/* Print and select stack frames for GDB, the GNU debugger.
Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008,
2009, 2010, 2011 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
#include "defs.h"
#include "value.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "expression.h"
#include "language.h"
#include "frame.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "target.h"
#include "source.h"
#include "breakpoint.h"
#include "demangle.h"
#include "inferior.h"
#include "annotate.h"
#include "ui-out.h"
#include "block.h"
#include "stack.h"
#include "dictionary.h"
#include "exceptions.h"
#include "reggroups.h"
#include "regcache.h"
#include "solib.h"
#include "valprint.h"
#include "gdbthread.h"
#include "cp-support.h"
#include "disasm.h"
#include "inline-frame.h"
#include "gdb_assert.h"
#include
#include "gdb_string.h"
#include "psymtab.h"
#include "symfile.h"
void (*deprecated_selected_frame_level_changed_hook) (int);
/* The possible choices of "set print frame-arguments, and the value
of this setting. */
static const char *print_frame_arguments_choices[] =
{"all", "scalars", "none", NULL};
static const char *print_frame_arguments = "scalars";
/* Prototypes for local functions. */
static void print_frame_local_vars (struct frame_info *, int,
struct ui_file *);
static void print_frame (struct frame_info *frame, int print_level,
enum print_what print_what, int print_args,
struct symtab_and_line sal);
/* Zero means do things normally; we are interacting directly with the
user. One means print the full filename and linenumber when a
frame is printed, and do so in a format emacs18/emacs19.22 can
parse. Two means print similar annotations, but in many more
cases and in a slightly different syntax. */
int annotation_level = 0;
struct print_stack_frame_args
{
struct frame_info *frame;
int print_level;
enum print_what print_what;
int print_args;
};
/* Show or print the frame arguments; stub for catch_errors. */
static int
print_stack_frame_stub (void *args)
{
struct print_stack_frame_args *p = args;
int center = (p->print_what == SRC_LINE || p->print_what == SRC_AND_LOC);
print_frame_info (p->frame, p->print_level, p->print_what, p->print_args);
set_current_sal_from_frame (p->frame, center);
return 0;
}
/* Return 1 if we should display the address in addition to the location,
because we are in the middle of a statement. */
static int
frame_show_address (struct frame_info *frame,
struct symtab_and_line sal)
{
/* If there is a line number, but no PC, then there is no location
information associated with this sal. The only way that should
happen is for the call sites of inlined functions (SAL comes from
find_frame_sal). Otherwise, we would have some PC range if the
SAL came from a line table. */
if (sal.line != 0 && sal.pc == 0 && sal.end == 0)
{
if (get_next_frame (frame) == NULL)
gdb_assert (inline_skipped_frames (inferior_ptid) > 0);
else
gdb_assert (get_frame_type (get_next_frame (frame)) == INLINE_FRAME);
return 0;
}
return get_frame_pc (frame) != sal.pc;
}
/* Show or print a stack frame FRAME briefly. The output is format
according to PRINT_LEVEL and PRINT_WHAT printing the frame's
relative level, function name, argument list, and file name and
line number. If the frame's PC is not at the beginning of the
source line, the actual PC is printed at the beginning. */
void
print_stack_frame (struct frame_info *frame, int print_level,
enum print_what print_what)
{
struct print_stack_frame_args args;
args.frame = frame;
args.print_level = print_level;
args.print_what = print_what;
/* For mi, alway print location and address. */
args.print_what = ui_out_is_mi_like_p (uiout) ? LOC_AND_ADDRESS : print_what;
args.print_args = 1;
catch_errors (print_stack_frame_stub, &args, "", RETURN_MASK_ERROR);
}
struct print_args_args
{
struct symbol *func;
struct frame_info *frame;
struct ui_file *stream;
};
static int print_args_stub (void *args);
/* Print nameless arguments of frame FRAME on STREAM, where START is
the offset of the first nameless argument, and NUM is the number of
nameless arguments to print. FIRST is nonzero if this is the first
argument (not just the first nameless argument). */
static void
print_frame_nameless_args (struct frame_info *frame, long start, int num,
int first, struct ui_file *stream)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
int i;
CORE_ADDR argsaddr;
long arg_value;
for (i = 0; i < num; i++)
{
QUIT;
argsaddr = get_frame_args_address (frame);
if (!argsaddr)
return;
arg_value = read_memory_integer (argsaddr + start,
sizeof (int), byte_order);
if (!first)
fprintf_filtered (stream, ", ");
fprintf_filtered (stream, "%ld", arg_value);
first = 0;
start += sizeof (int);
}
}
/* Print the arguments of frame FRAME on STREAM, given the function
FUNC running in that frame (as a symbol), where NUM is the number
of arguments according to the stack frame (or -1 if the number of
arguments is unknown). */
/* Note that currently the "number of arguments according to the
stack frame" is only known on VAX where i refers to the "number of
ints of arguments according to the stack frame". */
static void
print_frame_args (struct symbol *func, struct frame_info *frame,
int num, struct ui_file *stream)
{
int first = 1;
/* Offset of next stack argument beyond the one we have seen that is
at the highest offset, or -1 if we haven't come to a stack
argument yet. */
long highest_offset = -1;
/* Number of ints of arguments that we have printed so far. */
int args_printed = 0;
struct cleanup *old_chain, *list_chain;
struct ui_stream *stb;
/* True if we should print arguments, false otherwise. */
int print_args = strcmp (print_frame_arguments, "none");
/* True in "summary" mode, false otherwise. */
int summary = !strcmp (print_frame_arguments, "scalars");
stb = ui_out_stream_new (uiout);
old_chain = make_cleanup_ui_out_stream_delete (stb);
if (func)
{
struct block *b = SYMBOL_BLOCK_VALUE (func);
struct dict_iterator iter;
struct symbol *sym;
struct value *val;
ALL_BLOCK_SYMBOLS (b, iter, sym)
{
QUIT;
/* Keep track of the highest stack argument offset seen, and
skip over any kinds of symbols we don't care about. */
if (!SYMBOL_IS_ARGUMENT (sym))
continue;
switch (SYMBOL_CLASS (sym))
{
case LOC_ARG:
case LOC_REF_ARG:
{
long current_offset = SYMBOL_VALUE (sym);
int arg_size = TYPE_LENGTH (SYMBOL_TYPE (sym));
/* Compute address of next argument by adding the size of
this argument and rounding to an int boundary. */
current_offset =
((current_offset + arg_size + sizeof (int) - 1)
& ~(sizeof (int) - 1));
/* If this is the highest offset seen yet, set
highest_offset. */
if (highest_offset == -1
|| (current_offset > highest_offset))
highest_offset = current_offset;
/* Add the number of ints we're about to print to
args_printed. */
args_printed += (arg_size + sizeof (int) - 1) / sizeof (int);
}
/* We care about types of symbols, but don't need to
keep track of stack offsets in them. */
case LOC_REGISTER:
case LOC_REGPARM_ADDR:
case LOC_COMPUTED:
case LOC_OPTIMIZED_OUT:
default:
break;
}
/* We have to look up the symbol because arguments can have
two entries (one a parameter, one a local) and the one we
want is the local, which lookup_symbol will find for us.
This includes gcc1 (not gcc2) on SPARC when passing a
small structure and gcc2 when the argument type is float
and it is passed as a double and converted to float by
the prologue (in the latter case the type of the LOC_ARG
symbol is double and the type of the LOC_LOCAL symbol is
float). */
/* But if the parameter name is null, don't try it. Null
parameter names occur on the RS/6000, for traceback
tables. FIXME, should we even print them? */
if (*SYMBOL_LINKAGE_NAME (sym))
{
struct symbol *nsym;
nsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym),
b, VAR_DOMAIN, NULL);
gdb_assert (nsym != NULL);
if (SYMBOL_CLASS (nsym) == LOC_REGISTER
&& !SYMBOL_IS_ARGUMENT (nsym))
{
/* There is a LOC_ARG/LOC_REGISTER pair. This means
that it was passed on the stack and loaded into a
register, or passed in a register and stored in a
stack slot. GDB 3.x used the LOC_ARG; GDB
4.0-4.11 used the LOC_REGISTER.
