_ops *ops, enum target_object object, const char *annex, const gdb_byte *buf, ULONGEST offset, LONGEST len) { return target_write_with_progress (ops, object, annex, buf, offset, len, NULL, NULL); } /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return the size of the transferred data. PADDING additional bytes are available in *BUF_P. This is a helper function for target_read_alloc; see the declaration of that function for more information. */ static LONGEST target_read_alloc_1 (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte **buf_p, int padding) { size_t buf_alloc, buf_pos; gdb_byte *buf; /* This function does not have a length parameter; it reads the entire OBJECT). Also, it doesn't support objects fetched partly from one target and partly from another (in a different stratum, e.g. a core file and an executable). Both reasons make it unsuitable for reading memory. */ gdb_assert (object != TARGET_OBJECT_MEMORY); /* Start by reading up to 4K at a time. The target will throttle this number down if necessary. */ buf_alloc = 4096; buf = xmalloc (buf_alloc); buf_pos = 0; while (1) { ULONGEST xfered_len; enum target_xfer_status status; status = target_read_partial (ops, object, annex, &buf[buf_pos], buf_pos, buf_alloc - buf_pos - padding, &xfered_len); if (status == TARGET_XFER_EOF) { /* Read all there was. */ if (buf_pos == 0) xfree (buf); else *buf_p = buf; return buf_pos; } else if (status != TARGET_XFER_OK) { /* An error occurred. */ xfree (buf); return TARGET_XFER_E_IO; } buf_pos += xfered_len; /* If the buffer is filling up, expand it. */ if (buf_alloc < buf_pos * 2) { buf_alloc *= 2; buf = xrealloc (buf, buf_alloc); } QUIT; } } /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return the size of the transferred data. See the declaration in "target.h" function for more information about the return value. */ LONGEST target_read_alloc (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte **buf_p) { return target_read_alloc_1 (ops, object, annex, buf_p, 0); } /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and returned as a string, allocated using xmalloc. If an error occurs or the transfer is unsupported, NULL is returned. Empty objects are returned as allocated but empty strings. A warning is issued if the result contains any embedded NUL bytes. */ char * target_read_stralloc (struct target_ops *ops, enum target_object object, const char *annex) { gdb_byte *buffer; char *bufstr; LONGEST i, transferred; transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1); bufstr = (char *) buffer; if (transferred < 0) return NULL; if (transferred == 0) return xstrdup (""); bufstr[transferred] = 0; /* Check for embedded NUL bytes; but allow trailing NULs. */ for (i = strlen (bufstr); i < transferred; i++) if (bufstr[i] != 0) { warning (_("target object %d, annex %s, " "contained unexpected null characters"), (int) object, annex ? annex : "(none)"); break; } return bufstr; } /* Memory transfer methods. */ void get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf, LONGEST len) { /* This method is used to read from an alternate, non-current target. This read must bypass the overlay support (as symbols don't match this target), and GDB's internal cache (wrong cache for this target). */ if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len) != len) memory_error (TARGET_XFER_E_IO, addr); } ULONGEST get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr, int len, enum bfd_endian byte_order) { gdb_byte buf[sizeof (ULONGEST)]; gdb_assert (len <= sizeof (buf)); get_target_memory (ops, addr, buf, len); return extract_unsigned_integer (buf, len, byte_order); } /* See target.h. */ int target_insert_breakpoint (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt) { if (!may_insert_breakpoints) { warning (_("May not insert breakpoints")); return 1; } return current_target.to_insert_breakpoint (¤t_target, gdbarch, bp_tgt); } /* See target.h. */ int target_remove_breakpoint (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt) { /* This is kind of a weird case to handle, but the permission might have been changed after breakpoints were inserted - in which case we should just take the user literally and assume that any breakpoints should be left in place. */ if (!may_insert_breakpoints) { warning (_("May not remove breakpoints")); return 1; } return current_target.to_remove_breakpoint (¤t_target, gdbarch, bp_tgt); } static void target_info (char *args, int from_tty) { struct target_ops *t; int has_all_mem = 0; if (symfile_objfile != NULL) printf_unfiltered (_("Symbols from \"%s\".\n"), objfile_name (symfile_objfile)); for (t = target_stack; t != NULL; t = t->beneath) { if (!(*t->to_has_memory) (t)) continue; if ((int) (t->to_stratum) <= (int) dummy_stratum) continue; if (has_all_mem) printf_unfiltered (_("\tWhile running this, " "GDB does not access memory from...\n")); printf_unfiltered ("%s:\n", t->to_longname); (t->to_files_info) (t); has_all_mem = (*t->to_has_all_memory) (t); } } /* This function is called before any new inferior is created, e.g. by running a program, attaching, or connecting to a target. It cleans up any state from previous invocations which might change between runs. This is a subset of what target_preopen resets (things which might change between targets). */ void target_pre_inferior (int from_tty) { /* Clear out solib state. Otherwise the solib state of the previous inferior might have survived and is entirely wrong for the new target. This has been observed on GNU/Linux using glibc 2.3. How to reproduce: bash$ ./foo& [1] 4711 bash$ ./foo& [1] 4712 bash$ gdb ./foo [...] (gdb) attach 4711 (gdb) detach (gdb) attach 4712 Cannot access memory at address 0xdeadbeef */ /* In some OSs, the shared library list is the same/global/shared across inferiors. If code is shared between processes, so are memory regions and features. */ if (!gdbarch_has_global_solist (target_gdbarch ())) { no_shared_libraries (NULL, from_tty); invalidate_target_mem_regions (); target_clear_description (); } agent_capability_invalidate (); } /* Callback for iterate_over_inferiors. Gets rid of the given inferior. */ static int dispose_inferior (struct inferior *inf, void *args) { struct thread_info *thread; thread = any_thread_of_process (inf->pid); if (thread) { switch_to_thread (thread->ptid); /* Core inferiors actually should be detached, not killed. */ if (target_has_execution) target_kill (); else target_detach (NULL, 0); } return 0; } /* This is to be called by the open routine before it does anything. */ void target_preopen (int from_tty) { dont_repeat (); if (have_inferiors ()) { if (!from_tty || !have_live_inferiors () || query (_("A program is being debugged already. Kill it? "))) iterate_over_inferiors (dispose_inferior, NULL); else error (_("Program not killed.")); } /* Calling target_kill may remove the target from the stack. But if it doesn't (which seems like a win for UDI), remove it now. */ /* Leave the exec target, though. The user may be switching from a live process to a core of the same program. */ pop_all_targets_above (file_stratum); target_pre_inferior (from_tty); } /* Detach a target after doing deferred register stores. */ void target_detach (const char *args, int from_tty) { struct target_ops* t; if (gdbarch_has_global_breakpoints (target_gdbarch ())) /* Don't remove global breakpoints here. They're removed on disconnection from the target. */ ; else /* If we're in breakpoints-always-inserted mode, have to remove them before detaching. */ remove_breakpoints_pid (ptid_get_pid (inferior_ptid)); prepare_for_detach (); current_target.to_detach (¤t_target, args, from_tty); } void target_disconnect (const char *args, int from_tty) { /* If we're in breakpoints-always-inserted mode or if breakpoints are global across processes, we have to remove them before disconnecting. */ remove_breakpoints (); current_target.to_disconnect (¤t_target, args, from_tty); } ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status, int options) { return (current_target.to_wait) (¤t_target, ptid, status, options); } char * target_pid_to_str (ptid_t ptid) { return (*current_target.to_pid_to_str) (¤t_target, ptid); } char * target_thread_name (struct thread_info *info) { return current_target.to_thread_name (¤t_target, info); } void target_resume (ptid_t ptid, int step, enum gdb_signal signal) { struct target_ops *t; target_dcache_invalidate (); current_target.to_resume (¤t_target, ptid, step, signal); registers_changed_ptid (ptid); /* We only set the internal executing state here. The user/frontend running state is set at a higher level. */ set_executing (ptid, 1); clear_inline_frame_state (ptid); } void target_pass_signals (int numsigs, unsigned char *pass_signals) { (*current_target.to_pass_signals) (¤t_target, numsigs, pass_signals); } void target_program_signals (int numsigs, unsigned char *program_signals) { (*current_target.to_program_signals) (¤t_target, numsigs, program_signals); } static int default_follow_fork (struct target_ops *self, int follow_child, int detach_fork) { /* Some target returned a fork event, but did not know how to follow it. */ internal_error (__FILE__, __LINE__, _("could not find a target to follow fork")); } /* Look through the list of possible targets for a target that can follow forks. */ int target_follow_fork (int follow_child, int detach_fork) { return current_target.to_follow_fork (¤t_target, follow_child, detach_fork); } static void default_mourn_inferior (struct target_ops *self) { internal_error (__FILE__, __LINE__, _("could not find a target to follow mourn inferior")); } void target_mourn_inferior (void) { current_target.to_mourn_inferior (¤t_target); /* We no longer need to keep handles on any of the object files. Make sure to release them to avoid unnecessarily locking any of them while we're not actually debugging. */ bfd_cache_close_all (); } /* Look for a target which can describe architectural features, starting from TARGET. If we find one, return its description. */ const struct target_desc * target_read_description (struct target_ops *target) { return target->to_read_description (target); } /* This implements a basic search of memory, reading target memory and performing the search here (as opposed to performing the search in on the target side with, for example, gdbserver). */ int simple_search_memory (struct target_ops *ops, CORE_ADDR start_addr, ULONGEST search_space_len, const gdb_byte *pattern, ULONGEST pattern_len, CORE_ADDR *found_addrp) { /* NOTE: also defined in find.c testcase. */ #define SEARCH_CHUNK_SIZE 16000 const unsigned chunk_size = SEARCH_CHUNK_SIZE; /* Buffer to hold memory contents for searching. */ gdb_byte *search_buf; unsigned search_buf_size; struct cleanup *old_cleanups; search_buf_size = chunk_size + pattern_len - 1; /* No point in trying to allocate a buffer larger than the search space. */ if (search_space_len < search_buf_size) search_buf_size = search_space_len; search_buf = malloc (search_buf_size); if (search_buf == NULL) error (_("Unable to allocate memory to perform the search.")); old_cleanups = make_cleanup (free_current_contents, &search_buf); /* Prime the search buffer. */ if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, search_buf, start_addr, search_buf_size) != search_buf_size) { warning (_("Unable to access %s bytes of target " "memory at %s, halting search."), pulongest (search_buf_size), hex_string (start_addr)); do_cleanups (old_cleanups); return -1; } /* Perform the search. The loop is kept simple by allocating [N + pattern-length - 1] bytes. When we've scanned N bytes we copy the trailing bytes to the start and read in another N bytes. */ while (search_space_len >= pattern_len) { gdb_byte *found_ptr; unsigned nr_search_bytes = min (search_space_len, search_buf_size); found_ptr = memmem (search_buf, nr_search_bytes, pattern, pattern_len); if (found_ptr != NULL) { CORE_ADDR found_addr = start_addr + (found_ptr - search_buf); *found_addrp = found_addr; do_cleanups (old_cleanups); return 1; } /* Not found in this chunk, skip to next chunk. */ /* Don't let search_space_len wrap here, it's unsigned. */ if (search_space_len >= chunk_size) search_space_len -= chunk_size; else search_space_len = 0; if (search_space_len >= pattern_len) { unsigned keep_len = search_buf_size - chunk_size; CORE_ADDR read_addr = start_addr + chunk_size + keep_len; int nr_to_read; /* Copy the trailing part of the previous iteration to the front of the buffer for the next iteration. */ gdb_assert (keep_len == pattern_len - 1); memcpy (search_buf, search_buf + chunk_size, keep_len); nr_to_read = min (search_space_len - keep_len, chunk_size); if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, search_buf + keep_len, read_addr, nr_to_read) != nr_to_read) { warning (_("Unable to access %s bytes of target " "memory at %s, halting search."), plongest (nr_to_read), hex_string (read_addr)); do_cleanups (old_cleanups); return -1; } start_addr += chunk_size; } } /* Not found. */ do_cleanups (old_cleanups); return 0; } /* Default implementation of memory-searching. */ static int default_search_memory (struct target_ops *self, CORE_ADDR start_addr, ULONGEST search_space_len, const gdb_byte *pattern, ULONGEST pattern_len, CORE_ADDR *found_addrp) { /* Start over from the top of the target stack. */ return simple_search_memory (current_target.beneath, start_addr, search_space_len, pattern, pattern_len, found_addrp); } /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the sequence of bytes in PATTERN with length PATTERN_LEN. The result is 1 if found, 0 if not found, and -1 if there was an error requiring halting of the search (e.g. memory read error). If the pattern is found the address is recorded in FOUND_ADDRP. */ int target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len, const gdb_byte *pattern, ULONGEST pattern_len, CORE_ADDR *found_addrp) { return current_target.to_search_memory (¤t_target, start_addr, search_space_len, pattern, pattern_len, found_addrp); } /* Look through the currently pushed targets. If none of them will be able to restart the currently running process, issue an error message. */ void target_require_runnable (void) { struct target_ops *t; for (t = target_stack; t != NULL; t = t->beneath) { /* If this target knows how to create a new program, then assume we will still be able to after killing the current one. Either killing and mourning will not pop T, or else find_default_run_target will find it again. */ if (t->to_create_inferior != NULL) return; /* Do not worry about targets at certain strata that can not create inferiors. Assume they will be pushed again if necessary, and continue to the process_stratum. */ if (t->to_stratum == thread_stratum || t->to_stratum == record_stratum || t->to_stratum == arch_stratum) continue; error (_("The \"%s\" target does not support \"run\". " "Try \"help target\" or \"continue\"."), t->to_shortname); } /* This function is only called if the target is running. In that case there should have been a process_stratum target and it should either know how to create inferiors, or not... */ internal_error (__FILE__, __LINE__, _("No targets found")); } /* Whether GDB is allowed to fall back to the default run target for "run", "attach", etc. when no target is connected yet. */ static int auto_connect_native_target = 1; static void show_auto_connect_native_target (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("Whether GDB may automatically connect to the " "native target is %s.\n"), value); } /* Look through the list of possible targets for a target that can execute a run or attach command without any other data. This is used to locate the default process stratum. If DO_MESG is not NULL, the result is always valid (error() is called for errors); else, return NULL on error. */ static struct target_ops * find_default_run_target (char *do_mesg) { struct target_ops *runable = NULL; if (auto_connect_native_target) { struct target_ops *t; int count = 0; int i; for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i) { if (t->to_can_run != delegate_can_run && target_can_run (t)) { runable = t; ++count; } } if (count != 1) runable = NULL; } if (runable == NULL) { if (do_mesg) error (_("Don't know how to %s. Try \"help target\"."), do_mesg); else return NULL; } return runable; } /* See target.h. */ struct target_ops * find_attach_target (void) { struct target_ops *t; /* If a target on the current stack can attach, use it. */ for (t = current_target.beneath; t != NULL; t = t->beneath) { if (t->to_attach != NULL) break; } /* Otherwise, use the default run target for attaching. */ if (t == NULL) t = find_default_run_target ("attach"); return t; } /* See target.h. */ struct target_ops * find_run_target (void) { struct target_ops *t; /* If a target on the current stack can attach, use it. */ for (t = current_target.beneath; t != NULL; t = t->beneath) { if (t->to_create_inferior != NULL) break; } /* Otherwise, use the default run target. */ if (t == NULL) t = find_default_run_target ("run"); return t; } /* Implement the "info proc" command. */ int target_info_proc (const char *args, enum info_proc_what what) { struct target_ops *t; /* If we're already connected to something that can get us OS related data, use it. Otherwise, try using the native target. */ if (current_target.to_stratum >= process_stratum) t = current_target.beneath; else t = find_default_run_target (NULL); for (; t != NULL; t = t->beneath) { if (t->to_info_proc != NULL) { t->to_info_proc (t, args, what); if (targetdebug) fprintf_unfiltered (gdb_stdlog, "target_info_proc (\"%s\", %d)\n", args, what); return 1; } } return 0; } static int find_default_supports_disable_randomization (struct target_ops *self) { struct target_ops *t; t = find_default_run_target (NULL); if (t && t->to_supports_disable_randomization) return (t->to_supports_disable_randomization) (t); return 0; } int target_supports_disable_randomization (void) { struct target_ops *t; for (t = ¤t_target; t != NULL; t = t->beneath) if (t->to_supports_disable_randomization) return t->to_supports_disable_randomization (t); return 0; } char * target_get_osdata (const char *type) { struct target_ops *t; /* If we're already connected to something that can get us OS related data, use it. Otherwise, try using the native target. */ if (current_target.to_stratum >= process_stratum) t = current_target.beneath; else t = find_default_run_target ("get OS data"); if (!t) return NULL; return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type); } static struct address_space * default_thread_address_space (struct target_ops *self, ptid_t ptid) { struct inferior *inf; /* Fall-back to the "main" address space of the inferior. */ inf = find_inferior_ptid (ptid); if (inf == NULL || inf->aspace == NULL) internal_error (__FILE__, __LINE__, _("Can't determine the current " "address space of thread %s\n"), target_pid_to_str (ptid)); return inf->aspace; } /* Determine the current address space of thread PTID. */ struct address_space * target_thread_address_space (ptid_t ptid) { struct address_space *aspace; aspace = current_target.to_thread_address_space (¤t_target, ptid); gdb_assert (aspace != NULL); return aspace; } /* Target file operations. */ static struct target_ops * default_fileio_target (void) { /* If we're already connected to something that can perform file I/O, use it. Otherwise, try using the native target. */ if (current_target.to_stratum >= process_stratum) return current_target.beneath; else return find_default_run_target ("file I/O"); } /* File handle for target file operations. */ typedef struct { /* The target on which this file is open. */ struct target_ops *t; /* The file descriptor on the target. */ int fd; } fileio_fh_t; DEF_VEC_O (fileio_fh_t); /* Vector of currently open file handles. The value returned by target_fileio_open and passed as the FD argument to other target_fileio_* functions is an index into this vector. This vector's entries are never freed; instead, files are marked as closed, and the handle becomes available for reuse. */ static VEC (fileio_fh_t) *fileio_fhandles; /* Macro to check whether a fileio_fh_t represents a closed file. */ #define is_closed_fileio_fh(fd) ((fd) < 0) /* Index into fileio_fhandles of the lowest handle that might be closed. This permits handle reuse without searching the whole list each time a new file is opened. */ static int lowest_closed_fd; /* Acquire a target fileio file descriptor. */ static int acquire_fileio_fd (struct target_ops *t, int fd) { fileio_fh_t *fh, buf; gdb_assert (!is_closed_fileio_fh (fd)); /* Search for closed handles to reuse. */ for (; VEC_iterate (fileio_fh_t, fileio_fhandles, lowest_closed_fd, fh); lowest_closed_fd++) if (is_closed_fileio_fh (fh->fd)) break; /* Push a new handle if no closed handles were found. */ if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles)) fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL); /* Fill in the handle. */ fh->t = t; fh->fd = fd; /* Return its index, and start the next lookup at the next index. */ return lowest_closed_fd++; } /* Release a target fileio file descriptor. */ static void release_fileio_fd (int fd, fileio_fh_t *fh) { fh->fd = -1; lowest_closed_fd = min (lowest_closed_fd, fd); } /* Return a pointer to the fileio_fhandle_t corresponding to FD. */ #define fileio_fd_to_fh(fd) \ VEC_index (fileio_fh_t, fileio_fhandles, (fd)) /* See target.h. */ int target_fileio_open (struct inferior *inf, const char *filename, int flags, int mode, int *target_errno) { struct target_ops *t; for (t = default_fileio_target (); t != NULL; t = t->beneath) { if (t->to_fileio_open != NULL) { int fd = t->to_fileio_open (t, inf, filename, flags, mode, target_errno); if (fd < 0) fd = -1; else fd = acquire_fileio_fd (t, fd); if (targetdebug) fprintf_unfiltered (gdb_stdlog, "target_fileio_open (%d,%s,0x%x,0%o)" " = %d (%d)\n", inf == NULL ? 0 : inf->num, filename, flags, mode, fd, fd != -1 ? 0 : *target_errno); return fd; } } *target_errno = FILEIO_ENOSYS; return -1; } /* See target.h. */ int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len, ULONGEST offset, int *target_errno) { fileio_fh_t *fh = fileio_fd_to_fh (fd); int ret = -1; if (is_closed_fileio_fh (fh->fd)) *target_errno = EBADF; else ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf, len, offset, target_errno); if (targetdebug) fprintf_unfiltered (gdb_stdlog, "target_fileio_pwrite (%d,...,%d,%s) " "= %d (%d)\n", fd, len, pulongest (offset), ret, ret != -1 ? 0 : *target_errno); return ret; } /* See target.h. */ int target_fileio_pread (int fd, gdb_byte *read_buf, int len, ULONGEST offset, int *target_errno) { fileio_fh_t *fh = fileio_fd_to_fh (fd); int ret = -1; if (is_closed_fileio_fh (fh->fd)) *target_errno = EBADF; else ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf, len, offset, target_errno); if (targetdebug) fprintf_unfiltered (gdb_stdlog, "target_fileio_pread (%d,...,%d,%s) " "= %d (%d)\n", fd, len, pulongest (offset), ret, ret != -1 ? 0 : *target_errno); return ret; } /* See target.h. */ int target_fileio_fstat (int fd, struct stat *sb, int *target_errno) { fileio_fh_t *fh = fileio_fd_to_fh (fd); int ret = -1; if (is_closed_fileio_fh (fh->fd)) *target_errno = EBADF; else ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno); if (targetdebug) fprintf_unfiltered (gdb_stdlog, "target_fileio_fstat (%d) = %d (%d)\n", fd, ret, ret != -1 ? 0 : *target_errno); return ret; } /* See target.h. */ int target_fileio_close (int fd, int *target_errno) { fileio_fh_t *fh = fileio_fd_to_fh (fd); int ret = -1; if (is_closed_fileio_fh (fh->fd)) *target_errno = EBADF; else { ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno); release_fileio_fd (fd, fh); } if (targetdebug) fprintf_unfiltered (gdb_stdlog, "target_fileio_close (%d) = %d (%d)\n", fd, ret, ret != -1 ? 