/* S390 native-dependent code for GDB, the GNU debugger. Copyright (C) 2001-2015 Free Software Foundation, Inc. Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) for IBM Deutschland Entwicklung GmbH, IBM Corporation. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "regcache.h" #include "inferior.h" #include "target.h" #include "linux-nat.h" #include "auxv.h" #include "gregset.h" #include "regset.h" #include "nat/linux-ptrace.h" #include "s390-linux-tdep.h" #include "elf/common.h" #include #include "nat/gdb_ptrace.h" #include #include #include #include /* Per-thread arch-specific data. */ struct arch_lwp_info { /* Non-zero if the thread's PER info must be re-written. */ int per_info_changed; }; static int have_regset_last_break = 0; static int have_regset_system_call = 0; static int have_regset_tdb = 0; static int have_regset_vxrs = 0; /* Register map for 32-bit executables running under a 64-bit kernel. */ #ifdef __s390x__ static const struct regcache_map_entry s390_64_regmap_gregset[] = { /* Skip PSWM and PSWA, since they must be handled specially. */ { 2, REGCACHE_MAP_SKIP, 8 }, { 1, S390_R0_UPPER_REGNUM, 4 }, { 1, S390_R0_REGNUM, 4 }, { 1, S390_R1_UPPER_REGNUM, 4 }, { 1, S390_R1_REGNUM, 4 }, { 1, S390_R2_UPPER_REGNUM, 4 }, { 1, S390_R2_REGNUM, 4 }, { 1, S390_R3_UPPER_REGNUM, 4 }, { 1, S390_R3_REGNUM, 4 }, { 1, S390_R4_UPPER_REGNUM, 4 }, { 1, S390_R4_REGNUM, 4 }, { 1, S390_R5_UPPER_REGNUM, 4 }, { 1, S390_R5_REGNUM, 4 }, { 1, S390_R6_UPPER_REGNUM, 4 }, { 1, S390_R6_REGNUM, 4 }, { 1, S390_R7_UPPER_REGNUM, 4 }, { 1, S390_R7_REGNUM, 4 }, { 1, S390_R8_UPPER_REGNUM, 4 }, { 1, S390_R8_REGNUM, 4 }, { 1, S390_R9_UPPER_REGNUM, 4 }, { 1, S390_R9_REGNUM, 4 }, { 1, S390_R10_UPPER_REGNUM, 4 }, { 1, S390_R10_REGNUM, 4 }, { 1, S390_R11_UPPER_REGNUM, 4 }, { 1, S390_R11_REGNUM, 4 }, { 1, S390_R12_UPPER_REGNUM, 4 }, { 1, S390_R12_REGNUM, 4 }, { 1, S390_R13_UPPER_REGNUM, 4 }, { 1, S390_R13_REGNUM, 4 }, { 1, S390_R14_UPPER_REGNUM, 4 }, { 1, S390_R14_REGNUM, 4 }, { 1, S390_R15_UPPER_REGNUM, 4 }, { 1, S390_R15_REGNUM, 4 }, { 16, S390_A0_REGNUM, 4 }, { 1, REGCACHE_MAP_SKIP, 4 }, { 1, S390_ORIG_R2_REGNUM, 4 }, { 0 } }; static const struct regset s390_64_gregset = { s390_64_regmap_gregset, regcache_supply_regset, regcache_collect_regset }; #define S390_PSWM_OFFSET 0 #define S390_PSWA_OFFSET 8 #endif /* Fill GDB's register array with the general-purpose register values in *REGP. When debugging a 32-bit executable running under a 64-bit kernel, we have to fix up the 64-bit registers we get from the kernel to make them look like 32-bit registers. */ void supply_gregset (struct regcache *regcache, const gregset_t *regp) { #ifdef __s390x__ struct gdbarch *gdbarch = get_regcache_arch (regcache); if (gdbarch_ptr_bit (gdbarch) == 32) { enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); ULONGEST pswm, pswa; gdb_byte buf[4]; regcache_supply_regset (&s390_64_gregset, regcache, -1, regp, sizeof (gregset_t)); pswm = extract_unsigned_integer ((const gdb_byte *) regp + S390_PSWM_OFFSET, 8, byte_order); pswa = extract_unsigned_integer ((const gdb_byte *) regp + S390_PSWA_OFFSET, 8, byte_order); store_unsigned_integer (buf, 4, byte_order, (pswm >> 32) | 0x80000); regcache_raw_supply (regcache, S390_PSWM_REGNUM, buf); store_unsigned_integer (buf, 4, byte_order, (pswa & 