/* Target description support for GDB. Copyright (C) 2006-2013 Free Software Foundation, Inc. Contributed by CodeSourcery. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "arch-utils.h" #include "gdbcmd.h" #include "gdbtypes.h" #include "reggroups.h" #include "target.h" #include "target-descriptions.h" #include "vec.h" #include "xml-support.h" #include "xml-tdesc.h" #include "osabi.h" #include "gdb_assert.h" #include "gdb_obstack.h" #include "hashtab.h" #include "inferior.h" /* Types. */ typedef struct property { char *key; char *value; } property_s; DEF_VEC_O(property_s); /* An individual register from a target description. */ typedef struct tdesc_reg { /* The name of this register. In standard features, it may be recognized by the architecture support code, or it may be purely for the user. */ char *name; /* The register number used by this target to refer to this register. This is used for remote p/P packets and to determine the ordering of registers in the remote g/G packets. */ long target_regnum; /* If this flag is set, GDB should save and restore this register around calls to an inferior function. */ int save_restore; /* The name of the register group containing this register, or NULL if the group should be automatically determined from the register's type. If this is "general", "float", or "vector", the corresponding "info" command should display this register's value. It can be an arbitrary string, but should be limited to alphanumeric characters and internal hyphens. Currently other strings are ignored (treated as NULL). */ char *group; /* The size of the register, in bits. */ int bitsize; /* The type of the register. This string corresponds to either a named type from the target description or a predefined type from GDB. */ char *type; /* The target-described type corresponding to TYPE, if found. */ struct tdesc_type *tdesc_type; } *tdesc_reg_p; DEF_VEC_P(tdesc_reg_p); /* A named type from a target description. */ typedef struct tdesc_type_field { char *name; struct tdesc_type *type; int start, end; } tdesc_type_field; DEF_VEC_O(tdesc_type_field); typedef struct tdesc_type_flag { char *name; int start; } tdesc_type_flag; DEF_VEC_O(tdesc_type_flag); typedef struct tdesc_type { /* The name of this type. */ char *name; /* Identify the kind of this type. */ enum { /* Predefined types. */ TDESC_TYPE_INT8, TDESC_TYPE_INT16, TDESC_TYPE_INT32, TDESC_TYPE_INT64, TDESC_TYPE_INT128, TDESC_TYPE_UINT8, TDESC_TYPE_UINT16, TDESC_TYPE_UINT32, TDESC_TYPE_UINT64, TDESC_TYPE_UINT128, TDESC_TYPE_CODE_PTR, TDESC_TYPE_DATA_PTR, TDESC_TYPE_IEEE_SINGLE, TDESC_TYPE_IEEE_DOUBLE, TDESC_TYPE_ARM_FPA_EXT, TDESC_TYPE_I387_EXT, /* Types defined by a target feature. */ TDESC_TYPE_VECTOR, TDESC_TYPE_STRUCT, TDESC_TYPE_UNION, TDESC_TYPE_FLAGS } kind; /* Kind-specific data. */ union { /* Vector type. */ struct { struct tdesc_type *type; int count; } v; /* Struct or union type. */ struct { VEC(tdesc_type_field) *fields; LONGEST size; } u; /* Flags type. */ struct { VEC(tdesc_type_flag) *flags; LONGEST size; } f; } u; } *tdesc_type_p; DEF_VEC_P(tdesc_type_p); /* A feature from a target description. Each feature is a collection of other elements, e.g. registers and types. */ typedef struct tdesc_feature { /* The name of this feature. It may be recognized by the architecture support code. */ char *name; /* The registers associated with this feature. */ VEC(tdesc_reg_p) *registers; /* The types associated with this feature. */ VEC(tdesc_type_p) *types; } *tdesc_feature_p; DEF_VEC_P(tdesc_feature_p); /* A compatible architecture from a target description. */ typedef const struct bfd_arch_info *arch_p; DEF_VEC_P(arch_p); /* A target description. */ struct target_desc { /* The architecture reported by the target, if any. */ const struct bfd_arch_info *arch; /* The osabi reported by the target, if any; GDB_OSABI_UNKNOWN otherwise. */ enum gdb_osabi osabi; /* The list of compatible architectures reported by the target. */ VEC(arch_p) *compatible; /* Any architecture-specific properties specified by the target. */ VEC(property_s) *properties; /* The features associated with this target. */ VEC(tdesc_feature_p) *features; }; /* Per-architecture data associated with a target description. The target description may be shared by multiple architectures, but this data is private to one gdbarch. */ typedef struct tdesc_arch_reg { struct tdesc_reg *reg; struct type *type; } tdesc_arch_reg; DEF_VEC_O(tdesc_arch_reg); struct tdesc_arch_data { /* A list of register/type pairs, indexed by GDB's internal register number. During initialization of the gdbarch this list is used to store registers which the architecture assigns a fixed register number. Registers which are NULL in this array, or off the end, are treated as zero-sized and nameless (i.e. placeholders in the numbering). */ VEC(tdesc_arch_reg) *arch_regs; /* Functions which report the register name, type, and reggroups for pseudo-registers. */ gdbarch_register_name_ftype *pseudo_register_name; gdbarch_register_type_ftype *pseudo_register_type; gdbarch_register_reggroup_p_ftype *pseudo_register_reggroup_p; }; /* Info about an inferior's target description. There's one of these for each inferior. */ struct target_desc_info { /* A flag indicating that a description has already been fetched from the target, so it should not be queried again. */ int fetched; /* The description fetched from the target, or NULL if the target did not supply any description. Only valid when target_desc_fetched is set. Only the description initialization code should access this; normally, the description should be accessed through the gdbarch object. */ const struct target_desc *tdesc; /* The filename to read a target description from, as set by "set tdesc filename ..." */ char *filename; }; /* Get the inferior INF's target description info, allocating one on the stop if necessary. */ static struct target_desc_info * get_tdesc_info (struct inferior *inf) { if (inf->tdesc_info == NULL) inf->tdesc_info = XCNEW (struct target_desc_info); return inf->tdesc_info; } /* A handle for architecture-specific data associated with the target description (see struct tdesc_arch_data). */ static struct gdbarch_data *tdesc_data; /* See target-descriptions.h. */ int target_desc_info_from_user_p (struct target_desc_info *info) { return info != NULL && info->filename != NULL; } /* See target-descriptions.h. */ void copy_inferior_target_desc_info (struct inferior *destinf, struct inferior *srcinf) { struct target_desc_info *src = get_tdesc_info (srcinf); struct target_desc_info *dest = get_tdesc_info (destinf); dest->fetched = src->fetched; dest->tdesc = src->tdesc; dest->filename = src->filename != NULL ? xstrdup (src->filename) : NULL; } /* See target-descriptions.h. */ void target_desc_info_free (struct target_desc_info *tdesc_info) { if (tdesc_info != NULL) { xfree (tdesc_info->filename); xfree (tdesc_info); } } /* Convenience helper macros. */ #define target_desc_fetched \ get_tdesc_info (current_inferior ())->fetched #define current_target_desc \ get_tdesc_info (current_inferior ())->tdesc #define target_description_filename \ get_tdesc_info (current_inferior ())->filename /* The string manipulated by the "set tdesc filename ..." command. */ static char *tdesc_filename_cmd_string; /* Fetch the current target's description, and switch the current architecture to one which incorporates that description. */ void target_find_description (void) { /* If we've already fetched a description from the target, don't do it again. This allows a target to fetch the description early, during its to_open or to_create_inferior, if it needs extra information about the target to initialize. */ if (target_desc_fetched) return; /* The current architecture should not have any target description specified. It should have been cleared, e.g. when we disconnected from the previous target. */ gdb_assert (gdbarch_target_desc (target_gdbarch ()) == NULL); /* First try to fetch an XML description from the user-specified file. */ current_target_desc = NULL; if (target_description_filename != NULL && *target_description_filename != '\0') current_target_desc = file_read_description_xml (target_description_filename); /* Next try to read the description from the current target using target objects. */ if (current_target_desc == NULL) current_target_desc = target_read_description_xml (¤t_target); /* If that failed try a target-specific hook. */ if (current_target_desc == NULL) current_target_desc = target_read_description (¤t_target); /* If a non-NULL description was returned, then update the current architecture. */ if (current_target_desc) { struct gdbarch_info info; gdbarch_info_init (&info); info.target_desc = current_target_desc; if (!gdbarch_update_p (info)) warning (_("Architecture rejected target-supplied description")); else { struct tdesc_arch_data *data; data = gdbarch_data (target_gdbarch (), tdesc_data); if (tdesc_has_registers (current_target_desc) && data->arch_regs == NULL) warning (_("Target-supplied registers are not supported " "by the current architecture")); } } /* Now that we know this description is usable, record that we fetched it. */ target_desc_fetched = 1; } /* Discard any description fetched from the current target, and switch the current architecture to one with no target description. */ void target_clear_description (void) { struct gdbarch_info info; if (!target_desc_fetched) return; target_desc_fetched = 0; current_target_desc = NULL; gdbarch_info_init (&info); if (!gdbarch_update_p (info)) internal_error (__FILE__, __LINE__, _("Could not remove target-supplied description")); } /* Return the global current target description. This should only be used by gdbarch initialization code; most access should be through an existing gdbarch. */ const struct target_desc * target_current_description (void) { if (target_desc_fetched) return current_target_desc; return NULL; } /* Return non-zero if this target description is compatible with the given BFD architecture. */ int tdesc_compatible_p (const struct target_desc *target_desc, const struct bfd_arch_info *arch) { const struct bfd_arch_info *compat; int ix; for (ix = 0; VEC_iterate (arch_p, target_desc->compatible, ix, compat); ix++) { if (compat == arch || arch->compatible (arch, compat) || compat->compatible (compat, arch)) return 1; } return 0; } /* Direct accessors for target descriptions. */ /* Return the string value of a property named KEY, or NULL if the property was not specified. */ const char * tdesc_property (const struct target_desc *target_desc, const char *key) { struct property *prop; int ix; for (ix = 0; VEC_iterate (property_s, target_desc->properties, ix, prop); ix++) if (strcmp (prop->key, key) == 0) return prop->value; return NULL; } /* Return the BFD architecture associated with this target description, or NULL if no architecture was specified. */ const struct bfd_arch_info * tdesc_architecture (const struct target_desc *target_desc) { return target_desc->arch; } /* Return the OSABI associated with this target description, or GDB_OSABI_UNKNOWN if no osabi was specified. */ enum gdb_osabi tdesc_osabi (const struct target_desc *target_desc) { return target_desc->osabi; } /* Return 1 if this target description includes any registers. */ int tdesc_has_registers (const struct target_desc *target_desc) { int ix; struct tdesc_feature *feature; if (target_desc == NULL) return 0; for (ix = 0; VEC_iterate (tdesc_feature_p, target_desc->features, ix, feature); ix++) if (! VEC_empty (tdesc_reg_p, feature->registers)) return 