/* Serial interface for local (hardwired) serial ports on Windows systems Copyright (C) 2006, 2007, 2008 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "defs.h" #include "serial.h" #include "ser-base.h" #include "ser-tcp.h" #include <windows.h> #include <conio.h> #include <fcntl.h> #include <unistd.h> #include <sys/types.h> #include "gdb_assert.h" #include "gdb_string.h" void _initialize_ser_windows (void); struct ser_windows_state { int in_progress; OVERLAPPED ov; DWORD lastCommMask; HANDLE except_event; }; /* Open up a real live device for serial I/O. */ static int ser_windows_open (struct serial *scb, const char *name) { HANDLE h; struct ser_windows_state *state; COMMTIMEOUTS timeouts; /* Only allow COM ports. */ if (strncmp (name, "COM", 3) != 0) { errno = ENOENT; return -1; } h = CreateFile (name, GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL); if (h == INVALID_HANDLE_VALUE) { errno = ENOENT; return -1; } scb->fd = _open_osfhandle ((long) h, O_RDWR); if (scb->fd < 0) { errno = ENOENT; return -1; } if (!SetCommMask (h, EV_RXCHAR)) { errno = EINVAL; return -1; } timeouts.ReadIntervalTimeout = MAXDWORD; timeouts.ReadTotalTimeoutConstant = 0; timeouts.ReadTotalTimeoutMultiplier = 0; timeouts.WriteTotalTimeoutConstant = 0; timeouts.WriteTotalTimeoutMultiplier = 0; if (!SetCommTimeouts (h, &timeouts)) { errno = EINVAL; return -1; } state = xmalloc (sizeof (struct ser_windows_state)); memset (state, 0, sizeof (struct ser_windows_state)); scb->state = state; /* Create a manual reset event to watch the input buffer. */ state->ov.hEvent = CreateEvent (0, TRUE, FALSE, 0); /* Create a (currently unused) handle to record exceptions. */ state->except_event = CreateEvent (0, TRUE, FALSE, 0); return 0; } /* Wait for the output to drain away, as opposed to flushing (discarding) it. */ static int ser_windows_drain_output (struct serial *scb) { HANDLE h = (HANDLE) _get_osfhandle (scb->fd); return (FlushFileBuffers (h) != 0) ? 0 : -1; } static int ser_windows_flush_output (struct serial *scb) { HANDLE h = (HANDLE) _get_osfhandle (scb->fd); return (PurgeComm (h, PURGE_TXCLEAR) != 0) ? 0 : -1; } static int ser_windows_flush_input (struct serial *scb) { HANDLE h = (HANDLE) _get_osfhandle (scb->fd); return (PurgeComm (h, PURGE_RXCLEAR) != 0) ? 0 : -1; } static int ser_windows_send_break (struct serial *scb) { HANDLE h = (HANDLE) _get_osfhandle (scb->fd); if (SetCommBreak (h) == 0) return -1; /* Delay for 250 milliseconds. */ Sleep (250); if (ClearCommBreak (h)) return -1; return 0; } static void ser_windows_raw (struct serial *scb) { HANDLE h = (HANDLE) _get_osfhandle (scb->fd); DCB state; if (GetCommState (h, &state) == 0) return; state.fParity = FALSE; state.fOutxCtsFlow = FALSE; state.fOutxDsrFlow = FALSE; state.fDtrControl = DTR_CONTROL_ENABLE; state.fDsrSensitivity = FALSE; state.fOutX = FALSE; state.fInX = FALSE; state.fNull = FALSE; state.fAbortOnError = FALSE; state.ByteSize = 8; state.Parity = NOPARITY; scb->current_timeout = 0; if (SetCommState (h, &state) == 0) warning (_("SetCommState failed\n")); } static int ser_windows_setstopbits (struct serial *scb, int num) { HANDLE h = (HANDLE) _get_osfhandle (scb->fd); DCB state; if (GetCommState (h, &state) == 0) return -1; switch (num) { case SERIAL_1_STOPBITS: state.StopBits = ONESTOPBIT; break; case SERIAL_1_AND_A_HALF_STOPBITS: state.StopBits = ONE5STOPBITS; break; case SERIAL_2_STOPBITS: state.StopBits = TWOSTOPBITS; break; default: return 1; } return (SetCommState (h, &state) != 0) ? 0 : -1; } static int ser_windows_setbaudrate (struct serial *scb, int rate) { HANDLE h = (HANDLE) _get_osfhandle (scb->fd); DCB state; if (GetCommState (h, &state) == 0) return -1; state.BaudRate = rate; return (SetCommState (h, &state) != 0) ? 