0x7fffffff) | (pswm & 0x80000000)); regcache_raw_supply (regcache, S390_PSWA_REGNUM, buf); return; } #endif regcache_supply_regset (&s390_gregset, regcache, -1, regp, sizeof (gregset_t)); } /* Fill register REGNO (if it is a general-purpose register) in *REGP with the value in GDB's register array. If REGNO is -1, do this for all registers. */ void fill_gregset (const struct regcache *regcache, gregset_t *regp, int regno) { #ifdef __s390x__ struct gdbarch *gdbarch = get_regcache_arch (regcache); if (gdbarch_ptr_bit (gdbarch) == 32) { regcache_collect_regset (&s390_64_gregset, regcache, regno, regp, sizeof (gregset_t)); if (regno == -1 || regno == S390_PSWM_REGNUM || regno == S390_PSWA_REGNUM) { enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); ULONGEST pswa, pswm; gdb_byte buf[4]; gdb_byte *pswm_p = (gdb_byte *) regp + S390_PSWM_OFFSET; gdb_byte *pswa_p = (gdb_byte *) regp + S390_PSWA_OFFSET; pswm = extract_unsigned_integer (pswm_p, 8, byte_order); if (regno == -1 || regno == S390_PSWM_REGNUM) { pswm &= 0x80000000; regcache_raw_collect (regcache, S390_PSWM_REGNUM, buf); pswm |= (extract_unsigned_integer (buf, 4, byte_order) & 0xfff7ffff) << 32; } if (regno == -1 || regno == S390_PSWA_REGNUM) { regcache_raw_collect (regcache, S390_PSWA_REGNUM, buf); pswa = extract_unsigned_integer (buf, 4, byte_order); pswm ^= (pswm ^ pswa) & 0x80000000; pswa &= 0x7fffffff; store_unsigned_integer (pswa_p, 8, byte_order, pswa); } store_unsigned_integer (pswm_p, 8, byte_order, pswm); } return; } #endif regcache_collect_regset (&s390_gregset, regcache, regno, regp, sizeof (gregset_t)); } /* Fill GDB's register array with the floating-point register values in *REGP. */ void supply_fpregset (struct regcache *regcache, const fpregset_t *regp) { regcache_supply_regset (&s390_fpregset, regcache, -1, regp, sizeof (fpregset_t)); } /* Fill register REGNO (if it is a general-purpose register) in *REGP with the value in GDB's register array. If REGNO is -1, do this for all registers. */ void fill_fpregset (const struct regcache *regcache, fpregset_t *regp, int regno) { regcache_collect_regset (&s390_fpregset, regcache, regno, regp, sizeof (fpregset_t)); } /* Find the TID for the current inferior thread to use with ptrace. */ static int s390_inferior_tid (void) { /* GNU/Linux LWP ID's are process ID's. */ int tid = ptid_get_lwp (inferior_ptid); if (tid == 0) tid = ptid_get_pid (inferior_ptid); /* Not a threaded program. */ return tid; } /* Fetch all general-purpose registers from process/thread TID and store their values in GDB's register cache. */ static void fetch_regs (struct regcache *regcache, int tid) { gregset_t regs; ptrace_area parea; parea.len = sizeof (regs); parea.process_addr = (addr_t) ®s; parea.kernel_addr = offsetof (struct user_regs_struct, psw); if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0) perror_with_name (_("Couldn't get registers")); supply_gregset (regcache, (const gregset_t *) ®s); } /* Store all valid general-purpose registers in GDB's register cache into the process/thread specified by TID. */ static void store_regs (const struct regcache *regcache, int tid, int regnum) { gregset_t regs; ptrace_area parea; parea.len = sizeof (regs); parea.process_addr = (addr_t) ®s; parea.kernel_addr = offsetof (struct