Reasons for using the LOC_ARG:
(1) Because find_saved_registers may be slow for
remote debugging.
(2) Because registers are often re-used and stack
slots rarely (never?) are. Therefore using
the stack slot is much less likely to print
garbage.
Reasons why we might want to use the LOC_REGISTER:
(1) So that the backtrace prints the same value
as "print foo". I see no compelling reason
why this needs to be the case; having the
backtrace print the value which was passed
in, and "print foo" print the value as
modified within the called function, makes
perfect sense to me.
Additional note: It might be nice if "info args"
displayed both values.
One more note: There is a case with SPARC
structure passing where we need to use the
LOC_REGISTER, but this is dealt with by creating
a single LOC_REGPARM in symbol reading. */
/* Leave sym (the LOC_ARG) alone. */
;
}
else
sym = nsym;
}
/* Print the current arg. */
if (!first)
ui_out_text (uiout, ", ");
ui_out_wrap_hint (uiout, " ");
annotate_arg_begin ();
list_chain = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
fprintf_symbol_filtered (stb->stream, SYMBOL_PRINT_NAME (sym),
SYMBOL_LANGUAGE (sym),
DMGL_PARAMS | DMGL_ANSI);
ui_out_field_stream (uiout, "name", stb);
annotate_arg_name_end ();
ui_out_text (uiout, "=");
if (print_args)
{
/* Avoid value_print because it will deref ref parameters.
We just want to print their addresses. Print ??? for
args whose address we do not know. We pass 2 as
"recurse" to val_print because our standard indentation
here is 4 spaces, and val_print indents 2 for each
recurse. */
val = read_var_value (sym, frame);
annotate_arg_value (val == NULL ? NULL : value_type (val));
if (val)
{
const struct language_defn *language;
struct value_print_options opts;
/* Use the appropriate language to display our symbol,
unless the user forced the language to a specific
language. */
if (language_mode == language_mode_auto)
language = language_def (SYMBOL_LANGUAGE (sym));
else
language = current_language;
get_raw_print_options (&opts);
opts.deref_ref = 0;
opts.summary = summary;
common_val_print (val, stb->stream, 2, &opts, language);
ui_out_field_stream (uiout, "value", stb);
}
else
ui_out_text (uiout, "???");
}
else
ui_out_text (uiout, "...");
/* Invoke ui_out_tuple_end. */
do_cleanups (list_chain);
annotate_arg_end ();
first = 0;
}
}
/* Don't print nameless args in situations where we don't know
enough about the stack to find them. */
if (num != -1)
{
long start;
if (highest_offset == -1)
start = gdbarch_frame_args_skip (get_frame_arch (frame));
else
start = highest_offset;
print_frame_nameless_args (frame, start, num - args_printed,
first, stream);
}
do_cleanups (old_chain);
}
/* Stub for catch_errors. */
static int
print_args_stub (void *args)
{
struct print_args_args *p = args;
struct gdbarch *gdbarch = get_frame_arch (p->frame);
int numargs;
if (gdbarch_frame_num_args_p (gdbarch))
{
numargs = gdbarch_frame_num_args (gdbarch, p->frame);
gdb_assert (numargs >= 0);
}
else
numargs = -1;
print_frame_args (p->func, p->frame, numargs, p->stream);
return 0;
}
/* Set the current source and line to the location given by frame
FRAME, if possible. When CENTER is true, adjust so the relevant
line is in the center of the next 'list'. */
void
set_current_sal_from_frame (struct frame_info *frame, int center)
{
struct symtab_and_line sal;
find_frame_sal (frame, &sal);
if (sal.symtab)
{
if (center)
sal.line = max (sal.line - get_lines_to_list () / 2, 1);
set_current_source_symtab_and_line (&sal);
}
}
/* If ON, GDB will display disassembly of the next source line when
execution of the program being debugged stops.
If AUTO (which is the default), or there's no line info to determine
the source line of the next instruction, display disassembly of next
instruction instead. */
static enum auto_boolean disassemble_next_line;
static void
show_disassemble_next_line (struct ui_file *file, int from_tty,
struct cmd_list_element *c,
const char *value)
{
fprintf_filtered (file,
_("Debugger's willingness to use "
"disassemble-next-line is %s.\n"),
value);
}
/* Show assembly codes; stub for catch_errors. */
struct gdb_disassembly_stub_args
{
struct gdbarch *gdbarch;
int how_many;
CORE_ADDR low;
CORE_ADDR high;
};
static void
gdb_disassembly_stub (void *args)
{
struct gdb_disassembly_stub_args *p = args;
gdb_disassembly (p->gdbarch, uiout, 0,
DISASSEMBLY_RAW_INSN, p->how_many,
p->low, p->high);
}
/* Use TRY_CATCH to catch the exception from the gdb_disassembly
because it will be broken by filter sometime. */
static void
do_gdb_disassembly (struct gdbarch *gdbarch,
int how_many, CORE_ADDR low, CORE_ADDR high)
{
volatile struct gdb_exception exception;
struct gdb_disassembly_stub_args args;
args.gdbarch = gdbarch;
args.how_many = how_many;
args.low = low;
args.high = high;
TRY_CATCH (exception, RETURN_MASK_ALL)
{
gdb_disassembly_stub (&args);
}
/* If an exception was thrown while doing the disassembly, print
the error message, to give the user a clue of what happened. */
if (exception.reason == RETURN_ERROR)
exception_print (gdb_stderr, exception);
}
/* Print information about frame FRAME. The output is format according
to PRINT_LEVEL and PRINT_WHAT and PRINT ARGS. The meaning of
PRINT_WHAT is:
SRC_LINE: Print only source line.
LOCATION: Print only location.
LOC_AND_SRC: Print location and source line.