1; return 0; } /* Return the feature with the given name, if present, or NULL if the named feature is not found. */ const struct tdesc_feature * tdesc_find_feature (const struct target_desc *target_desc, const char *name) { int ix; struct tdesc_feature *feature; for (ix = 0; VEC_iterate (tdesc_feature_p, target_desc->features, ix, feature); ix++) if (strcmp (feature->name, name) == 0) return feature; return NULL; } /* Return the name of FEATURE. */ const char * tdesc_feature_name (const struct tdesc_feature *feature) { return feature->name; } /* Predefined types. */ static struct tdesc_type tdesc_predefined_types[] = { { "int8", TDESC_TYPE_INT8 }, { "int16", TDESC_TYPE_INT16 }, { "int32", TDESC_TYPE_INT32 }, { "int64", TDESC_TYPE_INT64 }, { "int128", TDESC_TYPE_INT128 }, { "uint8", TDESC_TYPE_UINT8 }, { "uint16", TDESC_TYPE_UINT16 }, { "uint32", TDESC_TYPE_UINT32 }, { "uint64", TDESC_TYPE_UINT64 }, { "uint128", TDESC_TYPE_UINT128 }, { "code_ptr", TDESC_TYPE_CODE_PTR }, { "data_ptr", TDESC_TYPE_DATA_PTR }, { "ieee_single", TDESC_TYPE_IEEE_SINGLE }, { "ieee_double", TDESC_TYPE_IEEE_DOUBLE }, { "arm_fpa_ext", TDESC_TYPE_ARM_FPA_EXT }, { "i387_ext", TDESC_TYPE_I387_EXT } }; /* Return the type associated with ID in the context of FEATURE, or NULL if none. */ struct tdesc_type * tdesc_named_type (const struct tdesc_feature *feature, const char *id) { int ix; struct tdesc_type *type; /* First try target-defined types. */ for (ix = 0; VEC_iterate (tdesc_type_p, feature->types, ix, type); ix++) if (strcmp (type->name, id) == 0) return type; /* Next try the predefined types. */ for (ix = 0; ix < ARRAY_SIZE (tdesc_predefined_types); ix++) if (strcmp (tdesc_predefined_types[ix].name, id) == 0) return &tdesc_predefined_types[ix]; return NULL; } /* Lookup type associated with ID. */ struct type * tdesc_find_type (struct gdbarch *gdbarch, const char *id) { struct tdesc_arch_reg *reg; struct tdesc_arch_data *data; int i, num_regs; data = gdbarch_data (gdbarch, tdesc_data); num_regs = VEC_length (tdesc_arch_reg, data->arch_regs); for (i = 0; i < num_regs; i++) { reg = VEC_index (tdesc_arch_reg, data->arch_regs, i); if (reg->reg && reg->reg->tdesc_type && reg->type && strcmp (id, reg->reg->tdesc_type->name) == 0) return reg->type; } return NULL; } /* Construct, if necessary, and return the GDB type implementing target type TDESC_TYPE for architecture GDBARCH. */ static struct type * tdesc_gdb_type (struct gdbarch *gdbarch, struct tdesc_type *tdesc_type) { struct type *type; switch (tdesc_type->kind) { /* Predefined types. */ case TDESC_TYPE_INT8: return builtin_type (gdbarch)->builtin_int8; case TDESC_TYPE_INT16: return builtin_type (gdbarch)->builtin_int16; case TDESC_TYPE_INT32: return builtin_type (gdbarch)->builtin_int32; case TDESC_TYPE_INT64: return builtin_type (gdbarch)->builtin_int64; case TDESC_TYPE_INT128: return builtin_type (gdbarch)->builtin_int128; case TDESC_TYPE_UINT8: return builtin_type (gdbarch)->builtin_uint8; case TDESC_TYPE_UINT16: return builtin_type (gdbarch)->builtin_uint16; case TDESC_TYPE_UINT32: return builtin_type (gdbarch)->builtin_uint32; case TDESC_TYPE_UINT64: return builtin_type (gdbarch)->builtin_uint64; case TDESC_TYPE_UINT128: return builtin_type (gdbarch)->builtin_uint128; case TDESC_TYPE_CODE_PTR: return builtin_type (gdbarch)->builtin_func_ptr; case TDESC_TYPE_DATA_PTR: return builtin_type (gdbarch)->builtin_data_ptr; default: break; } type = tdesc_find_type (gdbarch, tdesc_type->name); if (type) return type; switch (tdesc_type->kind) { case TDESC_TYPE_IEEE_SINGLE: return arch_float_type (gdbarch, -1, "builtin_type_ieee_single", floatformats_ieee_single); case TDESC_TYPE_IEEE_DOUBLE: return arch_float_type (gdbarch, -1, "builtin_type_ieee_double", floatformats_ieee_double); case TDESC_TYPE_ARM_FPA_EXT: return arch_float_type (gdbarch, -1, "builtin_type_arm_ext", floatformats_arm_ext); case TDESC_TYPE_I387_EXT: return arch_float_type (gdbarch, -1, "builtin_type_i387_ext", floatformats_i387_ext); /* Types defined by a target feature. */ case TDESC_TYPE_VECTOR: { struct type *type, *field_type; field_type = tdesc_gdb_type (gdbarch, tdesc_type->u.v.type); type = init_vector_type (field_type, tdesc_type->u.v.count); TYPE_NAME (type) = xstrdup (tdesc_type->name); return type; } case TDESC_TYPE_STRUCT: { struct type *type, *field_type; struct tdesc_type_field *f; int ix; type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); TYPE_NAME (type) = xstrdup (tdesc_type->name); TYPE_TAG_NAME (type) = TYPE_NAME (type); for (ix = 0; VEC_iterate (tdesc_type_field, tdesc_type->u.u.fields, ix, f); ix++) { if (f->type == NULL) { /* Bitfield. */ struct field *fld; struct type *field_type; int bitsize, total_size; /* This invariant should be preserved while creating types. */ gdb_assert (tdesc_type->u.u.size != 0); if (tdesc_type->u.u.size > 4) field_type = builtin_type (gdbarch)->builtin_uint64; else field_type = builtin_type (gdbarch)->builtin_uint32; fld = append_composite_type_field_raw (type, xstrdup (f->name), field_type); /* For little-endian, BITPOS counts from the LSB of the structure and marks the LSB of the field. For big-endian, BITPOS counts from the MSB of the structure and marks the MSB of the field. Either way, it is the number of bits to the "left" of the field. To calculate this in big-endian, we need the total size of the structure. */ bitsize = f->end - f->start + 1; total_size = tdesc_type->u.u.size * TARGET_CHAR_BIT; if (gdbarch_bits_big_endian (gdbarch)) SET_FIELD_BITPOS (fld[0], total_size - f->start - bitsize); else SET_FIELD_BITPOS (fld[0], f->start); FIELD_BITSIZE (fld[0]) = bitsize; } else { field_type = tdesc_gdb_type (gdbarch, f->type); append_composite_type_field (type, xstrdup (f->name), field_type); } } if (tdesc_type->u.u.size != 