/* Target-dependent code for Hitachi Super-H, for GDB. Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Contributed by Steve Chamberlain sac@cygnus.com */ #include "defs.h" #include "frame.h" #include "obstack.h" #include "symtab.h" #include "gdbtypes.h" #include "gdbcmd.h" #include "gdbcore.h" #include "value.h" #include "dis-asm.h" #include "inferior.h" /* for BEFORE_TEXT_END etc. */ extern int remote_write_size; /* in remote.c */ /* Default to the original SH. */ #define DEFAULT_SH_TYPE "sh" /* This value is the model of SH in use. */ char *sh_processor_type; char *tmp_sh_processor_type; /* A set of original names, to be used when restoring back to generic registers from a specific set. */ char *sh_generic_reg_names[] = REGISTER_NAMES; char *sh_reg_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "pc", "pr", "gbr", "vbr", "mach", "macl", "sr", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", }; char *sh3_reg_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "pc", "pr", "gbr", "vbr", "mach", "macl", "sr", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "ssr", "spc", "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0", "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1" }; char *sh3e_reg_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "pc", "pr", "gbr", "vbr", "mach", "macl", "sr", "fpul", "fpscr", "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", "ssr", "spc", "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0", "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1", }; struct { char *name; char **regnames; } sh_processor_type_table[] = { { "sh", sh_reg_names }, { "sh3", sh3_reg_names }, { "sh3e", sh3e_reg_names }, { NULL, NULL } }; /* Prologue looks like [mov.l ,@-r15]... [sts.l pr,@-r15] [mov.l r14,@-r15] [mov r15,r14] */ #define IS_STS(x) ((x) == 0x4f22) #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06) #define GET_PUSHED_REG(x) (((x) >> 4) & 0xf) #define IS_MOV_SP_FP(x) ((x) == 0x6ef3) #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00) #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00) #define IS_SHLL_R3(x) ((x) == 0x4300) #define IS_ADD_R3SP(x) ((x) == 0x3f3c) /* Skip any prologue before the guts of a function */ CORE_ADDR sh_skip_prologue (start_pc) CORE_ADDR start_pc; { int w; w = read_memory_integer (start_pc, 2); while (IS_STS (w) || IS_PUSH (w) || IS_MOV_SP_FP (w) || IS_MOV_R3 (w) || IS_ADD_R3SP (w) || IS_ADD_SP (w) || IS_SHLL_R3 (w)) { start_pc += 2; w = read_memory_integer (start_pc, 2); } return start_pc; } /* Disassemble an instruction. */ int gdb_print_insn_sh (memaddr, info) bfd_vma memaddr; disassemble_info *info; { if (TARGET_BYTE_ORDER == BIG_ENDIAN) return print_insn_sh (memaddr, info); else return print_insn_shl (memaddr, info); } /* Given a GDB frame, determine the address of the calling function's frame. This will be used to create a new GDB frame struct, and then INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. For us, the frame address is its stack pointer value, so we look up the function prologue to determine the caller's sp value, and return it. */ CORE_ADDR sh_frame_chain (frame) struct frame_info *frame; { if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) return frame->frame; /* dummy frame same as caller's frame */ if (!inside_entry_file (frame->pc)) return read_memory_integer (FRAME_FP (frame) + frame->f_offset, 4); else return 0; } /* Find REGNUM on the stack. Otherwise, it's in an active register. One thing we might want to do here is to check REGNUM against the clobber mask, and somehow flag it as invalid if it isn't saved on the stack somewhere. This would provide a graceful failure mode when trying to get