0 : -1; } static void ser_windows_close (struct serial *scb) { struct ser_windows_state *state; /* Stop any pending selects. */ CancelIo ((HANDLE) _get_osfhandle (scb->fd)); state = scb->state; CloseHandle (state->ov.hEvent); CloseHandle (state->except_event); if (scb->fd < 0) return; close (scb->fd); scb->fd = -1; xfree (scb->state); } static void ser_windows_wait_handle (struct serial *scb, HANDLE *read, HANDLE *except) { struct ser_windows_state *state; COMSTAT status; DWORD errors; HANDLE h = (HANDLE) _get_osfhandle (scb->fd); state = scb->state; *except = state->except_event; *read = state->ov.hEvent; if (state->in_progress) return; /* Reset the mask - we are only interested in any characters which arrive after this point, not characters which might have arrived and already been read. */ /* This really, really shouldn't be necessary - just the second one. But otherwise an internal flag for EV_RXCHAR does not get cleared, and we get a duplicated event, if the last batch of characters included at least two arriving close together. */ if (!SetCommMask (h, 0)) warning (_("ser_windows_wait_handle: reseting mask failed")); if (!SetCommMask (h, EV_RXCHAR)) warning (_("ser_windows_wait_handle: reseting mask failed (2)")); /* There's a potential race condition here; we must check cbInQue and not wait if that's nonzero. */ ClearCommError (h, &errors, &status); if (status.cbInQue > 0) { SetEvent (state->ov.hEvent); return; } state->in_progress = 1; ResetEvent (state->ov.hEvent); state->lastCommMask = -2; if (WaitCommEvent (h, &state->lastCommMask, &state->ov)) { gdb_assert (state->lastCommMask & EV_RXCHAR); SetEvent (state->ov.hEvent); } else gdb_assert (GetLastError () == ERROR_IO_PENDING); } static int ser_windows_read_prim (struct serial *scb, size_t count) { struct ser_windows_state *state; OVERLAPPED ov; DWORD bytes_read, bytes_read_tmp; HANDLE h; gdb_byte *p; state = scb->state; if (state->in_progress) { WaitForSingleObject (state->ov.hEvent, INFINITE); state->in_progress = 0; ResetEvent (state->ov.hEvent); } memset (&ov, 0, sizeof (OVERLAPPED)); ov.hEvent = CreateEvent (0, FALSE, FALSE, 0); h = (HANDLE) _get_osfhandle (scb->fd); if (!ReadFile (h, scb->buf, /* count */ 1, &bytes_read, &ov)) { if (GetLastError () != ERROR_IO_PENDING || !GetOverlappedResult (h, &ov, &bytes_read, TRUE)) bytes_read = -1; } CloseHandle (ov.hEvent); return bytes_read; } static int ser_windows_write_prim (struct serial *scb, const void *buf, size_t len) { struct ser_windows_state *state; OVERLAPPED ov; DWORD bytes_written; HANDLE h; memset (&ov, 0, sizeof (OVERLAPPED)); ov.hEvent = CreateEvent (0, FALSE, FALSE, 0); h = (HANDLE) _get_osfhandle (scb->fd); if (!WriteFile (h, buf, len, &bytes_written, &ov)) { if (GetLastError () != ERROR_IO_PENDING || !GetOverlappedResult (h, &ov, &bytes_written, TRUE)) bytes_written = -1; } CloseHandle (ov.hEvent); return bytes_written; } /* On Windows, gdb_select is implemented using WaitForMulpleObjects. A "select thread" is created for each file descriptor. These threads looks for activity on the corresponding descriptor, using whatever techniques are appropriate for the descriptor type. When that activity occurs, the thread signals an appropriate event, which wakes up WaitForMultipleObjects. Each select thread is in one of two states: stopped or started. Select threads begin in the stopped state. When gdb_select is called, threads corresponding to the descriptors of interest are started by calling a wait_handle function. Each thread that notices activity signals the appropriate event and then reenters the stopped state. Before gdb_select returns it calls the wait_handle_done functions, which return the threads to the stopped state. */ enum select_thread_state { STS_STARTED, STS_STOPPED }; struct ser_console_state { /* Signaled by the select thread to indicate that data is available on the file descriptor. */ HANDLE read_event; /* Signaled by the select thread to indicate that an exception has occurred on the file descriptor. */ HANDLE except_event; /* Signaled by the select thread to indicate that it has entered the started state. HAVE_STARTED and HAVE_STOPPED are never signaled simultaneously. */ HANDLE have_started; /* Signaled by the select thread to indicate that it has stopped, either because data is available (and READ_EVENT is signaled), because an exception has occurred (and EXCEPT_EVENT is signaled), or because STOP_SELECT was signaled. */ HANDLE have_stopped; /* Signaled by the main program to tell the select thread to enter the started state. */ HANDLE start_select; /* Signaled by the main program to tell the select thread to enter the stopped state. */ HANDLE stop_select; /* Signaled by the main program to tell the select thread to exit. */ HANDLE exit_select; /* The handle for the select thread. */ HANDLE thread; /* The state of the select thread. This field is only accessed in the main program, never by the select thread itself. */ enum select_thread_state thread_state; }; /* Called by a select thread to enter the stopped state. This function does not return until the thread has re-entered the started state. */ static void select_thread_wait (struct ser_console_state *state) { HANDLE wait_events[2]; /* There are two things that can wake us up: a request that we enter the started state, or that we exit this thread. */ wait_events[0] = state->start_select; wait_events[1] = state->exit_select; if (WaitForMultipleObjects (2, wait_events, FALSE, INFINITE) != WAIT_OBJECT_0) /* Either the EXIT_SELECT event was signaled (requesting that the thread exit) or an error has occurred. In either case, we exit the thread. */ ExitThread (0); /* We are now in the started state. */ SetEvent (state->have_started); } typedef DWORD WINAPI (*thread_fn_type)(void *); /* Create a new select thread for SCB executing THREAD_FN. The STATE will be filled in by this function before return. */ void create_select_thread (thread_fn_type thread_fn, struct serial *scb, struct ser_console_state *state) { DWORD threadId; /* Create all of the events. These are all auto-reset events. */ state->read_event = CreateEvent (NULL, FALSE, FALSE, NULL); state->except_event = CreateEvent (NULL, FALSE, FALSE, NULL); state->have_started = CreateEvent (NULL, FALSE, FALSE, NULL); state->have_stopped = CreateEvent (NULL, FALSE, FALSE, NULL); state->start_select = CreateEvent (NULL, FALSE, FALSE, NULL); state->stop_select = CreateEvent (NULL, FALSE, FALSE, NULL); state->exit_select = CreateEvent (NULL, FALSE, FALSE, NULL); state->thread = CreateThread (NULL, 0, thread_fn, scb, 0, &threadId); /* The thread begins in the stopped state. */ state->thread_state = STS_STOPPED; } /* Destroy the select thread indicated by STATE. */ static void destroy_select_thread (struct ser_console_state *state) { /* Ask the thread to exit. */ SetEvent (state->exit_select); /* Wait until it does. */ WaitForSingleObject (state->thread, INFINITE); /* Destroy the events. */ CloseHandle (state->read_event); CloseHandle (state->except_event); CloseHandle (state->have_started); CloseHandle (state->have_stopped); CloseHandle (state->start_select); CloseHandle (state->stop_select); CloseHandle (state->exit_select); } /* Called by gdb_select to start the select thread indicated by STATE. This function does not return until the thread has started. */ static void start_select_thread (struct ser_console_state *state) { /* Ask the thread to start. */ SetEvent (state->start_select); /* Wait until it