Used in "where" output, and to emit breakpoint or step
messages. */
void
print_frame_info (struct frame_info *frame, int print_level,
enum print_what print_what, int print_args)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
struct symtab_and_line sal;
int source_print;
int location_print;
if (get_frame_type (frame) == DUMMY_FRAME
|| get_frame_type (frame) == SIGTRAMP_FRAME
|| get_frame_type (frame) == ARCH_FRAME)
{
struct cleanup *uiout_cleanup
= make_cleanup_ui_out_tuple_begin_end (uiout, "frame");
annotate_frame_begin (print_level ? frame_relative_level (frame) : 0,
gdbarch, get_frame_pc (frame));
/* Do this regardless of SOURCE because we don't have any source
to list for this frame. */
if (print_level)
{
ui_out_text (uiout, "#");
ui_out_field_fmt_int (uiout, 2, ui_left, "level",
frame_relative_level (frame));
}
if (ui_out_is_mi_like_p (uiout))
{
annotate_frame_address ();
ui_out_field_core_addr (uiout, "addr",
gdbarch, get_frame_pc (frame));
annotate_frame_address_end ();
}
if (get_frame_type (frame) == DUMMY_FRAME)
{
annotate_function_call ();
ui_out_field_string (uiout, "func", "");
}
else if (get_frame_type (frame) == SIGTRAMP_FRAME)
{
annotate_signal_handler_caller ();
ui_out_field_string (uiout, "func", "");
}
else if (get_frame_type (frame) == ARCH_FRAME)
{
ui_out_field_string (uiout, "func", "");
}
ui_out_text (uiout, "\n");
annotate_frame_end ();
do_cleanups (uiout_cleanup);
return;
}
/* If FRAME is not the innermost frame, that normally means that
FRAME->pc points to *after* the call instruction, and we want to
get the line containing the call, never the next line. But if
the next frame is a SIGTRAMP_FRAME or a DUMMY_FRAME, then the
next frame was not entered as the result of a call, and we want
to get the line containing FRAME->pc. */
find_frame_sal (frame, &sal);
location_print = (print_what == LOCATION
|| print_what == LOC_AND_ADDRESS
|| print_what == SRC_AND_LOC);
if (location_print || !sal.symtab)
print_frame (frame, print_level, print_what, print_args, sal);
source_print = (print_what == SRC_LINE || print_what == SRC_AND_LOC);
/* If disassemble-next-line is set to auto or on and doesn't have
the line debug messages for $pc, output the next instruction. */
if ((disassemble_next_line == AUTO_BOOLEAN_AUTO
|| disassemble_next_line == AUTO_BOOLEAN_TRUE)
&& source_print && !sal.symtab)
do_gdb_disassembly (get_frame_arch (frame), 1,
get_frame_pc (frame), get_frame_pc (frame) + 1);
if (source_print && sal.symtab)
{
int done = 0;
int mid_statement = ((print_what == SRC_LINE)
&& frame_show_address (frame, sal));
if (annotation_level)
done = identify_source_line (sal.symtab, sal.line, mid_statement,
get_frame_pc (frame));
if (!done)
{
if (deprecated_print_frame_info_listing_hook)
deprecated_print_frame_info_listing_hook (sal.symtab,
sal.line,
sal.line + 1, 0);
else
{
struct value_print_options opts;
get_user_print_options (&opts);
/* We used to do this earlier, but that is clearly
wrong. This function is used by many different
parts of gdb, including normal_stop in infrun.c,
which uses this to print out the current PC
when we stepi/nexti into the middle of a source
line. Only the command line really wants this
behavior. Other UIs probably would like the
ability to decide for themselves if it is desired. */
if (opts.addressprint && mid_statement)
{
ui_out_field_core_addr (uiout, "addr",
gdbarch, get_frame_pc (frame));
ui_out_text (uiout, "\t");
}
print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
}
}
/* If disassemble-next-line is set to on and there is line debug
messages, output assembly codes for next line. */
if (disassemble_next_line == AUTO_BOOLEAN_TRUE)
do_gdb_disassembly (get_frame_arch (frame), -1, sal.pc, sal.end);
}
if (print_what != LOCATION)
set_default_breakpoint (1, sal.pspace,
get_frame_pc (frame), sal.symtab, sal.line);
annotate_frame_end ();
gdb_flush (gdb_stdout);
}
/* Attempt to obtain the FUNNAME, FUNLANG and optionally FUNCP of the function
corresponding to FRAME. */
void
find_frame_funname (struct frame_info *frame, char **funname,
enum language *funlang, struct symbol **funcp)
{
struct symbol *func;
*funname = NULL;
*funlang = language_unknown;
if (funcp)
*funcp = NULL;
func = get_frame_function (frame);
if (func)
{
/* In certain pathological cases, the symtabs give the wrong
function (when we are in the first function in a file which
is compiled without debugging symbols, the previous function
is compiled with debugging symbols, and the "foo.o" symbol
that is supposed to tell us where the file with debugging
symbols ends has been truncated by ar because it is longer
than 15 characters). This also occurs if the user uses asm()
to create a function but not stabs for it (in a file compiled
with -g).
So look in the minimal symbol tables as well, and if it comes
up with a larger address for the function use that instead.
I don't think this can ever cause any problems; there
shouldn't be any minimal symbols in the middle of a function;
if this is ever changed many parts of GDB will need to be
changed (and we'll create a find_pc_minimal_function or some
such). */
struct minimal_symbol *msymbol = NULL;
/* Don't attempt to do this for inlined functions, which do not
have a corresponding minimal symbol. */
if (!block_inlined_p (SYMBOL_BLOCK_VALUE (func)))
msymbol
= lookup_minimal_symbol_by_pc (get_frame_address_in_block (frame));
if (msymbol != NULL
&& (SYMBOL_VALUE_ADDRESS (msymbol)
> BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
{
/* We also don't know anything about the function besides
its address and name. */
func = 0;
*funname = SYMBOL_PRINT_NAME (msymbol);
*funlang = SYMBOL_LANGUAGE (msymbol);
}
else
{
*funname = SYMBOL_PRINT_NAME (func);
*funlang = SYMBOL_LANGUAGE (func);
if (funcp)
*funcp = func;
if (*funlang == language_cplus)
{
/* It seems appropriate to use SYMBOL_PRINT_NAME() here,
to display the demangled name that we already have
stored in the symbol table, but we stored a version
with DMGL_PARAMS turned on, and here we don't want to
display parameters. So remove the parameters. */
char *func_only = cp_remove_params (*funname);
if (func_only)
{
*funname = func_only;
make_cleanup (xfree, func_only);
}
}
}
}
else
{
struct minimal_symbol *msymbol =
lookup_minimal_symbol_by_pc (get_frame_address_in_block (frame));
if (msymbol != NULL)
{
*funname = SYMBOL_PRINT_NAME (msymbol);
*funlang = SYMBOL_LANGUAGE (msymbol);
}
}
}
static void
print_frame (struct frame_info *frame, int print_level,
enum print_what print_what, int print_args,
struct symtab_and_line sal)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
char *funname = NULL;
enum language funlang = language_unknown;
struct ui_stream *stb;
struct cleanup *old_chain, *list_chain;
struct value_print_options opts;
struct symbol *func;
stb = ui_out_stream_new (uiout);
old_chain = make_cleanup_ui_out_stream_delete (stb);
find_frame_funname (frame, &funname, &funlang, &func);
annotate_frame_begin (print_level ? frame_relative_level (frame) : 0,
gdbarch, get_frame_pc (frame));
list_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "frame");
if (print_level)
{
ui_out_text (uiout, "#");
ui_out_field_fmt_int (uiout, 2, ui_left, "level",
frame_relative_level (frame));
}
get_user_print_options (&opts);
if (opts.addressprint)
if (frame_show_address (frame, sal) || !sal.symtab
|| print_what == LOC_AND_ADDRESS)
{
annotate_frame_address ();
ui_out_field_core_addr (uiout, "addr", gdbarch, get_frame_pc (frame));
annotate_frame_address_end ();
ui_out_text (uiout, " in ");
}
annotate_frame_function_name ();
fprintf_symbol_filtered (stb->stream, funname ? funname : "??",
funlang, DMGL_ANSI);
ui_out_field_stream (uiout, "func", stb);
ui_out_wrap_hint (uiout, " ");
annotate_frame_args ();
ui_out_text (uiout, " (");
if (print_args)
{
struct print_args_args args;
struct cleanup *args_list_chain;
args.frame = frame;
args.func = func;
args.stream = gdb_stdout;
args_list_chain = make_cleanup_ui_out_list_begin_end (uiout, "args");
catch_errors (print_args_stub, &args, "", RETURN_MASK_ERROR);
/* FIXME: ARGS must be a list. If one argument is a string it
will have " that will not be properly escaped. */
/* Invoke ui_out_tuple_end. */
do_cleanups (args_list_chain);
QUIT;
}
ui_out_text (uiout, ")");
if (sal.symtab && sal.symtab->filename)
{
annotate_frame_source_begin ();
ui_out_wrap_hint (uiout, " ");
ui_out_text (uiout, " at ");
annotate_frame_source_file ();
ui_out_field_string (uiout, "file", sal.symtab->filename);
if (ui_out_is_mi_like_p (uiout))
{
const char *fullname = symtab_to_fullname (sal.symtab);
if (fullname != NULL)
ui_out_field_string (uiout, "fullname", fullname);
}
annotate_frame_source_file_end ();
ui_out_text (uiout, ":");
annotate_frame_source_line ();
ui_out_field_int (uiout, "line", sal.line);
annotate_frame_source_end ();
}
if (!funname || (!sal.symtab || !sal.symtab->filename))
{
#ifdef PC_SOLIB
char *lib = PC_SOLIB (get_frame_pc (frame));
#else
char *lib = solib_name_from_address (get_frame_program_space (frame),
get_frame_pc (frame));
#endif
if (lib)
{
annotate_frame_where ();
ui_out_wrap_hint (uiout, " ");
ui_out_text (uiout, " from ");
ui_out_field_string (uiout, "from", lib);
}
}
/* do_cleanups will call ui_out_tuple_end() for us. */
do_cleanups (list_chain);
ui_out_text (uiout, "\n");
do_cleanups (old_chain);
}
/* Read a frame specification in whatever the appropriate format is
from FRAME_EXP. Call error(), printing MESSAGE, if the
specification is in any way invalid (so this function never returns
NULL). When SEPECTED_P is non-NULL set its target to indicate that
the default selected frame was used. */
static struct frame_info *
parse_frame_specification_1 (const char *frame_exp, const char *message,
int *selected_frame_p)
{
int numargs;
struct value *args[4];
CORE_ADDR addrs[ARRAY_SIZE (args)];
if (frame_exp == NULL)
numargs = 0;
else
{
numargs = 0;
while (1)
{
char *addr_string;
struct cleanup *cleanup;
const char *p;
/* Skip leading white space, bail of EOL. */
while (isspace (*frame_exp))
frame_exp++;
if (!*frame_exp)
break;
/* Parse the argument, extract it, save it. */
for (p = frame_exp;
*p && !isspace (*p);
p++);
addr_string = savestring (frame_exp, p - frame_exp);
frame_exp = p;
cleanup = make_cleanup (xfree, addr_string);
/* NOTE: Parse and evaluate expression, but do not use
functions such as parse_and_eval_long or
parse_and_eval_address to also extract the value.