0) TYPE_LENGTH (type) = tdesc_type->u.u.size; return type; } case TDESC_TYPE_UNION: { struct type *type, *field_type; struct tdesc_type_field *f; int ix; type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION); TYPE_NAME (type) = xstrdup (tdesc_type->name); for (ix = 0; VEC_iterate (tdesc_type_field, tdesc_type->u.u.fields, ix, f); ix++) { field_type = tdesc_gdb_type (gdbarch, f->type); append_composite_type_field (type, xstrdup (f->name), field_type); /* If any of the children of a union are vectors, flag the union as a vector also. This allows e.g. a union of two vector types to show up automatically in "info vector". */ if (TYPE_VECTOR (field_type)) TYPE_VECTOR (type) = 1; } return type; } case TDESC_TYPE_FLAGS: { struct tdesc_type_flag *f; int ix; type = arch_flags_type (gdbarch, tdesc_type->name, tdesc_type->u.f.size); for (ix = 0; VEC_iterate (tdesc_type_flag, tdesc_type->u.f.flags, ix, f); ix++) /* Note that contrary to the function name, this call will just set the properties of an already-allocated field. */ append_flags_type_flag (type, f->start, *f->name ? f->name : NULL); return type; } } internal_error (__FILE__, __LINE__, "Type \"%s\" has an unknown kind %d", tdesc_type->name, tdesc_type->kind); } /* Support for registers from target descriptions. */ /* Construct the per-gdbarch data. */ static void * tdesc_data_init (struct obstack *obstack) { struct tdesc_arch_data *data; data = OBSTACK_ZALLOC (obstack, struct tdesc_arch_data); return data; } /* Similar, but for the temporary copy used during architecture initialization. */ struct tdesc_arch_data * tdesc_data_alloc (void) { return XZALLOC (struct tdesc_arch_data); } /* Free something allocated by tdesc_data_alloc, if it is not going to be used (for instance if it was unsuitable for the architecture). */ void tdesc_data_cleanup (void *data_untyped) { struct tdesc_arch_data *data = data_untyped; VEC_free (tdesc_arch_reg, data->arch_regs); xfree (data); } /* Search FEATURE for a register named NAME. */ static struct tdesc_reg * tdesc_find_register_early (const struct tdesc_feature *feature, const char *name) { int ixr; struct tdesc_reg *reg; for (ixr = 0; VEC_iterate (tdesc_reg_p, feature->registers, ixr, reg); ixr++) if (strcasecmp (reg->name, name) == 0) return reg; return NULL; } /* Search FEATURE for a register named NAME. Assign REGNO to it. */ int tdesc_numbered_register (const struct tdesc_feature *feature, struct tdesc_arch_data *data, int regno, const char *name) { struct tdesc_arch_reg arch_reg = { 0 }; struct tdesc_reg *reg = tdesc_find_register_early (feature, name); if (reg == NULL) return 0; /* Make sure the vector includes a REGNO'th element. */ while (regno >= VEC_length (tdesc_arch_reg, data->arch_regs)) VEC_safe_push (tdesc_arch_reg, data->arch_regs, &arch_reg); arch_reg.reg = reg; VEC_replace (tdesc_arch_reg, data->arch_regs, regno, &arch_reg); return 1; } /* Search FEATURE for a register named NAME, but do not assign a fixed register number to it. */ int tdesc_unnumbered_register (const struct tdesc_feature *feature, const char *name) { struct tdesc_reg *reg = tdesc_find_register_early (feature, name); if (reg == NULL) return 0; return 1; } /* Search FEATURE for a register whose name is in NAMES and assign REGNO to it. */ int tdesc_numbered_register_choices (const struct tdesc_feature *feature, struct tdesc_arch_data *data, int regno, const char *const names[]) { int i; for (i = 0; names[i] != NULL; i++) if (tdesc_numbered_register (feature, data, regno, names[i])) return 1; return 0; } /* Search FEATURE for a register named NAME, and return its size in bits. The register must exist. */ int tdesc_register_size (const struct tdesc_feature *feature, const char *name) { struct tdesc_reg *reg = tdesc_find_register_early (feature, name); gdb_assert (reg != NULL); return reg->bitsize; } /* Look up a register by its GDB internal register number. */ static struct tdesc_arch_reg * tdesc_find_arch_register (struct gdbarch *gdbarch, int regno) { struct tdesc_arch_data *data; data = gdbarch_data (gdbarch, tdesc_data); if (regno < VEC_length (tdesc_arch_reg, data->arch_regs)) return VEC_index (tdesc_arch_reg, data->arch_regs, regno); else return NULL; } static struct tdesc_reg * tdesc_find_register (struct gdbarch *gdbarch, int regno) { struct tdesc_arch_reg *reg = tdesc_find_arch_register (gdbarch, regno); return reg? reg->reg : NULL; } /* Return the name of register REGNO, from the target description or from an architecture-provided pseudo_register_name method. */ const char * tdesc_register_name (struct gdbarch *gdbarch, int regno) { struct tdesc_reg *reg = tdesc_find_register (gdbarch, regno); int num_regs = gdbarch_num_regs (gdbarch); int num_pseudo_regs = gdbarch_num_pseudo_regs (gdbarch); if (reg != NULL) return reg->name; if (regno >= num_regs && regno < num_regs + num_pseudo_regs) { struct tdesc_arch_data *data = gdbarch_data (gdbarch, tdesc_data); gdb_assert (data->pseudo_register_name != NULL); return data->pseudo_register_name (gdbarch, regno); } return ""; } struct type * tdesc_register_type (struct gdbarch *gdbarch, int regno) { struct tdesc_arch_reg *arch_reg = tdesc_find_arch_register (gdbarch, regno); struct tdesc_reg *reg = arch_reg? arch_reg->reg : NULL; int num_regs = gdbarch_num_regs (gdbarch); int num_pseudo_regs = gdbarch_num_pseudo_regs (gdbarch); if (reg == NULL && regno >= num_regs && regno < num_regs + num_pseudo_regs) { struct tdesc_arch_data *data = gdbarch_data (gdbarch, tdesc_data); gdb_assert (data->pseudo_register_type != NULL); return data->pseudo_register_type (gdbarch, regno); } if (reg == NULL) /* Return "int0_t", since "void" has a misleading size of one. */ return builtin_type (gdbarch)->builtin_int0; if (arch_reg->type == NULL) { /* First check for a predefined