does. */ WaitForSingleObject (state->have_started, INFINITE); /* The thread is now started. */ state->thread_state = STS_STARTED; } /* Called by gdb_select to stop the select thread indicated by STATE. This function does not return until the thread has stopped. */ static void stop_select_thread (struct ser_console_state *state) { /* If the thread is already in the stopped state, we have nothing to do. Some of the wait_handle functions avoid calling start_select_thread if they notice activity on the relevant file descriptors. The wait_handle_done functions still call stop_select_thread -- but it is already stopped. */ if (state->thread_state != STS_STARTED) return; /* Ask the thread to stop. */ SetEvent (state->stop_select); /* Wait until it does. */ WaitForSingleObject (state->have_stopped, INFINITE); /* The thread is now stopped. */ state->thread_state = STS_STOPPED; } static DWORD WINAPI console_select_thread (void *arg) { struct serial *scb = arg; struct ser_console_state *state; int event_index; HANDLE h; state = scb->state; h = (HANDLE) _get_osfhandle (scb->fd); while (1) { HANDLE wait_events[2]; INPUT_RECORD record; DWORD n_records; select_thread_wait (state); while (1) { wait_events[0] = state->stop_select; wait_events[1] = h; event_index = WaitForMultipleObjects (2, wait_events, FALSE, INFINITE); if (event_index == WAIT_OBJECT_0 || WaitForSingleObject (state->stop_select, 0) == WAIT_OBJECT_0) break; if (event_index != WAIT_OBJECT_0 + 1) { /* Wait must have failed; assume an error has occured, e.g. the handle has been closed. */ SetEvent (state->except_event); break; } /* We've got a pending event on the console. See if it's of interest. */ if (!PeekConsoleInput (h, &record, 1, &n_records) || n_records != 1) { /* Something went wrong. Maybe the console is gone. */ SetEvent (state->except_event); break; } if (record.EventType == KEY_EVENT && record.Event.KeyEvent.bKeyDown) { WORD keycode = record.Event.KeyEvent.wVirtualKeyCode; /* Ignore events containing only control keys. We must recognize "enhanced" keys which we are interested in reading via getch, if they do not map to ASCII. But we do not want to report input available for e.g. the control key alone. */ if (record.Event.KeyEvent.uChar.AsciiChar != 0 || keycode == VK_PRIOR || keycode == VK_NEXT || keycode == VK_END || keycode == VK_HOME || keycode == VK_LEFT || keycode == VK_UP || keycode == VK_RIGHT || keycode == VK_DOWN || keycode == VK_INSERT || keycode == VK_DELETE) { /* This is really a keypress. */ SetEvent (state->read_event); break; } } /* Otherwise discard it and wait again. */ ReadConsoleInput (h, &record, 1, &n_records); } SetEvent(state->have_stopped); } } static int fd_is_pipe (int fd) { if (PeekNamedPipe ((HANDLE) _get_osfhandle (fd), NULL, 0, NULL, NULL, NULL)) return 1; else return 0; } static int fd_is_file (int fd) { if (GetFileType ((HANDLE) _get_osfhandle (fd)) == FILE_TYPE_DISK) return 1; else return 0; } static DWORD WINAPI pipe_select_thread (void *arg) { struct serial *scb = arg; struct ser_console_state *state; int event_index; HANDLE h; state = scb->state; h = (HANDLE) _get_osfhandle (scb->fd); while (1) { DWORD n_avail; select_thread_wait (state); /* Wait for something to happen on the pipe. */ while (1) { if (!PeekNamedPipe (h, NULL, 0, NULL, &n_avail, NULL)) { SetEvent (state->except_event); break; } if (n_avail > 0) { SetEvent (state->read_event); break; } /* Delay 10ms before checking again, but allow the stop event to wake us. */ if (WaitForSingleObject (state->stop_select, 10) == WAIT_OBJECT_0) break; } SetEvent (state->have_stopped); } } static DWORD WINAPI file_select_thread (void *arg) { struct serial *scb = arg; struct ser_console_state *state; int event_index; HANDLE h; state = scb->state; h = (HANDLE) _get_osfhandle (scb->fd); while (1) { select_thread_wait (state); if (SetFilePointer (h, 0, NULL, FILE_CURRENT) == INVALID_SET_FILE_POINTER) SetEvent (state->except_event); else SetEvent (state->read_event); SetEvent (state->have_stopped); } } static void ser_console_wait_handle (struct serial *scb, HANDLE *read, HANDLE *except) { struct ser_console_state *state = scb->state; if (state == NULL) { thread_fn_type thread_fn; int is_tty; is_tty = isatty (scb->fd); if (!is_tty && !fd_is_file (scb->fd) && !fd_is_pipe (scb->fd)) { *read = NULL; *except = NULL; return; } state = xmalloc (sizeof (struct ser_console_state)); memset (state, 0, sizeof (struct ser_console_state)); scb->state = state; if (is_tty) thread_fn = console_select_thread; else if (fd_is_pipe (scb->fd)) thread_fn = pipe_select_thread; else thread_fn = file_select_thread; create_select_thread (thread_fn, scb, state); } *read = state->read_event; *except = state->except_event; /* Start from a blank state. */ ResetEvent (state->read_event); ResetEvent (state->except_event); ResetEvent (state->stop_select); /* First check for a key already in the buffer. If there is one, we don't need a thread. This also catches the second key of multi-character returns from getch, for instance for arrow keys. The second half is in a C library internal buffer, and PeekConsoleInput will not find it. */ if (_kbhit ()) { SetEvent (state->read_event); return; } /* Otherwise, start the select thread. */ start_select_thread (state); } static void ser_console_done_wait_handle (struct serial *scb) { struct ser_console_state *state = scb->state; if (state == NULL) return; stop_select_thread (state); } static void ser_console_close (struct serial *scb) { struct ser_console_state *state = scb->state; if (scb->state) { destroy_select_thread (state); xfree (scb->state); } } struct ser_console_ttystate { int is_a_tty; }; static serial_ttystate ser_console_get_tty_state (struct serial *scb) { if (isatty (scb->fd)) { struct ser_console_ttystate *state; state = (struct ser_console_ttystate *) xmalloc (sizeof *state); state->is_a_tty = 1; return state; } else return NULL; } struct pipe_state { /* Since we use the pipe_select_thread for our select emulation, we need to place the state structure it requires at the front of our state. */ struct ser_console_state wait; /* The pex obj for our (one-stage) pipeline. */ struct pex_obj *pex; /* Streams for the pipeline's input and output. */ FILE *input, *output; }; static struct pipe_state * make_pipe_state (void) { struct pipe_state *ps = XMALLOC (struct pipe_state); memset (ps, 0, sizeof (*ps)); ps->wait.read_event = INVALID_HANDLE_VALUE; ps->wait.except_event = INVALID_HANDLE_VALUE; ps->wait.start_select = INVALID_HANDLE_VALUE; ps->wait.stop_select = INVALID_HANDLE_VALUE; return ps; } static void free_pipe_state (struct pipe_state *ps) { int saved_errno = errno; if (ps->wait.read_event != INVALID_HANDLE_VALUE) destroy_select_thread (&ps->wait); /* Close the pipe to the child. We must close the pipe before calling pex_free because pex_free will wait for the child to exit and the child will not exit until the pipe is closed. */ if (ps->input) fclose (ps->input); if (ps->pex) pex_free (ps->pex); /* pex_free closes ps->output. */ xfree (ps); errno = saved_errno; } static void cleanup_pipe_state (void *untyped) { struct pipe_state *ps = untyped; free_pipe_state (ps); } static int pipe_windows_open (struct serial *scb, const char *name) { struct pipe_state *ps; FILE *pex_stderr; char **argv = buildargv (name); struct cleanup *back_to = make_cleanup_freeargv (argv); if (! argv[0] || argv[0][0] == '\0') error ("missing child command"); ps = make_pipe_state (); make_cleanup (cleanup_pipe_state, ps); ps->pex = pex_init (PEX_USE_PIPES, "target remote pipe", NULL); if (! ps->pex) goto fail; ps->input = pex_input_pipe (ps->pex, 1); if (! ps->input) goto fail; { int err; const char *err_msg = pex_run (ps->pex, PEX_SEARCH | PEX_BINARY_INPUT | PEX_BINARY_OUTPUT | PEX_STDERR_TO_PIPE, argv[0], argv, NULL, NULL, &err); if (err_msg) { /* Our caller expects us to return -1, but all they'll do with it generally is print the message based on errno. We have all the same information here, plus err_msg provided by pex_run, so we just raise the error here. */ if (err) error ("error starting child process '%s': %s: %s", name, err_msg, safe_strerror (err)); else error ("error starting child process '%s': %s", name, err_msg); } } ps->output = pex_read_output (ps->pex, 1); if (! ps->output) goto fail; scb->fd = fileno (ps->output); pex_stderr = pex_read_err (ps->pex, 1); if (! pex_stderr) goto fail; scb->error_fd = fileno (pex_stderr); scb->state = (void *) ps; discard_cleanups (back_to); return 0; fail: do_cleanups (back_to); return -1; } static void pipe_windows_close (struct serial *scb) { struct pipe_state *ps = scb->state; /* In theory, we should try to kill the subprocess here, but the pex interface doesn't give us enough information to do that. Usually closing the input pipe will get the message across. */ free_pipe_state (ps); } static int pipe_windows_read (struct serial *scb, size_t count) { HANDLE pipeline_out = (HANDLE) _get_osfhandle (scb->fd); DWORD available; DWORD bytes_read; if (pipeline_out == INVALID_HANDLE_VALUE) return -1; if (! PeekNamedPipe (pipeline_out, NULL, 0, NULL, &available, NULL)) return -1; if (count > available) count = available; if (! ReadFile (pipeline_out, scb->buf, count, &bytes_read, NULL)) return -1; return bytes_read; } static int pipe_windows_write (struct serial *scb, const void *buf, size_t count) { struct pipe_state *ps = scb->state; HANDLE pipeline_in; DWORD written; int pipeline_in_fd = fileno (ps->input); if (pipeline_in_fd < 0) return -1; pipeline_in = (HANDLE) _get_osfhandle (pipeline_in_fd); if (pipeline_in == INVALID_HANDLE_VALUE) return -1; if (! WriteFile (pipeline_in, buf, count, &written, NULL)) return -1; return written; } static void pipe_wait_handle (struct serial *scb, HANDLE *read, HANDLE *except) { struct pipe_state *ps = scb->state; /* Have we allocated our events yet? */ if (ps->wait.read_event == INVALID_HANDLE_VALUE) /* Start the thread. */ create_select_thread (pipe_select_thread, scb, &ps->wait); *read = ps->wait.read_event; *except = ps->wait.except_event; /* Start from a blank state. */ ResetEvent (ps->wait.read_event); ResetEvent (ps->wait.except_event); ResetEvent (ps->wait.stop_select); start_select_thread (&ps->wait); } static void pipe_done_wait_handle (struct serial *scb) { struct pipe_state *ps = scb->state; /* Have we allocated our events yet? */ if (ps->wait.read_event == INVALID_HANDLE_VALUE) return; stop_select_thread (&ps->wait); } static int pipe_avail (struct serial *scb, int fd) { HANDLE h = (HANDLE) _get_osfhandle (fd); DWORD numBytes; BOOL r = PeekNamedPipe (h, NULL, 0, NULL, &numBytes, NULL); if (r == FALSE) numBytes = 0; return numBytes; } struct net_windows_state { struct ser_console_state base; HANDLE sock_event; }; static DWORD WINAPI net_windows_select_thread (void *arg) { struct serial *scb = arg; struct net_windows_state *state; int event_index; state = scb->state; while (1) { HANDLE wait_events[2]; WSANETWORKEVENTS events; select_thread_wait (&state->base); wait_events[0] = state->base.stop_select; wait_events[1] = state->sock_event; event_index = WaitForMultipleObjects (2, wait_events, FALSE, INFINITE); if (event_index == WAIT_OBJECT_0 || WaitForSingleObject (state->base.stop_select, 