the value of caller-saves registers for an inner frame. */ CORE_ADDR sh_find_callers_reg (fi, regnum) struct frame_info *fi; int regnum; { struct frame_saved_regs fsr; for (; fi; fi = fi->next) if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) /* When the caller requests PR from the dummy frame, we return PC because that's where the previous routine appears to have done a call from. */ return generic_read_register_dummy (fi, regnum); else { FRAME_FIND_SAVED_REGS(fi, fsr); if (fsr.regs[regnum] != 0) return read_memory_integer (fsr.regs[regnum], REGISTER_RAW_SIZE(regnum)); } return read_register (regnum); } /* Put here the code to store, into a struct frame_saved_regs, the addresses of the saved registers of frame described by FRAME_INFO. This includes special registers such as pc and fp saved in special ways in the stack frame. sp is even more special: the address we return for it IS the sp for the next frame. */ /* FIXME! A lot of this should be abstracted out into a sh_scan_prologue function, and the struct frame_info should have a frame_saved_regs embedded in it, so we would only have to do this once. */ void sh_frame_find_saved_regs (fi, fsr) struct frame_info *fi; struct frame_saved_regs *fsr; { int where[NUM_REGS]; int rn; int have_fp = 0; int depth; int pc; int opc; int insn; int r3_val = 0; char * dummy_regs = generic_find_dummy_frame (fi->pc, fi->frame, fi->frame); if (dummy_regs) { /* DANGER! This is ONLY going to work if the char buffer format of the saved registers is byte-for-byte identical to the CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */ memcpy (&fsr->regs, dummy_regs, sizeof(fsr)); return; } opc = pc = get_pc_function_start (fi->pc); insn = read_memory_integer (pc, 2); fi->leaf_function = 1; fi->f_offset = 0; for (rn = 0; rn < NUM_REGS; rn++) where[rn] = -1; depth = 0; /* Loop around examining the prologue insns, but give up after 15 of them, since we're getting silly then */ while (pc < opc + 15 * 2) { /* See where the registers will be saved to */ if (IS_PUSH (insn)) { pc += 2; rn = GET_PUSHED_REG (insn); where[rn] = depth; insn = read_memory_integer (pc, 2); depth += 4; } else if (IS_STS (insn)) { pc += 2; where[PR_REGNUM] = depth; insn = read_memory_integer (pc, 2); /* If we're storing the pr then this isn't a leaf */ fi->leaf_function = 0; depth += 4; } else if (IS_MOV_R3 (insn)) { r3_val = (char) (insn & 0xff); pc += 2; insn = read_memory_integer (pc, 2); } else if (IS_SHLL_R3 (insn)) { r3_val <<= 1; pc += 2; insn = read_memory_integer (pc, 2); } else if (IS_ADD_R3SP (insn)) { depth += -r3_val; pc += 2; insn = read_memory_integer (pc, 2); } else if (IS_ADD_SP (insn)) { pc += 2; depth += -((char) (insn & 0xff)); insn = read_memory_integer (pc, 2); } else break; } /* Now we know how deep things are, we can work out their addresses */ for (rn = 0; rn < NUM_REGS; rn++) { if (where[rn] >= 0) { if (rn == FP_REGNUM) have_fp = 1; fsr->regs[rn] = fi->frame - where[rn] + depth - 4; } else { fsr->regs[rn] = 0; } } if (have_fp) { fsr->regs[SP_REGNUM] = read_memory_integer (fsr->regs[FP_REGNUM], 4); } else { fsr->regs[SP_REGNUM] = fi->frame - 4; } fi->f_offset = depth - where[FP_REGNUM] - 4; /* Work out the return pc - either from the saved pr or the pr value */ } /* initialize the extra info saved in a FRAME */ void sh_init_extra_frame_info (fromleaf, fi) int fromleaf; struct frame_info *fi; { struct frame_saved_regs fsr; if (fi->next) fi->pc = FRAME_SAVED_PC (fi->next); if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) { /* We need to setup fi->frame here because run_stack_dummy gets it wrong by assuming it's always FP. */ fi->frame = generic_read_register_dummy (fi, SP_REGNUM); fi->return_pc = generic_read_register_dummy (fi, PC_REGNUM); fi->f_offset = -(CALL_DUMMY_LENGTH + 4); fi->leaf_function = 0; return; } else { FRAME_FIND_SAVED_REGS (fi, fsr); fi->return_pc = sh_find_callers_reg (fi, PR_REGNUM); } } /* Discard from the stack the innermost frame, restoring all saved registers. */ void sh_pop_frame () { register struct frame_info *frame = get_current_frame (); register CORE_ADDR fp; register int regnum; struct frame_saved_regs fsr; if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) generic_pop_dummy_frame (); else { fp = FRAME_FP (frame); get_frame_saved_regs (frame, &fsr); /* Copy regs from where they were saved in the frame */ for (regnum = 0; regnum < NUM_REGS; regnum++) if (fsr.regs[regnum]) write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); write_register (PC_REGNUM, frame->return_pc); write_register (SP_REGNUM, fp + 4); } flush_cached_frames (); } /* Function: push_arguments Setup the function arguments for calling a function in the inferior. On the Hitachi SH architecture, there are four registers (R4 to R7) which are dedicated for passing function arguments. Up to the first four arguments (depending on size) may go into these registers. The rest go on the stack. Arguments that are smaller than 4 bytes will still take up a whole register or a whole 32-bit word on the stack, and will be right-justified in the register or the stack word. This includes chars, shorts, and small aggregate types. Arguments that are larger than 4 bytes may be split between two or more registers. If there are not enough registers free, an argument may be passed partly in a register (or registers), and partly on the stack. This includes doubles, long longs, and larger aggregates. As far as I know, there is no upper limit to the size of aggregates that will be passed in this way; in other words, the convention of passing a pointer to a large aggregate instead of a copy is not used. An exceptional case exists for struct arguments (and possibly other aggregates such as arrays) if the size is larger than 4 bytes but not a multiple of 4 bytes. In this case the argument is never split between the registers and the stack, but instead is copied in its entirety onto the stack, AND also copied into as many registers as there is room for. In other words, space in registers permitting, two copies of the same argument are passed in. As far as I can tell, only the one on the stack is used, although that may be a function of the level of compiler optimization. I suspect this is a compiler bug. Arguments of these odd sizes are left-justified within the word (as opposed to arguments smaller than 4 bytes, which are right-justified). If the function is to return an aggregate type such as a struct, it is either returned in the normal return value register R0 (if its size is no greater than one byte), or else the caller must allocate space into which the callee will copy the return value (if the size is greater than one byte). In this case, a pointer to the return value location is passed into the callee in register R2, which does not displace any of the other arguments passed in via registers R4 to R7. */ CORE_ADDR sh_push_arguments (nargs, args, sp, struct_return, struct_addr) int nargs; value_ptr *args; CORE_ADDR sp; unsigned char struct_return; CORE_ADDR struct_addr; { int argreg; int argnum; CORE_ADDR regval; char *val; char valbuf[4]; int len; int push[4]; /* some of the first 4 args may not need to be pushed onto the stack, because they can go in registers */ /* first force sp to a 4-byte alignment */ sp = sp & ~3; /* The "struct return pointer" pseudo-argument has its own dedicated register */ if (struct_return) write_register (STRUCT_RETURN_REGNUM, struct_addr); /* Now load as many as possible of the first arguments into registers. There are 16 bytes in four registers available. Loop thru args from first to last. */ push[0] = push[1] = push[2] = push[3] = 0; for (argnum = 0, argreg = ARG0_REGNUM; argnum < nargs && argreg <= ARGLAST_REGNUM; argnum++) { struct type *type = VALUE_TYPE (args[argnum]); len = TYPE_LENGTH (type); switch (TYPE_CODE(type)) { case TYPE_CODE_STRUCT: case TYPE_CODE_UNION: /* case TYPE_CODE_ARRAY: case TYPE_CODE_STRING: */ if (len <= 4 || (len & ~3) == 0) push[argnum] = 0; /* doesn't get pushed onto stack */ else push[argnum] = len; /* does get pushed onto stack */ break; default: push[argnum] = 0; /* doesn't get pushed onto stack */ } if (len < 4) { /* value gets right-justified in the register */ memcpy(valbuf + (4 - len), (char *) VALUE_CONTENTS (args[argnum]), len); val = valbuf; } else val = (char *) VALUE_CONTENTS (args[argnum]); while (len > 0) { regval = extract_address (val, REGISTER_RAW_SIZE (argreg)); write_register (argreg, regval); len -= REGISTER_RAW_SIZE (argreg); val += REGISTER_RAW_SIZE (argreg); argreg++; if (argreg > ARGLAST_REGNUM) { push[argnum] = len; /* ran out of arg passing registers! */ break; /* len bytes remain to go onto stack */ } } } /* Now push as many as necessary of the remaining arguments onto the stack. For args 0 to 3, the arg may have been passed in a register. Loop thru args from last to first. */ for (argnum = nargs-1; argnum >= 0; --argnum) { if (argnum < 4 && push[argnum] == 0) continue; /* no need to push this arg */ len = TYPE_LENGTH (VALUE_TYPE (args[argnum])); if (len < 4) { memcpy(valbuf + (4 - len), (char *) VALUE_CONTENTS (args[argnum]), len); val = valbuf; } else val = (char *) VALUE_CONTENTS (args[argnum]); if (argnum < 4) if (len > push[argnum]) /* some part may already be in a reg */ { val += (len - push[argnum]); len = push[argnum]; } sp -= (len + 3) & ~3; write_memory (sp, val, len); } return sp; } /* Function: push_return_address (pc) Set up the return address for the inferior function call. Necessary for targets where we don't actually execute a JSR/BSR instruction */ void sh_push_return_address (pc) CORE_ADDR pc; { write_register (PR_REGNUM, entry_point_address ()); } /* Command to set the processor type. */ void sh_set_processor_type_command (args, from_tty) char *args; int from_tty; { int i; char *temp; /* The `set' commands work by setting the value, then calling the hook, so we let the general command modify a scratch location, then decide here if we really want to modify the processor type. */ if (tmp_sh_processor_type == NULL || *tmp_sh_processor_type == '\0') { printf_unfiltered ("The known SH processor types are as follows:\n\n"); for (i = 0; sh_processor_type_table[i].name != NULL; ++i) printf_unfiltered ("%s\n", sh_processor_type_table[i].name); /* Restore the value. */ tmp_sh_processor_type = strsave (sh_processor_type); return; } if (!sh_set_processor_type (tmp_sh_processor_type)) { /* Restore to a valid value before erroring out. */ temp = tmp_sh_processor_type; tmp_sh_processor_type = strsave (sh_processor_type); error ("Unknown processor type `%s'.", temp); } } /* This is a dummy not actually run. */ static void sh_show_processor_type_command (args, from_tty) char *args; int from_tty; { } /* Modify the actual processor type. */ int sh_set_processor_type (str) char *str; { int i, j; if (str == NULL) return 0; for (i = 0; sh_processor_type_table[i].name != NULL; ++i) { if (strcasecmp (str, sh_processor_type_table[i].name) == 0) { sh_processor_type = str; for (j = 0; j < NUM_REGS; ++j) reg_names[j] = sh_processor_type_table[i].regnames[j]; return 1; } } return 