or target defined type. */ if (reg->tdesc_type) arch_reg->type = tdesc_gdb_type (gdbarch, reg->tdesc_type); /* Next try size-sensitive type shortcuts. */ else if (strcmp (reg->type, "float") == 0) { if (reg->bitsize == gdbarch_float_bit (gdbarch)) arch_reg->type = builtin_type (gdbarch)->builtin_float; else if (reg->bitsize == gdbarch_double_bit (gdbarch)) arch_reg->type = builtin_type (gdbarch)->builtin_double; else if (reg->bitsize == gdbarch_long_double_bit (gdbarch)) arch_reg->type = builtin_type (gdbarch)->builtin_long_double; else { warning (_("Register \"%s\" has an unsupported size (%d bits)"), reg->name, reg->bitsize); arch_reg->type = builtin_type (gdbarch)->builtin_double; } } else if (strcmp (reg->type, "int") == 0) { if (reg->bitsize == gdbarch_long_bit (gdbarch)) arch_reg->type = builtin_type (gdbarch)->builtin_long; else if (reg->bitsize == TARGET_CHAR_BIT) arch_reg->type = builtin_type (gdbarch)->builtin_char; else if (reg->bitsize == gdbarch_short_bit (gdbarch)) arch_reg->type = builtin_type (gdbarch)->builtin_short; else if (reg->bitsize == gdbarch_int_bit (gdbarch)) arch_reg->type = builtin_type (gdbarch)->builtin_int; else if (reg->bitsize == gdbarch_long_long_bit (gdbarch)) arch_reg->type = builtin_type (gdbarch)->builtin_long_long; else if (reg->bitsize == gdbarch_ptr_bit (gdbarch)) /* A bit desperate by this point... */ arch_reg->type = builtin_type (gdbarch)->builtin_data_ptr; else { warning (_("Register \"%s\" has an unsupported size (%d bits)"), reg->name, reg->bitsize); arch_reg->type = builtin_type (gdbarch)->builtin_long; } } if (arch_reg->type == NULL) internal_error (__FILE__, __LINE__, "Register \"%s\" has an unknown type \"%s\"", reg->name, reg->type); } return arch_reg->type; } static int tdesc_remote_register_number (struct gdbarch *gdbarch, int regno) { struct tdesc_reg *reg = tdesc_find_register (gdbarch, regno); if (reg != NULL) return reg->target_regnum; else return -1; } /* Check whether REGNUM is a member of REGGROUP. Registers from the target description may be classified as general, float, or vector. Unlike a gdbarch register_reggroup_p method, this function will return -1 if it does not know; the caller should handle registers with no specified group. Arbitrary strings (other than "general", "float", and "vector") from the description are not used; they cause the register to be displayed in "info all-registers" but excluded from "info registers" et al. The names of containing features are also not used. This might be extended to display registers in some more useful groupings. The save-restore flag is also implemented here. */ int tdesc_register_in_reggroup_p (struct gdbarch *gdbarch, int regno, struct reggroup *reggroup) { struct tdesc_reg *reg = tdesc_find_register (gdbarch, regno); if (reg != NULL && reg->group != NULL) { int general_p = 0, float_p = 0, vector_p = 0; if (strcmp (reg->group, "general") == 0) general_p = 1; else if (strcmp (reg->group, "float") == 0) float_p = 1; else if (strcmp (reg->group, "vector") == 0) vector_p = 1; if (reggroup == float_reggroup) return float_p; if (reggroup == vector_reggroup) return vector_p; if (reggroup == general_reggroup) return general_p; } if (reg != NULL && (reggroup == save_reggroup || reggroup == restore_reggroup)) return reg->save_restore; return -1; } /* Check whether REGNUM is a member of REGGROUP. Registers with no group specified go to the default reggroup function and are handled by type. */ static int tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regno, struct reggroup *reggroup) { int num_regs = gdbarch_num_regs (gdbarch); int num_pseudo_regs = gdbarch_num_pseudo_regs (gdbarch); int ret; if (regno >= num_regs && regno < num_regs + num_pseudo_regs) { struct tdesc_arch_data *data = gdbarch_data (gdbarch, tdesc_data); if (data->pseudo_register_reggroup_p != NULL) return data->pseudo_register_reggroup_p (gdbarch, regno, reggroup); /* Otherwise fall through to the default reggroup_p. */ } ret = tdesc_register_in_reggroup_p (gdbarch, regno, reggroup); if (ret != -1) return ret; return default_register_reggroup_p (gdbarch, regno, reggroup); } /* Record architecture-specific functions to call for pseudo-register support. */ void set_tdesc_pseudo_register_name (struct gdbarch *gdbarch, gdbarch_register_name_ftype *pseudo_name) { struct tdesc_arch_data *data = gdbarch_data (gdbarch, tdesc_data); data->pseudo_register_name = pseudo_name; } void set_tdesc_pseudo_register_type (struct gdbarch *gdbarch, gdbarch_register_type_ftype *pseudo_type) { struct tdesc_arch_data *data = gdbarch_data (gdbarch, tdesc_data); data->pseudo_register_type = pseudo_type; } void set_tdesc_pseudo_register_reggroup_p (struct gdbarch *gdbarch, gdbarch_register_reggroup_p_ftype *pseudo_reggroup_p) { struct tdesc_arch_data *data = gdbarch_data (gdbarch, tdesc_data); data->pseudo_register_reggroup_p = pseudo_reggroup_p; } /* Update GDBARCH to use the target description for registers. */ void tdesc_use_registers (struct gdbarch *gdbarch, const struct target_desc *target_desc, struct tdesc_arch_data *early_data) { int num_regs = gdbarch_num_regs (gdbarch); int ixf, ixr; struct tdesc_feature *feature; struct tdesc_reg *reg; struct tdesc_arch_data *data; struct tdesc_arch_reg *arch_reg, new_arch_reg = { 0 }; htab_t reg_hash; /* We can't use the description for registers if it doesn't describe any. This function should only be called after validating registers, so the caller should know that registers are included. */ gdb_assert (tdesc_has_registers (target_desc)); data = gdbarch_data (gdbarch, tdesc_data); data->arch_regs = early_data->arch_regs; xfree (early_data); /* Build up a set of all registers, so that we can assign register numbers where needed. The hash table expands as necessary, so the initial