0 : *target_errno); return ret; } /* See target.h. */ int target_fileio_unlink (struct inferior *inf, const char *filename, int *target_errno) { struct target_ops *t; for (t = default_fileio_target (); t != NULL; t = t->beneath) { if (t->to_fileio_unlink != NULL) { int ret = t->to_fileio_unlink (t, inf, filename, target_errno); if (targetdebug) fprintf_unfiltered (gdb_stdlog, "target_fileio_unlink (%d,%s)" " = %d (%d)\n", inf == NULL ? 0 : inf->num, filename, ret, ret != -1 ? 0 : *target_errno); return ret; } } *target_errno = FILEIO_ENOSYS; return -1; } /* See target.h. */ char * target_fileio_readlink (struct inferior *inf, const char *filename, int *target_errno) { struct target_ops *t; for (t = default_fileio_target (); t != NULL; t = t->beneath) { if (t->to_fileio_readlink != NULL) { char *ret = t->to_fileio_readlink (t, inf, filename, target_errno); if (targetdebug) fprintf_unfiltered (gdb_stdlog, "target_fileio_readlink (%d,%s)" " = %s (%d)\n", inf == NULL ? 0 : inf->num, filename, ret? ret : "(nil)", ret? 0 : *target_errno); return ret; } } *target_errno = FILEIO_ENOSYS; return NULL; } static void target_fileio_close_cleanup (void *opaque) { int fd = *(int *) opaque; int target_errno; target_fileio_close (fd, &target_errno); } /* Read target file FILENAME, in the filesystem as seen by INF. If INF is NULL, use the filesystem seen by the debugger (GDB or, for remote targets, the remote stub). Store the result in *BUF_P and return the size of the transferred data. PADDING additional bytes are available in *BUF_P. This is a helper function for target_fileio_read_alloc; see the declaration of that function for more information. */ static LONGEST target_fileio_read_alloc_1 (struct inferior *inf, const char *filename, gdb_byte **buf_p, int padding) { struct cleanup *close_cleanup; size_t buf_alloc, buf_pos; gdb_byte *buf; LONGEST n; int fd; int target_errno; fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700, &target_errno); if (fd == -1) return -1; close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd); /* Start by reading up to 4K at a time. The target will throttle this number down if necessary. */ buf_alloc = 4096; buf = xmalloc (buf_alloc); buf_pos = 0; while (1) { n = target_fileio_pread (fd, &buf[buf_pos], buf_alloc - buf_pos - padding, buf_pos, &target_errno); if (n < 0) { /* An error occurred. */ do_cleanups (close_cleanup); xfree (buf); return -1; } else if (n == 0) { /* Read all there was. */ do_cleanups (close_cleanup); if (buf_pos == 0) xfree (buf); else *buf_p = buf; return buf_pos; } buf_pos += n; /* If the buffer is filling up, expand it. */ if (buf_alloc < buf_pos * 2) { buf_alloc *= 2; buf = xrealloc (buf, buf_alloc); } QUIT; } } /* See target.h. */ LONGEST target_fileio_read_alloc (struct inferior *inf, const char *filename, gdb_byte **buf_p) { return target_fileio_read_alloc_1 (inf, filename, buf_p, 0); } /* See target.h. */ char * target_fileio_read_stralloc (struct inferior *inf, const char *filename) { gdb_byte *buffer; char *bufstr; LONGEST i, transferred; transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1); bufstr = (char *) buffer; if (transferred < 0) return NULL; if (transferred == 0) return xstrdup (""); bufstr[transferred] = 0; /* Check for embedded NUL bytes; but allow trailing NULs. */ for (i = strlen (bufstr); i < transferred; i++) if (bufstr[i] != 0) { warning (_("target file %s " "contained unexpected null characters"), filename); break; } return bufstr; } static int default_region_ok_for_hw_watchpoint (struct target_ops *self, CORE_ADDR addr, int len) { return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT); } static int default_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr, CORE_ADDR start, int length) { return addr >= start && addr < start + length; } static struct gdbarch * default_thread_architecture (struct target_ops *ops, ptid_t ptid) { return target_gdbarch (); } static int return_zero (struct target_ops *ignore) { return 0; } static int return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2) { return 0; } /* * Find the next target down the stack from the specified target. */ struct target_ops * find_target_beneath (struct target_ops *t) { return t->beneath; } /* See target.h. */ struct target_ops * find_target_at (enum strata stratum) { struct target_ops *t; for (t = current_target.beneath; t != NULL; t = t->beneath) if (t->to_stratum == stratum) return t; return NULL; } /* The inferior process has died. Long live the inferior! */ void generic_mourn_inferior (void) { ptid_t ptid; ptid = inferior_ptid; inferior_ptid = null_ptid; /* Mark breakpoints uninserted in case something tries to delete a breakpoint while we delete the inferior's threads (which would fail, since the inferior is long gone). */ mark_breakpoints_out (); if (!ptid_equal (ptid, null_ptid)) { int pid = ptid_get_pid (ptid); exit_inferior (pid); } /* Note this wipes step-resume breakpoints, so needs to be done after exit_inferior, which ends up referencing the step-resume breakpoints through clear_thread_inferior_resources. */ breakpoint_init_inferior (inf_exited); registers_changed (); reopen_exec_file (); reinit_frame_cache (); if (deprecated_detach_hook) deprecated_detach_hook (); } /* Convert a normal process ID to a string. Returns the string in a static buffer. */ char * normal_pid_to_str (ptid_t ptid) { static char buf[32]; xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid)); return buf; } static char * default_pid_to_str (struct target_ops *ops, ptid_t ptid) { return normal_pid_to_str (ptid); } /* Error-catcher for target_find_memory_regions. */ static int dummy_find_memory_regions (struct target_ops *self, find_memory_region_ftype ignore1, void *ignore2) { error (_("Command not