Instead value_as_long and value_as_address are used.
This avoids problems with expressions that contain
side-effects. */
if (numargs >= ARRAY_SIZE (args))
error (_("Too many args in frame specification"));
args[numargs++] = parse_and_eval (addr_string);
do_cleanups (cleanup);
}
}
/* If no args, default to the selected frame. */
if (numargs == 0)
{
if (selected_frame_p != NULL)
(*selected_frame_p) = 1;
return get_selected_frame (message);
}
/* None of the remaining use the selected frame. */
if (selected_frame_p != NULL)
(*selected_frame_p) = 0;
/* Assume the single arg[0] is an integer, and try using that to
select a frame relative to current. */
if (numargs == 1)
{
struct frame_info *fid;
int level = value_as_long (args[0]);
fid = find_relative_frame (get_current_frame (), &level);
if (level == 0)
/* find_relative_frame was successful. */
return fid;
}
/* Convert each value into a corresponding address. */
{
int i;
for (i = 0; i < numargs; i++)
addrs[i] = value_as_address (args[i]);
}
/* Assume that the single arg[0] is an address, use that to identify
a frame with a matching ID. Should this also accept stack/pc or
stack/pc/special. */
if (numargs == 1)
{
struct frame_id id = frame_id_build_wild (addrs[0]);
struct frame_info *fid;
/* If (s)he specifies the frame with an address, he deserves
what (s)he gets. Still, give the highest one that matches.
(NOTE: cagney/2004-10-29: Why highest, or outer-most, I don't
know). */
for (fid = get_current_frame ();
fid != NULL;
fid = get_prev_frame (fid))
{
if (frame_id_eq (id, get_frame_id (fid)))
{
struct frame_info *prev_frame;
while (1)
{
prev_frame = get_prev_frame (fid);
if (!prev_frame
|| !frame_id_eq (id, get_frame_id (prev_frame)))
break;
fid = prev_frame;
}
return fid;
}
}
}
/* We couldn't identify the frame as an existing frame, but
perhaps we can create one with a single argument. */
if (numargs == 1)
return create_new_frame (addrs[0], 0);
else if (numargs == 2)
return create_new_frame (addrs[0], addrs[1]);
else
error (_("Too many args in frame specification"));
}
static struct frame_info *
parse_frame_specification (char *frame_exp)
{
return parse_frame_specification_1 (frame_exp, NULL, NULL);
}
/* Print verbosely the selected frame or the frame at address
ADDR_EXP. Absolutely all information in the frame is printed. */
static void
frame_info (char *addr_exp, int from_tty)
{
struct frame_info *fi;
struct symtab_and_line sal;
struct symbol *func;
struct symtab *s;
struct frame_info *calling_frame_info;
int numregs;
char *funname = 0;
enum language funlang = language_unknown;
const char *pc_regname;
int selected_frame_p;
struct gdbarch *gdbarch;
struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
fi = parse_frame_specification_1 (addr_exp, "No stack.", &selected_frame_p);
gdbarch = get_frame_arch (fi);
/* Name of the value returned by get_frame_pc(). Per comments, "pc"
is not a good name. */
if (gdbarch_pc_regnum (gdbarch) >= 0)
/* OK, this is weird. The gdbarch_pc_regnum hardware register's value can
easily not match that of the internal value returned by
get_frame_pc(). */
pc_regname = gdbarch_register_name (gdbarch, gdbarch_pc_regnum (gdbarch));
else
/* But then, this is weird to. Even without gdbarch_pc_regnum, an
architectures will often have a hardware register called "pc",
and that register's value, again, can easily not match
get_frame_pc(). */
pc_regname = "pc";
find_frame_sal (fi, &sal);
func = get_frame_function (fi);
/* FIXME: cagney/2002-11-28: Why bother? Won't sal.symtab contain
the same value? */
s = find_pc_symtab (get_frame_pc (fi));
if (func)
{
funname = SYMBOL_PRINT_NAME (func);
funlang = SYMBOL_LANGUAGE (func);
if (funlang == language_cplus)
{
/* It seems appropriate to use SYMBOL_PRINT_NAME() here,
to display the demangled name that we already have
stored in the symbol table, but we stored a version
with DMGL_PARAMS turned on, and here we don't want to
display parameters. So remove the parameters. */
char *func_only = cp_remove_params (funname);
if (func_only)
{
funname = func_only;
make_cleanup (xfree, func_only);
}
}
}
else
{
struct minimal_symbol *msymbol;
msymbol = lookup_minimal_symbol_by_pc (get_frame_pc (fi));
if (msymbol != NULL)
{
funname = SYMBOL_PRINT_NAME (msymbol);
funlang = SYMBOL_LANGUAGE (msymbol);
}
}
calling_frame_info = get_prev_frame (fi);
if (selected_frame_p && frame_relative_level (fi) >= 0)
{
printf_filtered (_("Stack level %d, frame at "),
frame_relative_level (fi));
}
else
{
printf_filtered (_("Stack frame at "));
}
fputs_filtered (paddress (gdbarch, get_frame_base (fi)), gdb_stdout);
printf_filtered (":\n");
printf_filtered (" %s = ", pc_regname);
fputs_filtered (paddress (gdbarch, get_frame_pc (fi)), gdb_stdout);
wrap_here (" ");
if (funname)
{
printf_filtered (" in ");
fprintf_symbol_filtered (gdb_stdout, funname, funlang,
DMGL_ANSI | DMGL_PARAMS);
}
wrap_here (" ");
if (sal.symtab)
printf_filtered (" (%s:%d)", sal.symtab->filename, sal.line);
puts_filtered ("; ");
wrap_here (" ");
printf_filtered ("saved %s ", pc_regname);
fputs_filtered (paddress (gdbarch, frame_unwind_caller_pc (fi)), gdb_stdout);
printf_filtered ("\n");
if (calling_frame_info == NULL)
{
enum unwind_stop_reason reason;
reason = get_frame_unwind_stop_reason (fi);
if (reason != UNWIND_NO_REASON)
printf_filtered (_(" Outermost frame: %s\n"),
frame_stop_reason_string (reason));
}
else if (get_frame_type (fi) == INLINE_FRAME)
printf_filtered (" inlined into frame %d",
frame_relative_level (get_prev_frame (fi)));
else
{
printf_filtered (" called by frame at ");
fputs_filtered (paddress (gdbarch, get_frame_base (calling_frame_info)),
gdb_stdout);
}
if (get_next_frame (fi) && calling_frame_info)
puts_filtered (",");
wrap_here (" ");
if (get_next_frame (fi))
{
printf_filtered (" caller of frame at ");
fputs_filtered (paddress (gdbarch, get_frame_base (get_next_frame (fi))),
gdb_stdout);
}
if (get_next_frame (fi) || calling_frame_info)
puts_filtered ("\n");
if (s)
printf_filtered (" source language %s.\n",
language_str (s->language));
{
/* Address of the argument list for this frame, or 0. */
CORE_ADDR arg_list = get_frame_args_address (fi);
/* Number of args for this frame, or -1 if unknown. */
int numargs;
if (arg_list == 0)
printf_filtered (" Arglist at unknown address.\n");
else
{
printf_filtered (" Arglist at ");
fputs_filtered (paddress (gdbarch, arg_list), gdb_stdout);
printf_filtered (",");
if (!gdbarch_frame_num_args_p (gdbarch))
{
numargs = -1;
puts_filtered (" args: ");
}
else
{
numargs = gdbarch_frame_num_args (gdbarch, fi);
gdb_assert (numargs >= 0);
if (numargs == 0)
puts_filtered (" no args.");