size is arbitrary. */ reg_hash = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL); for (ixf = 0; VEC_iterate (tdesc_feature_p, target_desc->features, ixf, feature); ixf++) for (ixr = 0; VEC_iterate (tdesc_reg_p, feature->registers, ixr, reg); ixr++) { void **slot = htab_find_slot (reg_hash, reg, INSERT); *slot = reg; } /* Remove any registers which were assigned numbers by the architecture. */ for (ixr = 0; VEC_iterate (tdesc_arch_reg, data->arch_regs, ixr, arch_reg); ixr++) if (arch_reg->reg) htab_remove_elt (reg_hash, arch_reg->reg); /* Assign numbers to the remaining registers and add them to the list of registers. The new numbers are always above gdbarch_num_regs. Iterate over the features, not the hash table, so that the order matches that in the target description. */ gdb_assert (VEC_length (tdesc_arch_reg, data->arch_regs) <= num_regs); while (VEC_length (tdesc_arch_reg, data->arch_regs) < num_regs) VEC_safe_push (tdesc_arch_reg, data->arch_regs, &new_arch_reg); for (ixf = 0; VEC_iterate (tdesc_feature_p, target_desc->features, ixf, feature); ixf++) for (ixr = 0; VEC_iterate (tdesc_reg_p, feature->registers, ixr, reg); ixr++) if (htab_find (reg_hash, reg) != NULL) { new_arch_reg.reg = reg; VEC_safe_push (tdesc_arch_reg, data->arch_regs, &new_arch_reg); num_regs++; } htab_delete (reg_hash); /* Update the architecture. */ set_gdbarch_num_regs (gdbarch, num_regs); set_gdbarch_register_name (gdbarch, tdesc_register_name); set_gdbarch_register_type (gdbarch, tdesc_register_type); set_gdbarch_remote_register_number (gdbarch, tdesc_remote_register_number); set_gdbarch_register_reggroup_p (gdbarch, tdesc_register_reggroup_p); } /* Methods for constructing a target description. */ static void tdesc_free_reg (struct tdesc_reg *reg) { xfree (reg->name); xfree (reg->type); xfree (reg->group); xfree (reg); } void tdesc_create_reg (struct tdesc_feature *feature, const char *name, int regnum, int save_restore, const char *group, int bitsize, const char *type) { struct tdesc_reg *reg = XZALLOC (struct tdesc_reg); reg->name = xstrdup (name); reg->target_regnum = regnum; reg->save_restore = save_restore; reg->group = group ? xstrdup (group) : NULL; reg->bitsize = bitsize; reg->type = type ? xstrdup (type) : xstrdup (""); /* If the register's type is target-defined, look it up now. We may not have easy access to the containing feature when we want it later. */ reg->tdesc_type = tdesc_named_type (feature, reg->type); VEC_safe_push (tdesc_reg_p, feature->registers, reg); } static void tdesc_free_type (struct tdesc_type *type) { switch (type->kind) { case TDESC_TYPE_STRUCT: case TDESC_TYPE_UNION: { struct tdesc_type_field *f; int ix; for (ix = 0; VEC_iterate (tdesc_type_field, type->u.u.fields, ix, f); ix++) xfree (f->name); VEC_free (tdesc_type_field, type->u.u.fields); } break; case TDESC_TYPE_FLAGS: { struct tdesc_type_flag *f; int ix; for (ix = 0; VEC_iterate (tdesc_type_flag, type->u.f.flags, ix, f); ix++) xfree (f->name); VEC_free (tdesc_type_flag, type->u.f.flags); } break; default: break; } xfree (type->name); xfree (type); } struct tdesc_type * tdesc_create_vector (struct tdesc_feature *feature, const char *name, struct tdesc_type *field_type, int count) { struct tdesc_type *type = XZALLOC (struct tdesc_type); type->name = xstrdup (name); type->kind = TDESC_TYPE_VECTOR; type->u.v.type = field_type; type->u.v.count = count; VEC_safe_push (tdesc_type_p, feature->types, type); return type; } struct tdesc_type * tdesc_create_struct (struct tdesc_feature *feature, const char *name) { struct tdesc_type *type = XZALLOC (struct tdesc_type); type->name = xstrdup (name); type->kind = TDESC_TYPE_STRUCT; VEC_safe_push (tdesc_type_p, feature->types, type); return type; } /* Set the total length of TYPE. Structs which contain bitfields may omit the reserved bits, so the end of the last field may not suffice. */ void tdesc_set_struct_size (struct tdesc_type *type, LONGEST size) { gdb_assert (type->kind == TDESC_TYPE_STRUCT); type->u.u.size = size; } struct tdesc_type * tdesc_create_union (struct tdesc_feature *feature, const char *name) { struct tdesc_type *type = XZALLOC (struct tdesc_type); type->name = xstrdup (name); type->kind = TDESC_TYPE_UNION; VEC_safe_push (tdesc_type_p, feature->types, type); return type; } struct tdesc_type * tdesc_create_flags (struct tdesc_feature *feature, const char *name, LONGEST size) { struct tdesc_type *type = XZALLOC (struct tdesc_type); type->name = xstrdup (name); type->kind = TDESC_TYPE_FLAGS; type->u.f.size = size; VEC_safe_push (tdesc_type_p, feature->types, type); return type; } /* Add a new field. Return a temporary pointer to the field, which is only valid until the next call to tdesc_add_field (the vector might be reallocated). */ void tdesc_add_field (struct tdesc_type *type, const char *field_name, struct tdesc_type *field_type) { struct tdesc_type_field f = { 0 }; gdb_assert (type->kind == TDESC_TYPE_UNION || type->kind == TDESC_TYPE_STRUCT); f.name = xstrdup (field_name); f.type = field_type; VEC_safe_push (tdesc_type_field, type->u.u.fields, &f); } /* Add a new bitfield. */ void tdesc_add_bitfield (struct tdesc_type *type, const char *field_name, int start, int end) { struct tdesc_type_field f = { 0 }; gdb_assert (type->kind == TDESC_TYPE_STRUCT); f.name = xstrdup (field_name); f.start = start; f.end = end; VEC_safe_push (tdesc_type_field, type->u.u.fields, &f); } void tdesc_add_flag (struct tdesc_type *type, int start, const char *flag_name) { struct tdesc_type_flag f = { 0 }; gdb_assert (type->kind == TDESC_TYPE_FLAGS); f.name = xstrdup (flag_name); f.start = start; VEC_safe_push (tdesc_type_flag, type->u.f.flags, &f); } static void tdesc_free_feature (struct tdesc_feature *feature) { struct tdesc_reg *reg; struct tdesc_type *type; int