0) == WAIT_OBJECT_0) /* We have been requested to stop. */ ; else if (event_index != WAIT_OBJECT_0 + 1) /* Some error has occured. Assume that this is an error condition. */ SetEvent (state->base.except_event); else { /* Enumerate the internal network events, and reset the object that signalled us to catch the next event. */ WSAEnumNetworkEvents (scb->fd, state->sock_event, &events); gdb_assert (events.lNetworkEvents & (FD_READ | FD_CLOSE)); if (events.lNetworkEvents & FD_READ) SetEvent (state->base.read_event); if (events.lNetworkEvents & FD_CLOSE) SetEvent (state->base.except_event); } SetEvent (state->base.have_stopped); } } static void net_windows_wait_handle (struct serial *scb, HANDLE *read, HANDLE *except) { struct net_windows_state *state = scb->state; /* Start from a clean slate. */ ResetEvent (state->base.read_event); ResetEvent (state->base.except_event); ResetEvent (state->base.stop_select); *read = state->base.read_event; *except = state->base.except_event; /* Check any pending events. This both avoids starting the thread unnecessarily, and handles stray FD_READ events (see below). */ if (WaitForSingleObject (state->sock_event, 0) == WAIT_OBJECT_0) { WSANETWORKEVENTS events; int any = 0; /* Enumerate the internal network events, and reset the object that signalled us to catch the next event. */ WSAEnumNetworkEvents (scb->fd, state->sock_event, &events); /* You'd think that FD_READ or FD_CLOSE would be set here. But, sometimes, neither is. I suspect that the FD_READ is set and the corresponding event signalled while recv is running, and the FD_READ is then lowered when recv consumes all the data, but there's no way to un-signal the event. This isn't a problem for the call in net_select_thread, since any new events after this point will not have been drained by recv. It just means that we can't have the obvious assert here. */ /* If there is a read event, it might be still valid, or it might not be - it may have been signalled before we last called recv. Double-check that there is data. */ if (events.lNetworkEvents & FD_READ) { unsigned long available; if (ioctlsocket (scb->fd, FIONREAD, &available) == 0 && available > 0) { SetEvent (state->base.read_event); any = 1; } else /* Oops, no data. This call to recv will cause future data to retrigger the event, e.g. while we are in net_select_thread. */ recv (scb->fd, NULL, 0, 0); } /* If there's a close event, then record it - it is obviously still valid, and it will not be resignalled. */ if (events.lNetworkEvents & FD_CLOSE) { SetEvent (state->base.except_event); any = 1; } /* If we set either handle, there's no need to wake the thread. */ if (any) return; } start_select_thread (&state->base); } static void net_windows_done_wait_handle (struct serial *scb) { struct net_windows_state *state = scb->state; stop_select_thread (&state->base); } static int net_windows_open (struct serial *scb, const char *name) { struct net_windows_state *state; int ret; DWORD threadId; ret = net_open (scb, name); if (ret != 0) return ret; state = xmalloc (sizeof (struct net_windows_state)); memset (state, 0, sizeof (struct net_windows_state)); scb->state = state; /* Associate an event with the socket. */ state->sock_event = CreateEvent (0, TRUE, FALSE, 0); WSAEventSelect (scb->fd, state->sock_event, FD_READ | FD_CLOSE); /* Start the thread. */ create_select_thread (net_windows_select_thread, scb, &state->base); return 0; } static void net_windows_close (struct serial *scb) { struct net_windows_state *state = scb->state; destroy_select_thread (&state->base); CloseHandle (state->sock_event); xfree (scb->state); net_close (scb); } void _initialize_ser_windows (void) { WSADATA wsa_data; struct serial_ops *ops; /* First register the serial