else if (numargs == 1)
puts_filtered (" 1 arg: ");
else
printf_filtered (" %d args: ", numargs);
}
print_frame_args (func, fi, numargs, gdb_stdout);
puts_filtered ("\n");
}
}
{
/* Address of the local variables for this frame, or 0. */
CORE_ADDR arg_list = get_frame_locals_address (fi);
if (arg_list == 0)
printf_filtered (" Locals at unknown address,");
else
{
printf_filtered (" Locals at ");
fputs_filtered (paddress (gdbarch, arg_list), gdb_stdout);
printf_filtered (",");
}
}
/* Print as much information as possible on the location of all the
registers. */
{
enum lval_type lval;
int optimized;
CORE_ADDR addr;
int realnum;
int count;
int i;
int need_nl = 1;
/* The sp is special; what's displayed isn't the save address, but
the value of the previous frame's sp. This is a legacy thing,
at one stage the frame cached the previous frame's SP instead
of its address, hence it was easiest to just display the cached
value. */
if (gdbarch_sp_regnum (gdbarch) >= 0)
{
/* Find out the location of the saved stack pointer with out
actually evaluating it. */
frame_register_unwind (fi, gdbarch_sp_regnum (gdbarch),
&optimized, &lval, &addr,
&realnum, NULL);
if (!optimized && lval == not_lval)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
int sp_size = register_size (gdbarch, gdbarch_sp_regnum (gdbarch));
gdb_byte value[MAX_REGISTER_SIZE];
CORE_ADDR sp;
frame_register_unwind (fi, gdbarch_sp_regnum (gdbarch),
&optimized, &lval, &addr,
&realnum, value);
/* NOTE: cagney/2003-05-22: This is assuming that the
stack pointer was packed as an unsigned integer. That
may or may not be valid. */
sp = extract_unsigned_integer (value, sp_size, byte_order);
printf_filtered (" Previous frame's sp is ");
fputs_filtered (paddress (gdbarch, sp), gdb_stdout);
printf_filtered ("\n");
need_nl = 0;
}
else if (!optimized && lval == lval_memory)
{
printf_filtered (" Previous frame's sp at ");
fputs_filtered (paddress (gdbarch, addr), gdb_stdout);
printf_filtered ("\n");
need_nl = 0;
}
else if (!optimized && lval == lval_register)
{
printf_filtered (" Previous frame's sp in %s\n",
gdbarch_register_name (gdbarch, realnum));
need_nl = 0;
}
/* else keep quiet. */
}
count = 0;
numregs = gdbarch_num_regs (gdbarch)
+ gdbarch_num_pseudo_regs (gdbarch);
for (i = 0; i < numregs; i++)
if (i != gdbarch_sp_regnum (gdbarch)
&& gdbarch_register_reggroup_p (gdbarch, i, all_reggroup))
{
/* Find out the location of the saved register without
fetching the corresponding value. */
frame_register_unwind (fi, i, &optimized, &lval, &addr, &realnum,
NULL);
/* For moment, only display registers that were saved on the
stack. */
if (!optimized && lval == lval_memory)
{
if (count == 0)
puts_filtered (" Saved registers:\n ");
else
puts_filtered (",");
wrap_here (" ");
printf_filtered (" %s at ",
gdbarch_register_name (gdbarch, i));
fputs_filtered (paddress (gdbarch, addr), gdb_stdout);
count++;
}
}
if (count || need_nl)
puts_filtered ("\n");
}
do_cleanups (back_to);
}
/* Print briefly all stack frames or just the innermost COUNT_EXP
frames. */
static void
backtrace_command_1 (char *count_exp, int show_locals, int from_tty)
{
struct frame_info *fi;
int count;
int i;
struct frame_info *trailing;
int trailing_level;
if (!target_has_stack)
error (_("No stack."));
/* The following code must do two things. First, it must set the
variable TRAILING to the frame from which we should start
printing. Second, it must set the variable count to the number
of frames which we should print, or -1 if all of them. */
trailing = get_current_frame ();
trailing_level = 0;
if (count_exp)
{
count = parse_and_eval_long (count_exp);
if (count < 0)
{
struct frame_info *current;
count = -count;
current = trailing;
while (current && count--)
{
QUIT;
current = get_prev_frame (current);
}
/* Will stop when CURRENT reaches the top of the stack.
TRAILING will be COUNT below it. */
while (current)
{
QUIT;
trailing = get_prev_frame (trailing);
current = get_prev_frame (current);
trailing_level++;
}
count = -1;
}
}
else
count = -1;
if (info_verbose)
{
/* Read in symbols for all of the frames. Need to do this in a
separate pass so that "Reading in symbols for xxx" messages
don't screw up the appearance of the backtrace. Also if
people have strong opinions against reading symbols for
backtrace this may have to be an option. */
i = count;
for (fi = trailing; fi != NULL && i--; fi = get_prev_frame (fi))
{
CORE_ADDR pc;
QUIT;
pc = get_frame_address_in_block (fi);
find_pc_sect_symtab_via_partial (pc, find_pc_mapped_section (pc));
}
}
for (i = 0, fi = trailing; fi && count--; i++, fi = get_prev_frame (fi))
{
QUIT;
/* Don't use print_stack_frame; if an error() occurs it probably
means further attempts to backtrace would fail (on the other
hand, perhaps the code does or could be fixed to make sure
the frame->prev field gets set to NULL in that case). */
print_frame_info (fi, 1, LOCATION, 1);
if (show_locals)
print_frame_local_vars (fi, 1, gdb_stdout);
/* Save the last frame to check for error conditions. */
trailing = fi;
}
/* If we've stopped before the end, mention that. */
if (fi && from_tty)
printf_filtered (_("(More stack frames follow...)\n"));
/* If we've run out of frames, and the reason appears to be an error
condition, print it. */
if (fi == NULL && trailing != NULL)
{
enum unwind_stop_reason reason;
reason = get_frame_unwind_stop_reason (trailing);
if (reason > UNWIND_FIRST_ERROR)
printf_filtered (_("Backtrace stopped: %s\n"),
frame_stop_reason_string (reason));
}
}
struct backtrace_command_args
{
char *count_exp;
int show_locals;
int from_tty;
};
/* Stub for catch_errors. */
static int
backtrace_command_stub (void *data)
{
struct backtrace_command_args *args = data;
backtrace_command_1 (args->count_exp, args->show_locals, args->from_tty);
return 0;
}
static void
backtrace_command (char *arg, int from_tty)
{
struct cleanup *old_chain = NULL;
int fulltrace_arg = -1, arglen = 0, argc = 0;
struct backtrace_command_args btargs;
if (arg)
{
char **argv;
int i;
argv = gdb_buildargv (arg);
old_chain = make_cleanup_freeargv (argv);
argc = 0;
for (i = 0; argv[i]; i++)
{
unsigned int j;
for (j = 0; j < strlen (argv[i]); j++)
argv[i][j] = tolower (argv[i][j]);
if (fulltrace_arg < 0 && subset_compare (argv[i], "full"))
fulltrace_arg = argc;
else
{
arglen += strlen (argv[i]);
argc++;
}
}
arglen += argc;
if (fulltrace_arg >= 0)
{
if (arglen > 0)
{
arg = xmalloc (arglen + 1);
memset (arg, 0, arglen + 1);
for (i = 0; i < (argc + 1); i++)
{
if (i != fulltrace_arg)
{
strcat (arg, argv[i]);
strcat (arg, " ");
}
}
}
else
arg = NULL;
}
}
btargs.count_exp = arg;