ix; for (ix = 0; VEC_iterate (tdesc_reg_p, feature->registers, ix, reg); ix++) tdesc_free_reg (reg); VEC_free (tdesc_reg_p, feature->registers); for (ix = 0; VEC_iterate (tdesc_type_p, feature->types, ix, type); ix++) tdesc_free_type (type); VEC_free (tdesc_type_p, feature->types); xfree (feature->name); xfree (feature); } struct tdesc_feature * tdesc_create_feature (struct target_desc *tdesc, const char *name) { struct tdesc_feature *new_feature = XZALLOC (struct tdesc_feature); new_feature->name = xstrdup (name); VEC_safe_push (tdesc_feature_p, tdesc->features, new_feature); return new_feature; } struct target_desc * allocate_target_description (void) { return XZALLOC (struct target_desc); } static void free_target_description (void *arg) { struct target_desc *target_desc = arg; struct tdesc_feature *feature; struct property *prop; int ix; for (ix = 0; VEC_iterate (tdesc_feature_p, target_desc->features, ix, feature); ix++) tdesc_free_feature (feature); VEC_free (tdesc_feature_p, target_desc->features); for (ix = 0; VEC_iterate (property_s, target_desc->properties, ix, prop); ix++) { xfree (prop->key); xfree (prop->value); } VEC_free (property_s, target_desc->properties); VEC_free (arch_p, target_desc->compatible); xfree (target_desc); } struct cleanup * make_cleanup_free_target_description (struct target_desc *target_desc) { return make_cleanup (free_target_description, target_desc); } void tdesc_add_compatible (struct target_desc *target_desc, const struct bfd_arch_info *compatible) { const struct bfd_arch_info *compat; int ix; /* If this instance of GDB is compiled without BFD support for the compatible architecture, simply ignore it -- we would not be able to handle it anyway. */ if (compatible == NULL) return; for (ix = 0; VEC_iterate (arch_p, target_desc->compatible, ix, compat); ix++) if (compat == compatible) internal_error (__FILE__, __LINE__, _("Attempted to add duplicate " "compatible architecture \"%s\""), compatible->printable_name); VEC_safe_push (arch_p, target_desc->compatible, compatible); } void set_tdesc_property (struct target_desc *target_desc, const char *key, const char *value) { struct property *prop, new_prop; int ix; gdb_assert (key != NULL && value != NULL); for (ix = 0; VEC_iterate (property_s, target_desc->properties, ix, prop); ix++) if (strcmp (prop->key, key) == 0) internal_error (__FILE__, __LINE__, _("Attempted to add duplicate property \"%s\""), key); new_prop.key = xstrdup (key); new_prop.value = xstrdup (value); VEC_safe_push (property_s, target_desc->properties, &new_prop); } void set_tdesc_architecture (struct target_desc *target_desc, const struct bfd_arch_info *arch) { target_desc->arch = arch; } void set_tdesc_osabi (struct target_desc *target_desc, enum gdb_osabi osabi) { target_desc->osabi = osabi; } static struct cmd_list_element *tdesc_set_cmdlist, *tdesc_show_cmdlist; static struct cmd_list_element *tdesc_unset_cmdlist; /* Helper functions for the CLI commands. */ static void set_tdesc_cmd (char *args, int from_tty) { help_list (tdesc_set_cmdlist, "set tdesc ", -1, gdb_stdout); } static void show_tdesc_cmd (char *args, int from_tty) { cmd_show_list (tdesc_show_cmdlist, from_tty, ""); } static void unset_tdesc_cmd (char *args, int from_tty) { help_list (tdesc_unset_cmdlist, "unset tdesc ", -1, gdb_stdout); } static void set_tdesc_filename_cmd (char *args, int from_tty, struct cmd_list_element *c) { xfree (target_description_filename); target_description_filename = xstrdup (tdesc_filename_cmd_string); target_clear_description (); target_find_description (); } static void show_tdesc_filename_cmd (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { value = target_description_filename; if (value != NULL && *value != '\0') printf_filtered (_("The target description will be read from \"%s\".\n"), value); else printf_filtered (_("The target description will be " "read from the target.\n")); } static void unset_tdesc_filename_cmd (char *args, int from_tty) { xfree (target_description_filename); target_description_filename = NULL; target_clear_description (); target_find_description (); } static void maint_print_c_tdesc_cmd (char *args, int from_tty) { const struct target_desc *tdesc; const struct bfd_arch_info *compatible; const char *filename, *inp; char *function, *outp; struct property *prop; struct tdesc_feature *feature; struct tdesc_reg *reg; struct tdesc_type *type; struct tdesc_type_field *f; struct tdesc_type_flag *flag; int ix, ix2, ix3; int printed_field_type = 0; /* Use the global target-supplied description, not the current architecture's. This lets a GDB for one architecture generate C for another architecture's description, even though the gdbarch initialization code will reject the new description. */ tdesc = current_target_desc; if (tdesc == NULL) error (_("There is no target description to print.")); if (target_description_filename == NULL) error (_("The current target description did not come from an XML file.")); filename = lbasename (target_description_filename); function = alloca (strlen (filename) + 1); for (inp = filename, outp = function; *inp != '\0'; inp++) if (*inp == '.') break; else if (*inp == '-') *outp++ = '_'; else *outp++ = *inp; *outp = '\0'; /* Standard boilerplate. */ printf_unfiltered ("/* THIS FILE IS GENERATED. " "-*- buffer-read-only: t -*- vi" ":set ro:\n"); printf_unfiltered (" Original: %s */\n\n", filename); printf_unfiltered ("#include \"defs.h\"\n"); printf_unfiltered ("#include \"osabi.h\"\n"); printf_unfiltered ("#include \"target-descriptions.h\"\n"); printf_unfiltered ("\n"); printf_unfiltered ("struct target_desc *tdesc_%s;\n", function); printf_unfiltered ("static void\n"); printf_unfiltered ("initialize_tdesc_%s (void)\n", function); printf_unfiltered ("{\n"); printf_unfiltered (" struct target_desc *result = allocate_target_description ();\n"); printf_unfiltered (" struct tdesc_feature *feature;\n"); /* Now we do some "filtering" in order to know which variables to declare. This is needed because otherwise we would declare unused variables `field_type' and `type'. */ for (ix = 0; VEC_iterate (tdesc_feature_p, tdesc->features, ix, feature); ix++) { int printed_desc_type = 0; for (ix2 = 0; VEC_iterate (tdesc_type_p, feature->types, ix2, type); ix2++) { if (!printed_field_type) { printf_unfiltered (" struct tdesc_type *field_type;\n"); printed_field_type = 1; } if ((type->kind == TDESC_TYPE_UNION || type->kind == TDESC_TYPE_STRUCT) && VEC_length (tdesc_type_field, type->u.u.fields) > 0) { printf_unfiltered (" struct tdesc_type *type;\n"); printed_desc_type = 1; break; } } if (printed_desc_type) break; } printf_unfiltered ("\n"); if (tdesc_architecture (tdesc) != NULL) { printf_unfiltered (" set_tdesc_architecture (result, bfd_scan_arch (\"%s\"));\n", tdesc_architecture (tdesc)->printable_name); printf_unfiltered ("\n"); } if (tdesc_osabi (tdesc) > GDB_OSABI_UNKNOWN && tdesc_osabi (tdesc) < GDB_OSABI_INVALID) { printf_unfiltered (" set_tdesc_osabi (result, osabi_from_tdesc_string (\"%s\"));\n", gdbarch_osabi_name (tdesc_osabi (tdesc))); printf_unfiltered ("\n"); } for (ix = 0; VEC_iterate (arch_p, tdesc->compatible, ix, compatible); ix++) { printf_unfiltered (" tdesc_add_compatible (result, bfd_scan_arch (\"%s\"));\n", compatible->printable_name); } if (ix) printf_unfiltered ("\n"); for (ix = 0; VEC_iterate (property_s, tdesc->properties, ix, prop); ix++) { printf_unfiltered (" set_tdesc_property (result, \"%s\", \"%s\");\n", prop->key, prop->value); } for (ix = 0; VEC_iterate (tdesc_feature_p, tdesc->features, ix, feature); ix++) { printf_unfiltered (" \ feature = tdesc_create_feature (result, \"%s\");\n", feature->name); for (ix2 = 0; VEC_iterate (tdesc_type_p, feature->types, ix2, type); ix2++) { switch (type->kind) { case TDESC_TYPE_VECTOR: printf_unfiltered (" field_type = tdesc_named_type (feature, \"%s\");\n", type->u.v.type->name); printf_unfiltered (" tdesc_create_vector (feature, \"%s\", field_type, %d);\n", type->name, type->u.v.count); break; case TDESC_TYPE_STRUCT: printf_unfiltered (" type = tdesc_create_struct (feature, \"%s\");\n", type->name); if (type->u.u.size != 0) printf_unfiltered (" tdesc_set_struct_size (type, %s);\n", plongest (type->u.u.size)); for (ix3 = 0; VEC_iterate (tdesc_type_field, type->u.u.fields, ix3, f); ix3++) { /* Going first for implicitly sized types, else part handles bitfields. As reported on xml-tdesc.c implicitly sized types cannot contain a bitfield. */ if (f->type != NULL) { printf_unfiltered (" field_type = tdesc_named_type (feature, \"%s\");\n", f->type->name); printf_unfiltered (" tdesc_add_field (type, \"%s\", field_type);\n", f->name); } else printf_unfiltered (" tdesc_add_bitfield (type, \"%s\", %d, %d);\n", f->name, f->start, f->end); } break; case TDESC_TYPE_UNION: printf_unfiltered (" type = tdesc_create_union (feature, \"%s\");\n", type->name); for (ix3 = 0; VEC_iterate (tdesc_type_field, type->u.u.fields, ix3, f); ix3++) { printf_unfiltered (" field_type = tdesc_named_type (feature, \"%s\");\n", f->type->name); printf_unfiltered (" tdesc_add_field (type, \"%s\", field_type);\n", f->name); } break; case TDESC_TYPE_FLAGS: printf_unfiltered (" field_type = tdesc_create_flags (feature, \"%s\", %d);\n", type->name, (int) type->u.f.size); for (ix3 = 0; VEC_iterate (tdesc_type_flag, type->u.f.flags, ix3, flag); ix3++) printf_unfiltered (" tdesc_add_flag (field_type, %d, \"%s\");\n", flag->start, flag->name); break; default: error (_("C output is not supported type \"%s\"."), type->name); } printf_unfiltered ("\n"); } for (ix2 = 0; VEC_iterate (tdesc_reg_p, feature->registers, ix2, reg); ix2++) { printf_unfiltered (" tdesc_create_reg (feature, \"%s\", %ld, %d, ", reg->name, reg->target_regnum, reg->save_restore); if (reg->group) printf_unfiltered ("\"%s\", ", reg->group); else printf_unfiltered ("NULL, "); printf_unfiltered ("%d, \"%s\");\n", reg->bitsize, reg->type); } printf_unfiltered ("\n"); } printf_unfiltered (" tdesc_%s = result;\n", function); printf_unfiltered ("}\n"); } /* Provide a prototype to silence -Wmissing-prototypes. */ extern initialize_file_ftype _initialize_target_descriptions; void _initialize_target_descriptions (void) { tdesc_data = gdbarch_data_register_pre_init (tdesc_data_init); add_prefix_cmd ("tdesc", class_maintenance, set_tdesc_cmd, _("\ Set target description specific variables."), &tdesc_set_cmdlist, "set tdesc ", 0 /* allow-unknown */, &setlist); add_prefix_cmd ("tdesc", class_maintenance, show_tdesc_cmd, _("\ Show target description specific variables."), &tdesc_show_cmdlist, "show tdesc ", 0 /* allow-unknown */, &showlist); add_prefix_cmd ("tdesc", class_maintenance, unset_tdesc_cmd, _("\ Unset target description specific variables."), &tdesc_unset_cmdlist, "unset tdesc ", 0 /* allow-unknown */, &unsetlist); add_setshow_filename_cmd ("filename", class_obscure, &tdesc_filename_cmd_string, _("\ Set the file to read for an XML target description"), _("\ Show the file to read for an XML target description"), _("\ When set, GDB will read the target description from a local\n\ file instead of querying the remote target."), set_tdesc_filename_cmd, show_tdesc_filename_cmd, &tdesc_set_cmdlist, &tdesc_show_cmdlist); add_cmd ("filename", class_obscure, unset_tdesc_filename_cmd, _("\ Unset the file to read for an XML target description. When unset,\n\ GDB will read the description from the target."), &tdesc_unset_cmdlist); add_cmd ("c-tdesc", class_maintenance, maint_print_c_tdesc_cmd, _("\ Print the current target description as a C source file."), &maintenanceprintlist); }