0; } /* Print the registers in a form similar to the E7000 */ static void sh_show_regs (args, from_tty) char *args; int from_tty; { printf_filtered ("PC=%08x SR=%08x PR=%08x MACH=%08x MACHL=%08x\n", read_register (PC_REGNUM), read_register (SR_REGNUM), read_register (PR_REGNUM), read_register (MACH_REGNUM), read_register (MACL_REGNUM)); printf_filtered ("R0-R7 %08x %08x %08x %08x %08x %08x %08x %08x\n", read_register (0), read_register (1), read_register (2), read_register (3), read_register (4), read_register (5), read_register (6), read_register (7)); printf_filtered ("R8-R15 %08x %08x %08x %08x %08x %08x %08x %08x\n", read_register (8), read_register (9), read_register (10), read_register (11), read_register (12), read_register (13), read_register (14), read_register (15)); } void sh_extract_return_value (type, regbuf, valbuf) struct type *type; void *regbuf; void *valbuf; { int len = TYPE_LENGTH(type); if (len <= 4) memcpy (valbuf, ((char *) regbuf) + 4 - len, len); else if (len <= 8) memcpy (valbuf, ((char *) regbuf) + 8 - len, len); else error ("bad size for return value"); } void _initialize_sh_tdep () { struct cmd_list_element *c; tm_print_insn = gdb_print_insn_sh; c = add_set_cmd ("processor", class_support, var_string_noescape, (char *) &tmp_sh_processor_type, "Set the type of SH processor in use.\n\ Set this to be able to access processor-type-specific registers.\n\ ", &setlist); c->function.cfunc = sh_set_processor_type_command; c = add_show_from_set (c, &showlist); c->function.cfunc = sh_show_processor_type_command; tmp_sh_processor_type = strsave (DEFAULT_SH_TYPE); sh_set_processor_type_command (strsave (DEFAULT_SH_TYPE), 0); add_com ("regs", class_vars, sh_show_regs, "Print all registers"); /* Reduce the remote write size because some CMONs can't take more than 400 bytes in a packet. 300 seems like a safe bet. */ remote_write_size = 300; } /* * DUMMY FRAMES * * The following code serves to maintain the dummy stack frames for * inferior function calls (ie. when gdb calls into the inferior via * call_function_by_hand). This code saves the machine state before * the call in host memory, so it must maintain an independant stack * and keep it consistant etc. I am attempting to make this code * generic enough to be used by many targets. * * The cheapest and most generic way to do CALL_DUMMY on a new target * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to zero, * and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember to define * PUSH_RETURN_ADDRESS, because there won't be a call instruction to do it. */ /* Dummy frame. This saves the processor state just prior to setting up the inferior function call. On most targets, the registers are saved on the target stack, but that really slows down function calls. */ struct dummy_frame { struct dummy_frame *next; CORE_ADDR pc; CORE_ADDR fp; CORE_ADDR sp; char regs[REGISTER_BYTES]; }; static struct dummy_frame *dummy_frame_stack = NULL; /* Function: find_dummy_frame(pc, fp, sp) Search the stack of dummy frames for one matching the given PC, FP and SP. This is the work-horse for pc_in_call_dummy and read_register_dummy */ char * generic_find_dummy_frame (pc, fp, sp) CORE_ADDR pc; CORE_ADDR fp; CORE_ADDR sp; { struct dummy_frame * dummyframe; CORE_ADDR bkpt_address; extern CORE_ADDR text_end; #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT bkpt_address = entry_point_address () + CALL_DUMMY_BREAKPOINT_OFFSET; if (pc != bkpt_address && pc != bkpt_address + DECR_PC_AFTER_BREAK) return 0; #endif /* AT_ENTRY_POINT */ #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END bkpt_address = text_end - CALL_DUMMY_LENGTH + CALL_DUMMY_BREAKPOINT_OFFSET; if (pc != bkpt_address && pc != bkpt_address + DECR_PC_AFTER_BREAK) return 0; #endif /* BEFORE_TEXT_END */ #if CALL_DUMMY_LOCATION == AFTER_TEXT_END bkpt_address = text_end + CALL_DUMMY_BREAKPOINT_OFFSET; if (pc != bkpt_address && pc != bkpt_address + DECR_PC_AFTER_BREAK) return 0; #endif /* AFTER_TEXT_END */ for (dummyframe = dummy_frame_stack; dummyframe; dummyframe = dummyframe->next) if (fp == dummyframe->fp || sp == dummyframe->sp) { #if CALL_DUMMY_LOCATION == ON_STACK CORE_ADDR bkpt_offset; /* distance from original frame ptr to bkpt */ if (1 INNER_THAN 2) bkpt_offset = CALL_DUMMY_BREAK_OFFSET; else bkpt_offset = CALL_DUMMY_LENGTH - CALL_DUMMY_BREAK_OFFSET; if (pc + bkpt_offset == dummyframe->fp || pc + bkpt_offset == dummyframe->sp || pc + bkpt_offset + DECR_PC_AFTER_BREAK == dummyframe->fp || pc + bkpt_offset + DECR_PC_AFTER_BREAK == dummyframe->sp) #endif /* ON_STACK */ return dummyframe->regs; } return 0; } /* Function: pc_in_call_dummy (pc, fp, sp) Return true if this is a dummy frame created by gdb for an inferior call */ int generic_pc_in_call_dummy (pc, fp, sp) CORE_ADDR pc; CORE_ADDR fp; CORE_ADDR sp; { /* if find_dummy_frame succeeds, then PC is in a call dummy */ return (generic_find_dummy_frame (pc, fp, sp) != 0); } /* Function: read_register_dummy (pc, fp, sp, regno) Find a saved register from before GDB calls a function in the inferior */ CORE_ADDR generic_read_register_dummy (fi, regno) struct frame_info *fi; int regno; { char *dummy_regs = generic_find_dummy_frame (fi->pc, fi->frame, NULL); if (dummy_regs) return extract_address (&dummy_regs[REGISTER_BYTE (regno)], REGISTER_RAW_SIZE(regno)); else return 0; } /* Save all the registers on the dummy frame stack. Most ports save the registers on the target stack. This results in lots of unnecessary memory references, which are slow when debugging via a serial line. Instead, we save all the registers internally, and never write them to the stack. The registers get restored when the called function returns to the entry point, where a breakpoint is laying in wait. */ void generic_push_dummy_frame () { struct dummy_frame *dummy_frame; CORE_ADDR fp = read_register(FP_REGNUM); /* check to see if there are stale dummy frames, perhaps left over from when a longjump took us out of a function that was called by the debugger */ dummy_frame = dummy_frame_stack; while (dummy_frame) if (dummy_frame->fp INNER_THAN fp) /* stale -- destroy! */ { dummy_frame_stack = dummy_frame->next; free (dummy_frame); dummy_frame = dummy_frame_stack; } else dummy_frame = dummy_frame->next; dummy_frame = xmalloc (sizeof (struct dummy_frame)); read_register_bytes (0, dummy_frame->regs, REGISTER_BYTES); dummy_frame->pc = read_register (PC_REGNUM); dummy_frame->fp = read_register (FP_REGNUM); dummy_frame->sp = read_register (SP_REGNUM); dummy_frame->next = dummy_frame_stack; dummy_frame_stack = dummy_frame; } /* Function: pop_dummy_frame Restore the machine state from a saved dummy stack frame. */ void generic_pop_dummy_frame () { struct dummy_frame *dummy_frame = dummy_frame_stack; if (!dummy_frame) error ("Can't pop dummy frame!"); dummy_frame_stack = dummy_frame->next; write_register_bytes (0, dummy_frame->regs, REGISTER_BYTES); free (dummy_frame); } /* Function: frame_chain_valid Returns true for a user frame or a call_function_by_hand dummy frame, and false for the CRT0 start-up frame. Purpose is to terminate backtrace */ int generic_frame_chain_valid (fp, fi) CORE_ADDR fp; struct frame_info *fi; { if (PC_IN_CALL_DUMMY(FRAME_SAVED_PC(fi), fp, fp)) return 1; /* don't prune CALL_DUMMY frames */ else /* fall back to default algorithm (see frame.h) */ return (fp != 0 && !inside_entry_file (FRAME_SAVED_PC(fi))); }