btargs.show_locals = (fulltrace_arg >= 0);
btargs.from_tty = from_tty;
catch_errors (backtrace_command_stub, &btargs, "", RETURN_MASK_ERROR);
if (fulltrace_arg >= 0 && arglen > 0)
xfree (arg);
if (old_chain)
do_cleanups (old_chain);
}
static void
backtrace_full_command (char *arg, int from_tty)
{
struct backtrace_command_args btargs;
btargs.count_exp = arg;
btargs.show_locals = 1;
btargs.from_tty = from_tty;
catch_errors (backtrace_command_stub, &btargs, "", RETURN_MASK_ERROR);
}
/* Iterate over the local variables of a block B, calling CB with
CB_DATA. */
static void
iterate_over_block_locals (struct block *b,
iterate_over_block_arg_local_vars_cb cb,
void *cb_data)
{
struct dict_iterator iter;
struct symbol *sym;
ALL_BLOCK_SYMBOLS (b, iter, sym)
{
switch (SYMBOL_CLASS (sym))
{
case LOC_LOCAL:
case LOC_REGISTER:
case LOC_STATIC:
case LOC_COMPUTED:
if (SYMBOL_IS_ARGUMENT (sym))
break;
(*cb) (SYMBOL_PRINT_NAME (sym), sym, cb_data);
break;
default:
/* Ignore symbols which are not locals. */
break;
}
}
}
/* Same, but print labels. */
#if 0
/* Commented out, as the code using this function has also been
commented out. FIXME:brobecker/2009-01-13: Find out why the code
was commented out in the first place. The discussion introducing
this change (2007-12-04: Support lexical blocks and function bodies
that occupy non-contiguous address ranges) did not explain why
this change was made. */
static int
print_block_frame_labels (struct gdbarch *gdbarch, struct block *b,
int *have_default, struct ui_file *stream)
{
struct dict_iterator iter;
struct symbol *sym;
int values_printed = 0;
ALL_BLOCK_SYMBOLS (b, iter, sym)
{
if (strcmp (SYMBOL_LINKAGE_NAME (sym), "default") == 0)
{
if (*have_default)
continue;
*have_default = 1;
}
if (SYMBOL_CLASS (sym) == LOC_LABEL)
{
struct symtab_and_line sal;
struct value_print_options opts;
sal = find_pc_line (SYMBOL_VALUE_ADDRESS (sym), 0);
values_printed = 1;
fputs_filtered (SYMBOL_PRINT_NAME (sym), stream);
get_user_print_options (&opts);
if (opts.addressprint)
{
fprintf_filtered (stream, " ");
fputs_filtered (paddress (gdbarch, SYMBOL_VALUE_ADDRESS (sym)),
stream);
}
fprintf_filtered (stream, " in file %s, line %d\n",
sal.symtab->filename, sal.line);
}
}
return values_printed;
}
#endif
/* Iterate over all the local variables in block B, including all its
superblocks, stopping when the top-level block is reached. */
void
iterate_over_block_local_vars (struct block *block,
iterate_over_block_arg_local_vars_cb cb,
void *cb_data)
{
while (block)
{
iterate_over_block_locals (block, cb, cb_data);
/* After handling the function's top-level block, stop. Don't
continue to its superblock, the block of per-file
symbols. */
if (BLOCK_FUNCTION (block))
break;
block = BLOCK_SUPERBLOCK (block);
}
}
/* Data to be passed around in the calls to the locals and args
iterators. */
struct print_variable_and_value_data
{
struct frame_info *frame;
int num_tabs;
struct ui_file *stream;
int values_printed;
};
/* The callback for the locals and args iterators. */
static void
do_print_variable_and_value (const char *print_name,
struct symbol *sym,
void *cb_data)
{
struct print_variable_and_value_data *p = cb_data;
print_variable_and_value (print_name, sym,
p->frame, p->stream, p->num_tabs);
p->values_printed = 1;
}
static void
print_frame_local_vars (struct frame_info *frame, int num_tabs,
struct ui_file *stream)
{
struct print_variable_and_value_data cb_data;
struct block *block;
block = get_frame_block (frame, 0);
if (block == 0)
{
fprintf_filtered (stream, "No symbol table info available.\n");
return;
}
cb_data.frame = frame;
cb_data.num_tabs = 4 * num_tabs;
cb_data.stream = stream;
cb_data.values_printed = 0;
iterate_over_block_local_vars (block,
do_print_variable_and_value,
&cb_data);
if (!cb_data.values_printed)
fprintf_filtered (stream, _("No locals.\n"));
}
/* Same, but print labels. */
static void
print_frame_label_vars (struct frame_info *frame, int this_level_only,
struct ui_file *stream)
{
#if 1
fprintf_filtered (stream, "print_frame_label_vars disabled.\n");
#else
struct blockvector *bl;
struct block *block = get_frame_block (frame, 0);
struct gdbarch *gdbarch = get_frame_arch (frame);
int values_printed = 0;
int index, have_default = 0;
char *blocks_printed;
CORE_ADDR pc = get_frame_pc (frame);
if (block == 0)
{
fprintf_filtered (stream, "No symbol table info available.\n");
return;
}
bl = blockvector_for_pc (BLOCK_END (block) - 4, &index);
blocks_printed = alloca (BLOCKVECTOR_NBLOCKS (bl) * sizeof (char));
memset (blocks_printed, 0, BLOCKVECTOR_NBLOCKS (bl) * sizeof (char));
while (block != 0)
{
CORE_ADDR end = BLOCK_END (block) - 4;
int last_index;
if (bl != blockvector_for_pc (end, &index))
error (_("blockvector blotch"));
if (BLOCKVECTOR_BLOCK (bl, index) != block)
error (_("blockvector botch"));
last_index = BLOCKVECTOR_NBLOCKS (bl);
index += 1;
/* Don't print out blocks that have gone by. */
while (index < last_index
&& BLOCK_END (BLOCKVECTOR_BLOCK (bl, index)) < pc)
index++;
while (index < last_index
&& BLOCK_END (BLOCKVECTOR_BLOCK (bl, index)) < end)
{
if (blocks_printed[index] == 0)
{
if (print_block_frame_labels (gdbarch,
BLOCKVECTOR_BLOCK (bl, index),
&have_default, stream))
values_printed = 1;
blocks_printed[index] = 1;
}
index++;
}
if (have_default)
return;
if (values_printed && this_level_only)
return;
/* After handling the function's top-level block, stop. Don't
continue to its superblock, the block of per-file symbols.
Also do not continue to the containing function of an inlined
function. */
if (BLOCK_FUNCTION (block))
break;
block = BLOCK_SUPERBLOCK (block);
}
if (!values_printed && !this_level_only)
fprintf_filtered (stream, _("No catches.\n"));
#endif
}
void
locals_info (char *args, int from_tty)
{
print_frame_local_vars (get_selected_frame (_("No frame selected.")),
0, gdb_stdout);
}
static void
catch_info (char *ignore, int from_tty)
{
/* Assume g++ compiled code; old GDB 4.16 behaviour. */
print_frame_label_vars (get_selected_frame (_("No frame selected.")),
0, gdb_stdout);
}
/* Iterate over all the argument variables in block B.
Returns 1 if any argument was walked; 0 otherwise. */
void
iterate_over_block_arg_vars (struct block *b,
iterate_over_block_arg_local_vars_cb cb,
void *cb_data)
{
struct dict_iterator iter;
struct symbol *sym, *sym2;
ALL_BLOCK_SYMBOLS (b, iter, sym)
{
/* Don't worry about things which aren't arguments. */
if (SYMBOL_IS_ARGUMENT (sym))
{
/* We have to look up the symbol because arguments can have
two entries (one a parameter, one a local) and the one we
want is the local, which lookup_symbol will find for us.