implemented for this target.")); return 0; } /* Error-catcher for target_make_corefile_notes. */ static char * dummy_make_corefile_notes (struct target_ops *self, bfd *ignore1, int *ignore2) { error (_("Command not implemented for this target.")); return NULL; } /* Set up the handful of non-empty slots needed by the dummy target vector. */ static void init_dummy_target (void) { dummy_target.to_shortname = "None"; dummy_target.to_longname = "None"; dummy_target.to_doc = ""; dummy_target.to_supports_disable_randomization = find_default_supports_disable_randomization; dummy_target.to_stratum = dummy_stratum; dummy_target.to_has_all_memory = return_zero; dummy_target.to_has_memory = return_zero; dummy_target.to_has_stack = return_zero; dummy_target.to_has_registers = return_zero; dummy_target.to_has_execution = return_zero_has_execution; dummy_target.to_magic = OPS_MAGIC; install_dummy_methods (&dummy_target); } void target_close (struct target_ops *targ) { gdb_assert (!target_is_pushed (targ)); if (targ->to_xclose != NULL) targ->to_xclose (targ); else if (targ->to_close != NULL) targ->to_close (targ); if (targetdebug) fprintf_unfiltered (gdb_stdlog, "target_close ()\n"); } int target_thread_alive (ptid_t ptid) { return current_target.to_thread_alive (¤t_target, ptid); } void target_update_thread_list (void) { current_target.to_update_thread_list (¤t_target); } void target_stop (ptid_t ptid) { if (!may_stop) { warning (_("May not interrupt or stop the target, ignoring attempt")); return; } (*current_target.to_stop) (¤t_target, ptid); } /* See target/target.h. */ void target_stop_and_wait (ptid_t ptid) { struct target_waitstatus status; int was_non_stop = non_stop; non_stop = 1; target_stop (ptid); memset (&status, 0, sizeof (status)); target_wait (ptid, &status, 0); non_stop = was_non_stop; } /* See target/target.h. */ void target_continue_no_signal (ptid_t ptid) { target_resume (ptid, 0, GDB_SIGNAL_0); } /* Concatenate ELEM to LIST, a comma separate list, and return the result. The LIST incoming argument is released. */ static char * str_comma_list_concat_elem (char *list, const char *elem) { if (list == NULL) return xstrdup (elem); else return reconcat (list, list, ", ", elem, (char *) NULL); } /* Helper for target_options_to_string. If OPT is present in TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET. Returns the new resulting string. OPT is removed from TARGET_OPTIONS. */ static char * do_option (int *target_options, char *ret, int opt, char *opt_str) { if ((*target_options & opt) != 0) { ret = str_comma_list_concat_elem (ret, opt_str); *target_options &= ~opt; } return ret; } char * target_options_to_string (int target_options) { char *ret = NULL; #define DO_TARG_OPTION(OPT) \ ret = do_option (&target_options, ret, OPT, #OPT) DO_TARG_OPTION (TARGET_WNOHANG); if (target_options != 0) ret = str_comma_list_concat_elem (ret, "unknown???"); if (ret == NULL) ret = xstrdup (""); return ret; } static void debug_print_register (const char * func, struct regcache *regcache, int regno) { struct gdbarch *gdbarch = get_regcache_arch (regcache); fprintf_unfiltered (gdb_stdlog, "%s ", func); if (regno >= 0 && regno < gdbarch_num_regs (gdbarch) && gdbarch_register_name (gdbarch, regno) != NULL && gdbarch_register_name (gdbarch, regno)[0] != '\0') fprintf_unfiltered (gdb_stdlog, "(%s)", gdbarch_register_name (gdbarch, regno)); else fprintf_unfiltered (gdb_stdlog, "(%d)", regno); if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)) { enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); int i, size = register_size (gdbarch, regno); gdb_byte buf[MAX_REGISTER_SIZE]; regcache_raw_collect (regcache, regno, buf); fprintf_unfiltered (gdb_stdlog, " = "); for (i = 0; i < size; i++) { fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]); } if (size <= sizeof (LONGEST)) { ULONGEST val = extract_unsigned_integer (buf, size, byte_order); fprintf_unfiltered (gdb_stdlog, " %s %s", core_addr_to_string_nz (val), plongest (val)); } } fprintf_unfiltered (gdb_stdlog, "\n"); } void target_fetch_registers (struct regcache *regcache, int regno) { current_target.to_fetch_registers (¤t_target, regcache, regno); if (targetdebug) debug_print_register ("target_fetch_registers", regcache, regno); } void target_store_registers (struct regcache *regcache, int regno) { struct target_ops *t; if (!may_write_registers) error (_("Writing to registers is not allowed (regno %d)"), regno); current_target.to_store_registers (¤t_target, regcache, regno); if (targetdebug) { debug_print_register ("target_store_registers", regcache, regno); } } int target_core_of_thread (ptid_t ptid) { return current_target.to_core_of_thread (¤t_target, ptid); } int simple_verify_memory (struct target_ops *ops, const gdb_byte *data, CORE_ADDR lma, ULONGEST size) { LONGEST total_xfered = 0; while (total_xfered < size) { ULONGEST xfered_len; enum target_xfer_status status; gdb_byte buf[1024]; ULONGEST howmuch = min (sizeof (buf), size - total_xfered); status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL, buf, NULL, lma + total_xfered, howmuch, &xfered_len); if (status == TARGET_XFER_OK && memcmp (data + total_xfered, buf, xfered_len) == 0) { total_xfered += xfered_len; QUIT; } else return 0; } return 1; } /* Default implementation of memory verification. */ static int default_verify_memory (struct target_ops *self, const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size) { /* Start over from the top of the target stack. */ return simple_verify_memory (current_target.beneath, data, memaddr, size); } int target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size) { return current_target.to_verify_memory (¤t_target, data, memaddr, size); } /* The documentation for this function is in its prototype declaration in target.h. */ int target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw) { return current_target.to_insert_mask_watchpoint (¤t_target, addr, mask, rw); } /* The documentation for this function is in its prototype declaration in target.h. */ int target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw) { return current_target.to_remove_mask_watchpoint (¤t_target, addr, mask, rw); } /* The documentation for this function is in its prototype declaration in target.h. */ int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask) { return current_target.to_masked_watch_num_registers (¤t_target, addr, mask); } /* The documentation for this function is in its prototype declaration in target.h. */ int target_ranged_break_num_registers (void) { return current_target.to_ranged_break_num_registers (¤t_target); } /* See target.h. */ int target_supports_btrace (enum btrace_format format) { return current_target.to_supports_btrace (¤t_target, format); } /* See target.h. */ struct btrace_target_info * target_enable_btrace (ptid_t ptid, const struct btrace_config *conf) { return current_target.to_enable_btrace (¤t_target, ptid, conf); } /* See target.h. */ void target_disable_btrace (struct btrace_target_info *btinfo) { current_target.to_disable_btrace (¤t_target, btinfo); } /* See target.h. */ void target_teardown_btrace (struct btrace_target_info *btinfo) { current_target.to_teardown_btrace (¤t_target, btinfo); } /* See target.h. */ enum btrace_error target_read_btrace (struct btrace_data *btrace, struct btrace_target_info *btinfo, enum btrace_read_type type) { return current_target.to_read_btrace (¤t_target, btrace, btinfo, type); } /* See target.h. */ const struct btrace_config * target_btrace_conf (const struct btrace_target_info *btinfo) { return current_target.to_btrace_conf (¤t_target, btinfo); } /* See target.h. */ void target_stop_recording (void) { current_target.to_stop_recording (¤t_target); } /* See target.h. */ void target_save_record (const char *filename) { current_target.to_save_record (¤t_target, filename); } /* See target.h. */ int target_supports_delete_record (void) { struct target_ops *t; for (t = current_target.beneath; t != NULL; t = t->beneath) if (t->to_delete_record != delegate_delete_record && t->to_delete_record != tdefault_delete_record) return 1; return 0; } /* See target.h. */ void target_delete_record (void) { current_target.to_delete_record (¤t_target); } /* See target.h. */ int target_record_is_replaying (void) { return current_target.to_record_is_replaying (¤t_target); } /* See target.h. */ void target_goto_record_begin (void) { current_target.to_goto_record_begin (¤t_target); } /* See target.h. */ void target_goto_record_end (void) { current_target.to_goto_record_end (¤t_target); } /* See target.h. */ void target_goto_record (ULONGEST insn) { current_target.to_goto_record (¤t_target, insn); } /* See target.h. */ void target_insn_history (int size, int flags) { current_target.to_insn_history (¤t_target, size, flags); } /* See target.h. */ void target_insn_history_from (ULONGEST from, int size, int flags) { current_target.to_insn_history_from (¤t_target, from, size, flags); } /* See target.h. */ void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags) { current_target.to_insn_history_range (¤t_target, begin, end, flags); } /* See target.h. */ void target_call_history (int size, int flags) { current_target.to_call_history (¤t_target, size, flags); } /* See target.h. */ void target_call_history_from (ULONGEST begin, int size, int flags) { current_target.to_call_history_from (¤t_target, begin, size, flags); } /* See target.h. */ void target_call_history_range (ULONGEST begin, ULONGEST end, int flags) { current_target.to_call_history_range (¤t_target, begin, end, flags); } /* See target.h. */ const struct frame_unwind * target_get_unwinder (void) { return current_target.to_get_unwinder (¤t_target); } /* See target.h. */ const struct frame_unwind * target_get_tailcall_unwinder (void) { return current_target.to_get_tailcall_unwinder (¤t_target); } /* See target.h. */ void target_prepare_to_generate_core (void) { current_target.to_prepare_to_generate_core (¤t_target); } /* See target.h. */ void target_done_generating_core (void) { current_target.to_done_generating_core (¤t_target); } static void setup_target_debug (void) { memcpy (&debug_target, ¤t_target, sizeof debug_target); init_debug_target (¤t_target); } static char targ_desc[] = "Names of targets and files being debugged.\nShows the entire \ stack of targets currently in use (including the exec-file,\n\ core-file, and process, if any), as well as the symbol file name."; static void default_rcmd (struct target_ops *self, const char *command, struct ui_file *output) { error (_("\"monitor\" command not supported by this target.")); } static void do_monitor_command (char *cmd, int from_tty) { target_rcmd (cmd, gdb_stdtarg); } /* Print the name of each layers of our target stack. */ static void maintenance_print_target_stack (char *cmd, int from_tty) { struct target_ops *t; printf_filtered (_("The current target stack is:\n")); for (t = target_stack; t != NULL; t = t->beneath) { printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname); } } /* Controls if targets can report that they can/are async. This is just for maintainers to use when debugging gdb. */ int target_async_permitted = 1; /* The set command writes to this variable. If the inferior is executing, target_async_permitted is *not* updated. */ static int target_async_permitted_1 = 1; static void maint_set_target_async_command (char *args, int from_tty, struct cmd_list_element *c) { if (have_live_inferiors ()) { target_async_permitted_1 = target_async_permitted; error (_("Cannot change this setting while the inferior is running.")); } target_async_permitted = target_async_permitted_1; } static void maint_show_target_async_command (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("Controlling the inferior in " "asynchronous mode is %s.