/* Handle Darwin shared libraries for GDB, the GNU Debugger. Copyright (C) 2009-2019 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "symtab.h" #include "bfd.h" #include "symfile.h" #include "objfiles.h" #include "gdbcore.h" #include "target.h" #include "inferior.h" #include "regcache.h" #include "gdbthread.h" #include "gdb_bfd.h" #include "solist.h" #include "solib.h" #include "solib-svr4.h" #include "bfd-target.h" #include "elf-bfd.h" #include "exec.h" #include "auxv.h" #include "mach-o.h" #include "mach-o/external.h" struct gdb_dyld_image_info { /* Base address (which corresponds to the Mach-O header). */ CORE_ADDR mach_header; /* Image file path. */ CORE_ADDR file_path; /* st.m_time of image file. */ unsigned long mtime; }; /* Content of inferior dyld_all_image_infos structure. See /usr/include/mach-o/dyld_images.h for the documentation. */ struct gdb_dyld_all_image_infos { /* Version (1). */ unsigned int version; /* Number of images. */ unsigned int count; /* Image description. */ CORE_ADDR info; /* Notifier (function called when a library is added or removed). */ CORE_ADDR notifier; }; /* Current all_image_infos version. */ #define DYLD_VERSION_MIN 1 #define DYLD_VERSION_MAX 15 /* Per PSPACE specific data. */ struct darwin_info { /* Address of structure dyld_all_image_infos in inferior. */ CORE_ADDR all_image_addr = 0; /* Gdb copy of dyld_all_info_infos. */ struct gdb_dyld_all_image_infos all_image {}; }; /* Per-program-space data key. */ static program_space_key solib_darwin_pspace_data; /* Get the current darwin data. If none is found yet, add it now. This function always returns a valid object. */ static struct darwin_info * get_darwin_info (void) { struct darwin_info *info; info = solib_darwin_pspace_data.get (current_program_space); if (info != NULL) return info; return solib_darwin_pspace_data.emplace (current_program_space); } /* Return non-zero if the version in dyld_all_image is known. */ static int darwin_dyld_version_ok (const struct darwin_info *info) { return info->all_image.version >= DYLD_VERSION_MIN && info->all_image.version <= DYLD_VERSION_MAX; } /* Read dyld_all_image from inferior. */ static void darwin_load_image_infos (struct darwin_info *info) { gdb_byte buf[24]; enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; int len; /* If the structure address is not known, don't continue. */ if (info->all_image_addr == 0) return; /* The structure has 4 fields: version (4 bytes), count (4 bytes), info (pointer) and notifier (pointer). */ len = 4 + 4 + 2 * TYPE_LENGTH (ptr_type); gdb_assert (len <= sizeof (buf)); memset (&info->all_image, 0, sizeof (info->all_image)); /* Read structure raw bytes from target. */ if (target_read_memory (info->all_image_addr, buf, len)) return; /* Extract the fields. */ info->all_image.version = extract_unsigned_integer (buf, 4, byte_order); if (!darwin_dyld_version_ok (info)) return; info->all_image.count = extract_unsigned_integer (buf + 4, 4, byte_order); info->all_image.info = extract_typed_address (buf + 8, ptr_type); info->all_image.notifier = extract_typed_address (buf + 8 + TYPE_LENGTH (ptr_type), ptr_type); } /* Link map info to include in an allocated so_list entry. */ struct lm_info_darwin : public lm_info_base { /* The target location of lm. */ CORE_ADDR lm_addr = 0; }; /* Lookup the value for a specific symbol. */ static CORE_ADDR lookup_symbol_from_bfd (bfd *abfd, const char *symname) { long storage_needed; asymbol **symbol_table; unsigned int number_of_symbols; unsigned int i; CORE_ADDR symaddr = 0; storage_needed = bfd_get_symtab_upper_bound (abfd); if (storage_needed <= 0) return 0; symbol_table = (asymbol **) xmalloc (storage_needed); number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table); for (i = 0; i < number_of_symbols; i++) { asymbol *sym = symbol_table[i]; if (strcmp (sym->name, symname) == 0 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0) { /* BFD symbols are section relative. */ symaddr = sym->value + sym->section->vma; break; } } xfree (symbol_table); return symaddr; } /* Return program interpreter string. */ static char * find_program_interpreter (void) { char *buf = NULL; /* If we have an exec_bfd, get the interpreter from the load commands. */ if (exec_bfd) { bfd_mach_o_load_command *cmd; if (bfd_mach_o_lookup_command (exec_bfd, BFD_MACH_O_LC_LOAD_DYLINKER, &cmd) == 1) return cmd->command.dylinker.name_str; } /* If we didn't find it, read from memory. FIXME: todo. */ return buf; } /* Not used. I don't see how the main symbol file can be found: the interpreter name is needed and it is known from the executable file. Note that darwin-nat.c implements pid_to_exec_file. */ static int open_symbol_file_object (int from_tty) { return 0; } /* Build a list of currently loaded shared objects. See solib-svr4.c. */ static struct so_list * darwin_current_sos (void) { struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; enum bfd_endian byte_order = type_byte_order (ptr_type); int ptr_len = TYPE_LENGTH (ptr_type); unsigned int image_info_size; struct so_list *head = NULL; struct so_list *tail = NULL; int i; struct darwin_info *info = get_darwin_info (); /* Be sure image infos are loaded. */ darwin_load_image_infos (info); if (!darwin_dyld_version_ok (info)) return NULL; image_info_size = ptr_len * 3; /* Read infos for each solib. The first entry was rumored to be the executable itself, but this is not true when a large number of shared libraries are used (table expanded ?). We now check all entries, but discard executable images. */ for (i = 0; i < info->all_image.count; i++) { CORE_ADDR iinfo = info->all_image.info + i * image_info_size; gdb_byte buf[image_info_size]; CORE_ADDR load_addr; CORE_ADDR path_addr; struct mach_o_header_external hdr; unsigned long hdr_val; gdb::unique_xmalloc_ptr file_path; int errcode; /* Read image info from inferior. */ if (target_read_memory (iinfo, buf, image_info_size)) break; load_addr = extract_typed_address (buf, ptr_type); path_addr = extract_typed_address (buf + ptr_len, ptr_type); /* Read Mach-O header from memory. */ if (target_read_memory (load_addr, (gdb_byte *) &hdr, sizeof (hdr) - 4)) break; /* Discard wrong magic numbers. Shouldn't happen. */ hdr_val = extract_unsigned_integer (hdr.magic, sizeof (hdr.magic), byte_order); if (hdr_val != BFD_MACH_O_MH_MAGIC && hdr_val != BFD_MACH_O_MH_MAGIC_64) continue; /* Discard executable. Should happen only once. */ hdr_val = extract_unsigned_integer (hdr.filetype, sizeof (hdr.filetype), byte_order); if (hdr_val == BFD_MACH_O_MH_EXECUTE) continue; target_read_string (path_addr, &file_path, SO_NAME_MAX_PATH_SIZE - 1, &errcode); if (errcode) break; /* Create and fill the new so_list element. */ gdb::unique_xmalloc_ptr newobj (XCNEW (struct so_list)); lm_info_darwin *li = new lm_info_darwin; newobj->lm_info = li; strncpy (newobj->so_name, file_path.get (), SO_NAME_MAX_PATH_SIZE - 1); newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; strcpy (newobj->so_original_name, newobj->so_name); li->lm_addr = load_addr; if (head == NULL) head = newobj.get (); else tail->next = newobj.get (); tail = newobj.release (); } return head; } /* Check LOAD_ADDR points to a Mach-O executable header. Return LOAD_ADDR in case of success, 0 in case of failure. */ static CORE_ADDR darwin_validate_exec_header (CORE_ADDR load_addr) { enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); struct mach_o_header_external hdr; unsigned long hdr_val; /* Read Mach-O header from memory. */ if (target_read_memory (load_addr, (gdb_byte *) &hdr, sizeof (hdr) - 4)) return 0; /* Discard wrong magic numbers. Shouldn't happen. */ hdr_val = extract_unsigned_integer (hdr.magic, sizeof (hdr.magic), byte_order); if (hdr_val != BFD_MACH_O_MH_MAGIC && hdr_val != BFD_MACH_O_MH_MAGIC_64) return 0; /* Check executable. */ hdr_val = extract_unsigned_integer (hdr.filetype, sizeof (hdr.filetype), byte_order); if (hdr_val == BFD_MACH_O_MH_EXECUTE) return load_addr; return 0; } /* Get the load address of the executable using dyld list of images. We assume that the dyld info are correct (which is wrong if the target is stopped at the first instruction). */ static CORE_ADDR darwin_read_exec_load_addr_from_dyld (struct darwin_info *info) { struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; int ptr_len = TYPE_LENGTH (ptr_type); unsigned int image_info_size = ptr_len * 3; int i; /* Read infos for each solib. One of them should be the executable. */ for (i = 0; i < info->all_image.count; i++) { CORE_ADDR iinfo = info->all_image.info + i * image_info_size; gdb_byte buf[image_info_size]; CORE_ADDR load_addr; /* Read image info from inferior. */ if (target_read_memory (iinfo, buf, image_info_size)) break; load_addr = extract_typed_address (buf, ptr_type); if (darwin_validate_exec_header (load_addr) == load_addr) return load_addr; } return 0; } /* Get the load address of the executable when the PC is at the dyld entry point using parameter passed by the kernel (at SP). */ static CORE_ADDR darwin_read_exec_load_addr_at_init (struct darwin_info *info) { struct gdbarch *gdbarch = target_gdbarch (); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); int addr_size = gdbarch_addr_bit (gdbarch) / 8; ULONGEST load_ptr_addr; ULONGEST load_addr; gdb_byte buf[8]; /* Get SP. */ if (regcache_cooked_read_unsigned (get_current_regcache (), gdbarch_sp_regnum (gdbarch), &load_ptr_addr) != REG_VALID) return 0; /* Read value at SP (image load address). */ if (target_read_memory (load_ptr_addr, buf, addr_size)) return 0; load_addr = extract_unsigned_integer (buf, addr_size, byte_order); return darwin_validate_exec_header (load_addr); } /* Return 1 if PC lies in the dynamic symbol resolution code of the run time loader. */ static int darwin_in_dynsym_resolve_code (CORE_ADDR pc) { return 0; } /* A wrapper for bfd_mach_o_fat_extract that handles reference counting properly. This will either return NULL, or return a new reference to a BFD. */ static gdb_bfd_ref_ptr gdb_bfd_mach_o_fat_extract (bfd *abfd, bfd_format format, const bfd_arch_info_type *arch) { bfd *result = bfd_mach_o_fat_extract (abfd, format, arch); if (result == NULL) return NULL; if (result == abfd) gdb_bfd_ref (result); else gdb_bfd_mark_parent (result, abfd); return gdb_bfd_ref_ptr (result); } /* Return the BFD for the program interpreter. */ static gdb_bfd_ref_ptr darwin_get_dyld_bfd () { char *interp_name; /* This method doesn't work with an attached process. */ if (current_inferior ()->attach_flag) return NULL; /* Find the program interpreter. */ interp_name = find_program_interpreter (); if (!interp_name) return NULL; /* Create a bfd for the interpreter. */ gdb_bfd_ref_ptr dyld_bfd (gdb_bfd_open (interp_name, gnutarget, -1)); if (dyld_bfd != NULL) { gdb_bfd_ref_ptr sub (gdb_bfd_mach_o_fat_extract (dyld_bfd.get (), bfd_object, gdbarch_bfd_arch_info (target_gdbarch ()))); dyld_bfd = sub; } return dyld_bfd; } /* Extract dyld_all_image_addr when the process was just created, assuming the current PC is at the entry of the dynamic linker. */ static void darwin_solib_get_all_image_info_addr_at_init (struct darwin_info *info) { CORE_ADDR load_addr = 0; gdb_bfd_ref_ptr dyld_bfd = darwin_get_dyld_bfd (); if (dyld_bfd == NULL) return; /* We find the dynamic linker's base address by examining the current pc (which should point at the entry point for the dynamic linker) and subtracting the offset of the entry point. */ load_addr = (regcache_read_pc (get_current_regcache ()) - bfd_get_start_address (dyld_bfd.get ())); /* Now try to set a breakpoint in the dynamic linker. */ info->all_image_addr = lookup_symbol_from_bfd (dyld_bfd.get (), "_dyld_all_image_infos"); if (info->all_image_addr == 0) return; info->all_image_addr += load_addr; } /* Extract dyld_all_image_addr reading it from TARGET_OBJECT_DARWIN_DYLD_INFO. */ static void darwin_solib_read_all_image_info_addr (struct darwin_info *info) { gdb_byte buf[8]; LONGEST len; struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; /* Sanity check. */ if (TYPE_LENGTH (ptr_type) > sizeof (buf)) return; len = target_read (current_top_target (), TARGET_OBJECT_DARWIN_DYLD_INFO, NULL, buf, 0, TYPE_LENGTH (ptr_type)); if (len <= 0) return; /* The use of BIG endian is intended, as BUF is a raw stream of bytes. This makes the support of remote protocol easier. */ info->all_image_addr = extract_unsigned_integer (buf, len, BFD_ENDIAN_BIG); } /* Shared library startup support. See documentation in solib-svr4.c. */ static void darwin_solib_create_inferior_hook (int from_tty) { struct darwin_info *info = get_darwin_info (); CORE_ADDR load_addr; info->all_image_addr = 0; darwin_solib_read_all_image_info_addr (info); if (info->all_image_addr == 0) darwin_solib_get_all_image_info_addr_at_init (info); if (info->all_image_addr == 0) return; darwin_load_image_infos (info); if (!darwin_dyld_version_ok (info)) { warning (_("unhandled dyld version (%d)"), info->all_image.version); return; } if (info->all_image.count != 0) { /* Possible relocate the main executable (PIE). */ load_addr = darwin_read_exec_load_addr_from_dyld (info); } else { /* Possible issue: Do not break on the notifier if dyld is not initialized (deduced from count == 0). In that case, dyld hasn't relocated itself and the notifier may point to a wrong address. */ load_addr = darwin_read_exec_load_addr_at_init (info); } if (load_addr != 0 && symfile_objfile != NULL) { CORE_ADDR vmaddr; /* Find the base address of the executable. */ vmaddr = bfd_mach_o_get_base_address (exec_bfd); /* Relocate. */ if (vmaddr != load_addr) objfile_rebase (symfile_objfile, load_addr - vmaddr); } /* Set solib notifier (to reload list of shared libraries). */ CORE_ADDR notifier = info->all_image.notifier; if (info->all_image.count == 0) { /* Dyld hasn't yet relocated itself, so the notifier address may be incorrect (as it has to be relocated). */ CORE_ADDR start = bfd_get_start_address (exec_bfd); if (start == 0) notifier = 0; else { gdb_bfd_ref_ptr dyld_bfd = darwin_get_dyld_bfd (); if (dyld_bfd != NULL) { CORE_ADDR dyld_bfd_start_address; CORE_ADDR dyld_relocated_base_address; CORE_ADDR pc; dyld_bfd_start_address = bfd_get_start_address (dyld_bfd.get()); /* We find the dynamic linker's base address by examining the current pc (which should point at the entry point for the dynamic linker) and subtracting the offset of the entry point. */ pc = regcache_read_pc (get_current_regcache ()); dyld_relocated_base_address = pc - dyld_bfd_start_address; /* We get the proper notifier relocated address by adding the dyld relocated base address to the current notifier offset value. */ notifier += dyld_relocated_base_address; } } } /* Add the breakpoint which is hit by dyld when the list of solib is modified. */ if (notifier != 0) create_solib_event_breakpoint (target_gdbarch (), notifier); } static void darwin_clear_solib (void) { struct darwin_info *info = get_darwin_info (); info->all_image_addr = 0; info->all_image.version = 0; } static void darwin_free_so (struct so_list *so) { lm_info_darwin *li = (lm_info_darwin *) so->lm_info; delete li; } /* The section table is built from bfd sections using bfd VMAs. Relocate these VMAs according to solib info. */ static void darwin_relocate_section_addresses (struct so_list *so, struct target_section *sec) { lm_info_darwin *li = (lm_info_darwin *) so->lm_info; sec->addr += li->lm_addr; sec->endaddr += li->lm_addr; /* Best effort to set addr_high/addr_low. This is used only by 'info sharedlibary'. */ if (so->addr_high == 0) { so->addr_low = sec->addr; so->addr_high = sec->endaddr; } if (sec->endaddr > so->addr_high) so->addr_high = sec->endaddr; if (sec->addr < so->addr_low) so->addr_low = sec->addr; } static gdb_bfd_ref_ptr darwin_bfd_open (const char *pathname) { int found_file; /* Search for shared library file. */ gdb::unique_xmalloc_ptr found_pathname = solib_find (pathname, &found_file); if (found_pathname == NULL) perror_with_name (pathname); /* Open bfd for shared library. */ gdb_bfd_ref_ptr abfd (solib_bfd_fopen (found_pathname.get (), found_file)); gdb_bfd_ref_ptr res (gdb_bfd_mach_o_fat_extract (abfd.get (), bfd_object, gdbarch_bfd_arch_info (target_gdbarch ()))); if (res == NULL) error (_("`%s': not a shared-library: %s"), bfd_get_filename (abfd.get ()), bfd_errmsg (bfd_get_error ())); /* The current filename for fat-binary BFDs is a name generated by BFD, usually a string containing the name of the architecture. Reset its value to the actual filename. */ bfd_set_filename (res.get (), xstrdup (pathname)); return res; } struct target_so_ops darwin_so_ops; void _initialize_darwin_solib (void) { darwin_so_ops.relocate_section_addresses = darwin_relocate_section_addresses; darwin_so_ops.free_so = darwin_free_so; darwin_so_ops.clear_solib = darwin_clear_solib; darwin_so_ops.solib_create_inferior_hook = darwin_solib_create_inferior_hook; darwin_so_ops.current_sos = darwin_current_sos; darwin_so_ops.open_symbol_file_object = open_symbol_file_object; darwin_so_ops.in_dynsym_resolve_code = darwin_in_dynsym_resolve_code; darwin_so_ops.bfd_open = darwin_bfd_open; }