This includes gcc1 (not gcc2) on the sparc when passing a
small structure and gcc2 when the argument type is float
and it is passed as a double and converted to float by
the prologue (in the latter case the type of the LOC_ARG
symbol is double and the type of the LOC_LOCAL symbol is
float). There are also LOC_ARG/LOC_REGISTER pairs which
are not combined in symbol-reading. */
sym2 = lookup_symbol (SYMBOL_LINKAGE_NAME (sym),
b, VAR_DOMAIN, NULL);
(*cb) (SYMBOL_PRINT_NAME (sym), sym2, cb_data);
}
}
}
static void
print_frame_arg_vars (struct frame_info *frame, struct ui_file *stream)
{
struct print_variable_and_value_data cb_data;
struct symbol *func;
func = get_frame_function (frame);
if (func == NULL)
{
fprintf_filtered (stream, _("No symbol table info available.\n"));
return;
}
cb_data.frame = frame;
cb_data.num_tabs = 0;
cb_data.stream = gdb_stdout;
cb_data.values_printed = 0;
iterate_over_block_arg_vars (SYMBOL_BLOCK_VALUE (func),
do_print_variable_and_value, &cb_data);
if (!cb_data.values_printed)
fprintf_filtered (stream, _("No arguments.\n"));
}
void
args_info (char *ignore, int from_tty)
{
print_frame_arg_vars (get_selected_frame (_("No frame selected.")),
gdb_stdout);
}
static void
args_plus_locals_info (char *ignore, int from_tty)
{
args_info (ignore, from_tty);
locals_info (ignore, from_tty);
}
/* Select frame FRAME. Also print the stack frame and show the source
if this is the tui version. */
static void
select_and_print_frame (struct frame_info *frame)
{
select_frame (frame);
if (frame)
print_stack_frame (frame, 1, SRC_AND_LOC);
}
/* Return the symbol-block in which the selected frame is executing.
Can return zero under various legitimate circumstances.
If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the relevant
code address within the block returned. We use this to decide
which macros are in scope. */
struct block *
get_selected_block (CORE_ADDR *addr_in_block)
{
if (!has_stack_frames ())
return 0;
return get_frame_block (get_selected_frame (NULL), addr_in_block);
}
/* Find a frame a certain number of levels away from FRAME.
LEVEL_OFFSET_PTR points to an int containing the number of levels.
Positive means go to earlier frames (up); negative, the reverse.
The int that contains the number of levels is counted toward
zero as the frames for those levels are found.
If the top or bottom frame is reached, that frame is returned,
but the final value of *LEVEL_OFFSET_PTR is nonzero and indicates
how much farther the original request asked to go. */
struct frame_info *
find_relative_frame (struct frame_info *frame, int *level_offset_ptr)
{
/* Going up is simple: just call get_prev_frame enough times or
until the initial frame is reached. */
while (*level_offset_ptr > 0)
{
struct frame_info *prev = get_prev_frame (frame);
if (!prev)
break;
(*level_offset_ptr)--;
frame = prev;
}
/* Going down is just as simple. */
while (*level_offset_ptr < 0)
{
struct frame_info *next = get_next_frame (frame);
if (!next)
break;
(*level_offset_ptr)++;
frame = next;
}
return frame;
}
/* The "select_frame" command. With no argument this is a NOP.
Select the frame at level LEVEL_EXP if it is a valid level.
Otherwise, treat LEVEL_EXP as an address expression and select it.
See parse_frame_specification for more info on proper frame
expressions. */
void
select_frame_command (char *level_exp, int from_tty)
{
select_frame (parse_frame_specification_1 (level_exp, "No stack.", NULL));
}
/* The "frame" command. With no argument, print the selected frame
briefly. With an argument, behave like select_frame and then print
the selected frame. */
static void
frame_command (char *level_exp, int from_tty)
{
select_frame_command (level_exp, from_tty);
print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC);
}
/* The XDB Compatibility command to print the current frame. */
static void
current_frame_command (char *level_exp, int from_tty)
{
print_stack_frame (get_selected_frame (_("No stack.")), 1, SRC_AND_LOC);
}
/* Select the frame up one or COUNT_EXP stack levels from the
previously selected frame, and print it briefly. */
static void
up_silently_base (char *count_exp)
{
struct frame_info *frame;
int count = 1;
if (count_exp)
count = parse_and_eval_long (count_exp);
frame = find_relative_frame (get_selected_frame ("No stack."), &count);
if (count != 0 && count_exp == NULL)
error (_("Initial frame selected; you cannot go up."));
select_frame (frame);
}
static void
up_silently_command (char *count_exp, int from_tty)
{
up_silently_base (count_exp);
}
static void
up_command (char *count_exp, int from_tty)
{
up_silently_base (count_exp);
print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC);
}
/* Select the frame down one or COUNT_EXP stack levels from the previously
selected frame, and print it briefly. */
static void
down_silently_base (char *count_exp)
{
struct frame_info *frame;
int count = -1;
if (count_exp)
count = -parse_and_eval_long (count_exp);
frame = find_relative_frame (get_selected_frame ("No stack."), &count);
if (count != 0 && count_exp == NULL)
{
/* We only do this if COUNT_EXP is not specified. That way
"down" means to really go down (and let me know if that is
impossible), but "down 9999" can be used to mean go all the
way down without getting an error. */
error (_("Bottom (innermost) frame selected; you cannot go down."));
}
select_frame (frame);
}
static void
down_silently_command (char *count_exp, int from_tty)
{
down_silently_base (count_exp);
}
static void
down_command (char *count_exp, int from_tty)
{
down_silently_base (count_exp);
print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC);
}
void
return_command (char *retval_exp, int from_tty)
{
struct frame_info *thisframe;
struct gdbarch *gdbarch;
struct symbol *thisfun;
struct value *return_value = NULL;
const char *query_prefix = "";
thisframe = get_selected_frame ("No selected frame.");
thisfun = get_frame_function (thisframe);
gdbarch = get_frame_arch (thisframe);
if (get_frame_type (get_current_frame ()) == INLINE_FRAME)
error (_("Can not force return from an inlined function."));
/* Compute the return value. If the computation triggers an error,
let it bail. If the return type can't be handled, set
RETURN_VALUE to NULL, and QUERY_PREFIX to an informational
message. */
if (retval_exp)
{
struct expression *retval_expr = parse_expression (retval_exp);
struct cleanup *old_chain = make_cleanup (xfree, retval_expr);
struct type *return_type = NULL;
/* Compute the return value. Should the computation fail, this
call throws an error. */
return_value = evaluate_expression (retval_expr);
/* Cast return value to the return type of the function. Should
the cast fail, this call throws an error. */
if (thisfun != NULL)
return_type = TYPE_TARGET_TYPE (SYMBOL_TYPE (thisfun));
if (return_type == NULL)
{
if (retval_expr->elts[0].opcode != UNOP_CAST)
error (_("Return value type not available for selected "
"stack frame.\n"
"Please use an explicit cast of the value to return."));
return_type = value_type (return_value);
}
do_cleanups (old_chain);
CHECK_TYPEDEF (return_type);
return_value = value_cast (return_type, return_value);
/* Make sure the value is fully evaluated. It may live in the
stack frame we're about to pop. */
if (value_lazy (return_value))
value_fetch_lazy (return_value);
if (TYPE_CODE (return_type) == TYPE_CODE_VOID)
/* If the return-type is "void", don't try to find the
return-value's location. However, do still evaluate the
return expression so that, even when the expression result
is discarded, side effects such as "return i++" still
occur. */
return_value = NULL;
else if (thisfun != NULL
&& using_struct_return (gdbarch,
SYMBOL_TYPE (thisfun), return_type))
{
query_prefix = "The location at which to store the "
"function's return value is unknown.\n"
"If you continue, the return value "
"that you specified will be ignored.\n";
return_value = NULL;