\n"), value); } /* Temporary copies of permission settings. */ static int may_write_registers_1 = 1; static int may_write_memory_1 = 1; static int may_insert_breakpoints_1 = 1; static int may_insert_tracepoints_1 = 1; static int may_insert_fast_tracepoints_1 = 1; static int may_stop_1 = 1; /* Make the user-set values match the real values again. */ void update_target_permissions (void) { may_write_registers_1 = may_write_registers; may_write_memory_1 = may_write_memory; may_insert_breakpoints_1 = may_insert_breakpoints; may_insert_tracepoints_1 = may_insert_tracepoints; may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints; may_stop_1 = may_stop; } /* The one function handles (most of) the permission flags in the same way. */ static void set_target_permissions (char *args, int from_tty, struct cmd_list_element *c) { if (target_has_execution) { update_target_permissions (); error (_("Cannot change this setting while the inferior is running.")); } /* Make the real values match the user-changed values. */ may_write_registers = may_write_registers_1; may_insert_breakpoints = may_insert_breakpoints_1; may_insert_tracepoints = may_insert_tracepoints_1; may_insert_fast_tracepoints = may_insert_fast_tracepoints_1; may_stop = may_stop_1; update_observer_mode (); } /* Set memory write permission independently of observer mode. */ static void set_write_memory_permission (char *args, int from_tty, struct cmd_list_element *c) { /* Make the real values match the user-changed values. */ may_write_memory = may_write_memory_1; update_observer_mode (); } void initialize_targets (void) { init_dummy_target (); push_target (&dummy_target); add_info ("target", target_info, targ_desc); add_info ("files", target_info, targ_desc); add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\ Set target debugging."), _("\ Show target debugging."), _("\ When non-zero, target debugging is enabled. Higher numbers are more\n\ verbose."), set_targetdebug, show_targetdebug, &setdebuglist, &showdebuglist); add_setshow_boolean_cmd ("trust-readonly-sections", class_support, &trust_readonly, _("\ Set mode for reading from readonly sections."), _("\ Show mode for reading from readonly sections."), _("\ When this mode is on, memory reads from readonly sections (such as .text)\n\ will be read from the object file instead of from the target. This will\n\ result in significant performance improvement for remote targets."), NULL, show_trust_readonly, &setlist, &showlist); add_com ("monitor", class_obscure, do_monitor_command, _("Send a command to the remote monitor (remote targets only).")); add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack, _("Print the name of each layer of the internal target stack."), &maintenanceprintlist); add_setshow_boolean_cmd ("target-async", no_class, &target_async_permitted_1, _("\ Set whether gdb controls the inferior in asynchronous mode."), _("\ Show whether gdb controls the inferior in asynchronous mode."), _("\ Tells gdb whether to control the inferior in asynchronous mode."), maint_set_target_async_command, maint_show_target_async_command, &maintenance_set_cmdlist, &maintenance_show_cmdlist); add_setshow_boolean_cmd ("may-write-registers", class_support, &may_write_registers_1, _("\ Set permission to write into registers."), _("\ Show permission to write into registers."), _("\ When this permission is on, GDB may write into the target's registers.\n\ Otherwise, any sort of write attempt will result in an error."), set_target_permissions, NULL, &setlist, &showlist); add_setshow_boolean_cmd ("may-write-memory", class_support, &may_write_memory_1, _("\ Set permission to write into target memory."), _("\ Show permission to write into target memory."), _("\ When this permission is on, GDB may write into the target's memory.\n\ Otherwise, any sort of write attempt will result in an error."), set_write_memory_permission, NULL, &setlist, &showlist); add_setshow_boolean_cmd ("may-insert-breakpoints", class_support, &may_insert_breakpoints_1, _("\ Set permission to insert breakpoints in the target."), _("\ Show permission to insert breakpoints in the target."), _("\ When this permission is on, GDB may insert breakpoints in the program.\n\ Otherwise, any sort of insertion attempt will result in an error."), set_target_permissions, NULL, &setlist, &showlist); add_setshow_boolean_cmd ("may-insert-tracepoints", class_support, &may_insert_tracepoints_1, _("\ Set permission to insert tracepoints in the target."), _("\ Show permission to insert tracepoints in the target."), _("\ When this permission is on, GDB may insert tracepoints in the program.\n\ Otherwise, any sort of insertion attempt will result in an error."), set_target_permissions, NULL, &setlist, &showlist); add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support, &may_insert_fast_tracepoints_1, _("\ Set permission to insert fast tracepoints in the target."), _("\ Show permission to insert fast tracepoints in the target."), _("\ When this permission is on, GDB may insert fast tracepoints.\n\ Otherwise, any sort of insertion attempt will result in an error."), set_target_permissions, NULL, &setlist, &showlist); add_setshow_boolean_cmd ("may-interrupt", class_support, &may_stop_1, _("\ Set permission to interrupt or signal the target."), _("\ Show permission to interrupt or signal the target."), _("\ When this permission is on, GDB may interrupt/stop the target's execution.\n\ Otherwise, any attempt to interrupt or stop will be ignored."), set_target_permissions, NULL, &setlist, &showlist); add_setshow_boolean_cmd ("auto-connect-native-target", class_support, &auto_connect_native_target, _("\ Set whether GDB may automatically connect to the native target."), _("\ Show whether GDB may automatically connect to the native target."), _("\ When on, and GDB is not connected to a target yet, GDB\n\ attempts \"run\" and other commands with the native target."), NULL, show_auto_connect_native_target, &setlist, &showlist); }