port driver. */ ops = XMALLOC (struct serial_ops); memset (ops, 0, sizeof (struct serial_ops)); ops->name = "hardwire"; ops->next = 0; ops->open = ser_windows_open; ops->close = ser_windows_close; ops->flush_output = ser_windows_flush_output; ops->flush_input = ser_windows_flush_input; ops->send_break = ser_windows_send_break; /* These are only used for stdin; we do not need them for serial ports, so supply the standard dummies. */ ops->get_tty_state = ser_base_get_tty_state; ops->set_tty_state = ser_base_set_tty_state; ops->print_tty_state = ser_base_print_tty_state; ops->noflush_set_tty_state = ser_base_noflush_set_tty_state; ops->go_raw = ser_windows_raw; ops->setbaudrate = ser_windows_setbaudrate; ops->setstopbits = ser_windows_setstopbits; ops->drain_output = ser_windows_drain_output; ops->readchar = ser_base_readchar; ops->write = ser_base_write; ops->async = ser_base_async; ops->read_prim = ser_windows_read_prim; ops->write_prim = ser_windows_write_prim; ops->wait_handle = ser_windows_wait_handle; serial_add_interface (ops); /* Next create the dummy serial driver used for terminals. We only provide the TTY-related methods. */ ops = XMALLOC (struct serial_ops); memset (ops, 0, sizeof (struct serial_ops)); ops->name = "terminal"; ops->next = 0; ops->close = ser_console_close; ops->get_tty_state = ser_console_get_tty_state; ops->set_tty_state = ser_base_set_tty_state; ops->print_tty_state = ser_base_print_tty_state; ops->noflush_set_tty_state = ser_base_noflush_set_tty_state; ops->drain_output = ser_base_drain_output; ops->wait_handle = ser_console_wait_handle; ops->done_wait_handle = ser_console_done_wait_handle; serial_add_interface (ops); /* The pipe interface. */ ops = XMALLOC (struct serial_ops); memset (ops, 0, sizeof (struct serial_ops)); ops->name = "pipe"; ops->next = 0; ops->open = pipe_windows_open; ops->close = pipe_windows_close; ops->readchar = ser_base_readchar; ops->write = ser_base_write; ops->flush_output = ser_base_flush_output; ops->flush_input = ser_base_flush_input; ops->send_break = ser_base_send_break; ops->go_raw = ser_base_raw; ops->get_tty_state = ser_base_get_tty_state; ops->set_tty_state = ser_base_set_tty_state; ops->print_tty_state = ser_base_print_tty_state; ops->noflush_set_tty_state = ser_base_noflush_set_tty_state; ops->setbaudrate = ser_base_setbaudrate; ops->setstopbits = ser_base_setstopbits; ops->drain_output = ser_base_drain_output; ops->async = ser_base_async; ops->read_prim = pipe_windows_read; ops->write_prim = pipe_windows_write; ops->wait_handle = pipe_wait_handle; ops->done_wait_handle = pipe_done_wait_handle; ops->avail = pipe_avail; serial_add_interface (ops); /* If WinSock works, register the TCP/UDP socket driver. */ if (WSAStartup (MAKEWORD (1, 0), &wsa_data) != 0) /* WinSock is unavailable. */ return; ops = XMALLOC (struct serial_ops); memset (ops, 0, sizeof (struct serial_ops)); ops->name = "tcp"; ops->next = 0; ops->open = net_windows_open; ops->close = net_windows_close; ops->readchar = ser_base_readchar; ops->write = ser_base_write; ops->flush_output = ser_base_flush_output; ops->flush_input = ser_base_flush_input; ops->send_break = ser_base_send_break; ops->go_raw = ser_base_raw; ops->get_tty_state = ser_base_get_tty_state; ops->set_tty_state = ser_base_set_tty_state; ops->print_tty_state = ser_base_print_tty_state; ops->noflush_set_tty_state = ser_base_noflush_set_tty_state; ops->setbaudrate = ser_base_setbaudrate; ops->setstopbits = ser_base_setstopbits; ops->drain_output = ser_base_drain_output; ops->async = ser_base_async; ops->read_prim = net_read_prim; ops->write_prim = net_write_prim; ops->wait_handle = net_windows_wait_handle; ops->done_wait_handle = net_windows_done_wait_handle; serial_add_interface (ops); }