user_regs_struct, psw); if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0) perror_with_name (_("Couldn't get registers")); fill_gregset (regcache, ®s, regnum); if (ptrace (PTRACE_POKEUSR_AREA, tid, (long) &parea, 0) < 0) perror_with_name (_("Couldn't write registers")); } /* Fetch all floating-point registers from process/thread TID and store their values in GDB's register cache. */ static void fetch_fpregs (struct regcache *regcache, int tid) { fpregset_t fpregs; ptrace_area parea; parea.len = sizeof (fpregs); parea.process_addr = (addr_t) &fpregs; parea.kernel_addr = offsetof (struct user_regs_struct, fp_regs); if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0) perror_with_name (_("Couldn't get floating point status")); supply_fpregset (regcache, (const fpregset_t *) &fpregs); } /* Store all valid floating-point registers in GDB's register cache into the process/thread specified by TID. */ static void store_fpregs (const struct regcache *regcache, int tid, int regnum) { fpregset_t fpregs; ptrace_area parea; parea.len = sizeof (fpregs); parea.process_addr = (addr_t) &fpregs; parea.kernel_addr = offsetof (struct user_regs_struct, fp_regs); if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0) perror_with_name (_("Couldn't get floating point status")); fill_fpregset (regcache, &fpregs, regnum); if (ptrace (PTRACE_POKEUSR_AREA, tid, (long) &parea, 0) < 0) perror_with_name (_("Couldn't write floating point status")); } /* Fetch all registers in the kernel's register set whose number is REGSET_ID, whose size is REGSIZE, and whose layout is described by REGSET, from process/thread TID and store their values in GDB's register cache. */ static void fetch_regset (struct regcache *regcache, int tid, int regset_id, int regsize, const struct regset *regset) { gdb_byte *buf = alloca (regsize); struct iovec iov; iov.iov_base = buf; iov.iov_len = regsize; if (ptrace (PTRACE_GETREGSET, tid, (long) regset_id, (long) &iov) < 0) { if (errno == ENODATA) regcache_supply_regset (regset, regcache, -1, NULL, regsize); else perror_with_name (_("Couldn't get register set")); } else regcache_supply_regset (regset, regcache, -1, buf, regsize); } /* Store all registers in the kernel's register set whose number is REGSET_ID, whose size is REGSIZE, and whose layout is described by REGSET, from GDB's register cache back to process/thread TID. */ static void store_regset (struct regcache *regcache, int tid, int regset_id, int regsize, const struct regset *regset) { gdb_byte *buf = alloca (regsize); struct iovec iov; iov.iov_base = buf; iov.iov_len = regsize; if (ptrace (PTRACE_GETREGSET, tid, (long) regset_id, (long) &iov) < 0) perror_with_name (_("Couldn't get register set")); regcache_collect_regset (regset, regcache, -1, buf, regsize); if (ptrace (PTRACE_SETREGSET, tid, (long) regset_id, (long) &iov) < 0) perror_with_name (_("Couldn't set register set")); } /* Check whether the kernel provides a register set with number REGSET of size REGSIZE for process/thread TID. */ static int check_regset (int tid, int regset, int regsize) { gdb_byte *buf = alloca (regsize); struct iovec iov; iov.iov_base = buf; iov.iov_len = regsize; if (ptrace (PTRACE_GETREGSET, tid, (long) regset, (long) &iov) >= 0 || errno == ENODATA) return 1; return 0; } /* Fetch register REGNUM from the child process. If REGNUM is -1, do