}
}
/* Does an interactive user really want to do this? Include
information, such as how well GDB can handle the return value, in
the query message. */
if (from_tty)
{
int confirmed;
if (thisfun == NULL)
confirmed = query (_("%sMake selected stack frame return now? "),
query_prefix);
else
confirmed = query (_("%sMake %s return now? "), query_prefix,
SYMBOL_PRINT_NAME (thisfun));
if (!confirmed)
error (_("Not confirmed"));
}
/* Discard the selected frame and all frames inner-to it. */
frame_pop (get_selected_frame (NULL));
/* Store RETURN_VALUE in the just-returned register set. */
if (return_value != NULL)
{
struct type *return_type = value_type (return_value);
struct gdbarch *gdbarch = get_regcache_arch (get_current_regcache ());
struct type *func_type = thisfun == NULL ? NULL : SYMBOL_TYPE (thisfun);
gdb_assert (gdbarch_return_value (gdbarch, func_type, return_type, NULL,
NULL, NULL)
== RETURN_VALUE_REGISTER_CONVENTION);
gdbarch_return_value (gdbarch, func_type, return_type,
get_current_regcache (), NULL /*read*/,
value_contents (return_value) /*write*/);
}
/* If we are at the end of a call dummy now, pop the dummy frame
too. */
if (get_frame_type (get_current_frame ()) == DUMMY_FRAME)
frame_pop (get_current_frame ());
/* If interactive, print the frame that is now current. */
if (from_tty)
frame_command ("0", 1);
else
select_frame_command ("0", 0);
}
/* Sets the scope to input function name, provided that the function
is within the current stack frame. */
struct function_bounds
{
CORE_ADDR low, high;
};
static void
func_command (char *arg, int from_tty)
{
struct frame_info *frame;
int found = 0;
struct symtabs_and_lines sals;
int i;
int level = 1;
struct function_bounds *func_bounds = NULL;
if (arg != NULL)
return;
frame = parse_frame_specification ("0");
sals = decode_line_spec (arg, 1);
func_bounds = (struct function_bounds *) xmalloc (
sizeof (struct function_bounds) * sals.nelts);
for (i = 0; (i < sals.nelts && !found); i++)
{
if (sals.sals[i].pc == 0
|| find_pc_partial_function (sals.sals[i].pc, NULL,
&func_bounds[i].low,
&func_bounds[i].high) == 0)
{
func_bounds[i].low = func_bounds[i].high = 0;
}
}
do
{
for (i = 0; (i < sals.nelts && !found); i++)
found = (get_frame_pc (frame) >= func_bounds[i].low
&& get_frame_pc (frame) < func_bounds[i].high);
if (!found)
{
level = 1;
frame = find_relative_frame (frame, &level);
}
}
while (!found && level == 0);
if (func_bounds)
xfree (func_bounds);
if (!found)
printf_filtered (_("'%s' not within current stack frame.\n"), arg);
else if (frame != get_selected_frame (NULL))
select_and_print_frame (frame);
}
/* Gets the language of the current frame. */
enum language
get_frame_language (void)
{
struct frame_info *frame = deprecated_safe_get_selected_frame ();
if (frame)
{
/* We determine the current frame language by looking up its
associated symtab. To retrieve this symtab, we use the frame
PC. However we cannot use the frame PC as is, because it
usually points to the instruction following the "call", which
is sometimes the first instruction of another function. So
we rely on get_frame_address_in_block(), it provides us with
a PC that is guaranteed to be inside the frame's code
block. */
CORE_ADDR pc = get_frame_address_in_block (frame);
struct symtab *s = find_pc_symtab (pc);
if (s)
return s->language;
}
return language_unknown;
}
/* Provide a prototype to silence -Wmissing-prototypes. */
void _initialize_stack (void);
void
_initialize_stack (void)
{
add_com ("return", class_stack, return_command, _("\
Make selected stack frame return to its caller.\n\
Control remains in the debugger, but when you continue\n\
execution will resume in the frame above the one now selected.\n\
If an argument is given, it is an expression for the value to return."));
add_com ("up", class_stack, up_command, _("\
Select and print stack frame that called this one.\n\
An argument says how many frames up to go."));
add_com ("up-silently", class_support, up_silently_command, _("\
Same as the `up' command, but does not print anything.\n\
This is useful in command scripts."));
add_com ("down", class_stack, down_command, _("\
Select and print stack frame called by this one.\n\
An argument says how many frames down to go."));
add_com_alias ("do", "down", class_stack, 1);
add_com_alias ("dow", "down", class_stack, 1);
add_com ("down-silently", class_support, down_silently_command, _("\
Same as the `down' command, but does not print anything.\n\
This is useful in command scripts."));
add_com ("frame", class_stack, frame_command, _("\
Select and print a stack frame.\nWith no argument, \
print the selected stack frame. (See also \"info frame\").\n\
An argument specifies the frame to select.\n\
It can be a stack frame number or the address of the frame.\n\
With argument, nothing is printed if input is coming from\n\
a command file or a user-defined command."));
add_com_alias ("f", "frame", class_stack, 1);
if (xdb_commands)
{
add_com ("L", class_stack, current_frame_command,
_("Print the current stack frame.\n"));
add_com_alias ("V", "frame", class_stack, 1);
}
add_com ("select-frame", class_stack, select_frame_command, _("\
Select a stack frame without printing anything.\n\
An argument specifies the frame to select.\n\
It can be a stack frame number or the address of the frame.\n"));
add_com ("backtrace", class_stack, backtrace_command, _("\
Print backtrace of all stack frames, or innermost COUNT frames.\n\
With a negative argument, print outermost -COUNT frames.\nUse of the \
'full' qualifier also prints the values of the local variables.\n"));
add_com_alias ("bt", "backtrace", class_stack, 0);
if (xdb_commands)
{
add_com_alias ("t", "backtrace", class_stack, 0);
add_com ("T", class_stack, backtrace_full_command, _("\
Print backtrace of all stack frames, or innermost COUNT frames\n\
and the values of the local variables.\n\
With a negative argument, print outermost -COUNT frames.\n\
Usage: T \n"));
}
add_com_alias ("where", "backtrace", class_alias, 0);
add_info ("stack", backtrace_command,
_("Backtrace of the stack, or innermost COUNT frames."));
add_info_alias ("s", "stack", 1);
add_info ("frame", frame_info,
_("All about selected stack frame, or frame at ADDR."));
add_info_alias ("f", "frame", 1);
add_info ("locals", locals_info,
_("Local variables of current stack frame."));
add_info ("args", args_info,
_("Argument variables of current stack frame."));
if (xdb_commands)
add_com ("l", class_info, args_plus_locals_info,
_("Argument and local variables of current stack frame."));
if (dbx_commands)
add_com ("func", class_stack, func_command, _("\
Select the stack frame that contains .\n\
Usage: func \n"));
add_info ("catch", catch_info,
_("Exceptions that can be caught in the current stack frame."));
add_setshow_enum_cmd ("frame-arguments", class_stack,
print_frame_arguments_choices, &print_frame_arguments,
_("Set printing of non-scalar frame arguments"),
_("Show printing of non-scalar frame arguments"),
NULL, NULL, NULL, &setprintlist, &showprintlist);
add_setshow_auto_boolean_cmd ("disassemble-next-line", class_stack,
&disassemble_next_line, _("\
Set whether to disassemble next source line or insn when execution stops."),
_("\
Show whether to disassemble next source line or insn when execution stops."),
_("\
If ON, GDB will display disassembly of the next source line, in addition\n\
to displaying the source line itself. If the next source line cannot\n\
be displayed (e.g., source is unavailable or there's no line info), GDB\n\
will display disassembly of next instruction instead of showing the\n\
source line.\n\
If AUTO, display disassembly of next instruction only if the source line\n\
cannot be displayed.\n\
If OFF (which is the default), never display the disassembly of the next\n\
source line."),
NULL,
show_disassemble_next_line,
&setlist, &showlist);
disassemble_next_line = AUTO_BOOLEAN_FALSE;
}