this for all registers. */ static void s390_linux_fetch_inferior_registers (struct target_ops *ops, struct regcache *regcache, int regnum) { int tid = s390_inferior_tid (); if (regnum == -1 || S390_IS_GREGSET_REGNUM (regnum)) fetch_regs (regcache, tid); if (regnum == -1 || S390_IS_FPREGSET_REGNUM (regnum)) fetch_fpregs (regcache, tid); if (have_regset_last_break) if (regnum == -1 || regnum == S390_LAST_BREAK_REGNUM) fetch_regset (regcache, tid, NT_S390_LAST_BREAK, 8, (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 32 ? &s390_last_break_regset : &s390x_last_break_regset)); if (have_regset_system_call) if (regnum == -1 || regnum == S390_SYSTEM_CALL_REGNUM) fetch_regset (regcache, tid, NT_S390_SYSTEM_CALL, 4, &s390_system_call_regset); if (have_regset_tdb) if (regnum == -1 || S390_IS_TDBREGSET_REGNUM (regnum)) fetch_regset (regcache, tid, NT_S390_TDB, s390_sizeof_tdbregset, &s390_tdb_regset); if (have_regset_vxrs) { if (regnum == -1 || (regnum >= S390_V0_LOWER_REGNUM && regnum <= S390_V15_LOWER_REGNUM)) fetch_regset (regcache, tid, NT_S390_VXRS_LOW, 16 * 8, &s390_vxrs_low_regset); if (regnum == -1 || (regnum >= S390_V16_REGNUM && regnum <= S390_V31_REGNUM)) fetch_regset (regcache, tid, NT_S390_VXRS_HIGH, 16 * 16, &s390_vxrs_high_regset); } } /* Store register REGNUM back into the child process. If REGNUM is -1, do this for all registers. */ static void s390_linux_store_inferior_registers (struct target_ops *ops, struct regcache *regcache, int regnum) { int tid = s390_inferior_tid (); if (regnum == -1 || S390_IS_GREGSET_REGNUM (regnum)) store_regs (regcache, tid, regnum); if (regnum == -1 || S390_IS_FPREGSET_REGNUM (regnum)) store_fpregs (regcache, tid, regnum); /* S390_LAST_BREAK_REGNUM is read-only. */ if (have_regset_system_call) if (regnum == -1 || regnum == S390_SYSTEM_CALL_REGNUM) store_regset (regcache, tid, NT_S390_SYSTEM_CALL, 4, &s390_system_call_regset); if (have_regset_vxrs) { if (regnum == -1 || (regnum >= S390_V0_LOWER_REGNUM && regnum <= S390_V15_LOWER_REGNUM)) store_regset (regcache, tid, NT_S390_VXRS_LOW, 16 * 8, &s390_vxrs_low_regset); if (regnum == -1 || (regnum >= S390_V16_REGNUM && regnum <= S390_V31_REGNUM)) store_regset (regcache, tid, NT_S390_VXRS_HIGH, 16 * 16, &s390_vxrs_high_regset); } } /* Hardware-assisted watchpoint handling. */ /* We maintain a list of all currently active watchpoints in order to properly handle watchpoint removal. The only thing we actually need is the total address space area spanned by the watchpoints. */ struct watch_area { struct watch_area *next; CORE_ADDR lo_addr; CORE_ADDR hi_addr; }; static struct watch_area *watch_base = NULL; static int s390_stopped_by_watchpoint (struct target_ops *ops) { per_lowcore_bits per_lowcore; ptrace_area parea; int result; /* Speed up common case. */ if (!watch_base) return 0; parea.len = sizeof (per_lowcore); parea.process_addr = (addr_t) & per_lowcore; parea.kernel_addr = offsetof (struct user_regs_struct, per_info.lowcore); if (ptrace (PTRACE_PEEKUSR_AREA, s390_inferior_tid (), &parea, 0) < 0) perror_with_name (_("Couldn't retrieve watchpoint status")); result = (per_lowcore.perc_storage_alteration == 1 && per_lowcore.perc_store_real_address == 0); if (result) { /* Do not report this watchpoint again. */ memset (&per_lowcore, 0, sizeof (per_lowcore)); if (ptrace (PTRACE_POKEUSR_AREA, s390_inferior_tid (), &parea, 0) < 0) perror_with_name (_("Couldn't clear watchpoint status")); } return result; } /* Each time before resuming a thread, update its PER info. */ static void s390_prepare_to_resume (struct lwp_info *lp) { int tid; per_struct per_info; ptrace_area parea; CORE_ADDR watch_lo_addr = (CORE_ADDR)-1, watch_hi_addr = 0; struct watch_area *area; if (lp->arch_private == NULL || !lp->arch_private->per_info_changed) return; lp->arch_private->per_info_changed = 0; tid = ptid_get_lwp (lp->ptid); if (tid == 0) tid = ptid_get_pid (lp->ptid); for (area = watch_base; area; area = area->next) { watch_lo_addr = min (watch_lo_addr, area->lo_addr); watch_hi_addr = max (watch_hi_addr, area->hi_addr); } parea.len = sizeof (per_info); parea.process_addr = (addr_t) & per_info; parea.kernel_addr = offsetof (struct user_regs_struct, per_info); if (ptrace (PTRACE_PEEKUSR_AREA, tid, &parea, 0) < 0) perror_with_name (_("Couldn't retrieve watchpoint status")); if (watch_base) { per_info.control_regs.bits.em_storage_alteration = 1; per_info.control_regs.bits.storage_alt_space_ctl = 1; } else { per_info.control_regs.bits.em_storage_alteration = 0; per_info.control_regs.bits.storage_alt_space_ctl = 0; } per_info.starting_addr = watch_lo_addr; per_info.ending_addr = watch_hi_addr; if (ptrace (PTRACE_POKEUSR_AREA, tid, &parea, 0) < 0) perror_with_name (_("Couldn't modify watchpoint status")); } /* Make sure that LP is stopped and mark its PER info as changed, so the next resume will update it. */ static void s390_refresh_per_info (struct lwp_info *lp) { if (lp->arch_private == NULL) lp->arch_private = XCNEW (struct arch_lwp_info); lp->arch_private->per_info_changed = 1; if (!lp->stopped) linux_stop_lwp (lp); } /* When attaching to a new thread, mark its PER info as changed. */ static void s390_new_thread (struct lwp_info *lp) { lp->arch_private = XCNEW (struct arch_lwp_info); lp->arch_private->per_info_changed = 1; } static int s390_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len, int type, struct expression *cond) { struct lwp_info *lp; struct watch_area *area = xmalloc (sizeof (struct watch_area)); if (!area) return -1; area->lo_addr = addr; area->hi_addr = addr + len - 1; area->next = watch_base; watch_base = area; ALL_LWPS (lp) s390_refresh_per_info (lp); return 0; } static int s390_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len, int type, struct expression *cond) { struct lwp_info *lp; struct watch_area *area, **parea; for (parea = &watch_base; *parea; parea = &(*parea)->next) if ((*parea)->lo_addr == addr && (*parea)->hi_addr == addr + len - 1) break; if (!*parea) { fprintf_unfiltered (gdb_stderr, "Attempt to remove nonexistent watchpoint.\n"); return -1; } area = *parea; *parea = area->next; xfree (area); ALL_LWPS (lp) s390_refresh_per_info (lp); return 0; } static int s390_can_use_hw_breakpoint (struct target_ops *self, int type, int cnt, int othertype) { return type == bp_hardware_watchpoint; } static int s390_region_ok_for_hw_watchpoint (struct target_ops *self, CORE_ADDR addr, int cnt) { return 1; } static int s390_target_wordsize (void) { int wordsize = 4; /* Check for 64-bit inferior process. This is the case when the host is 64-bit, and in addition bit 32 of the PSW mask is set. */ #ifdef __s390x__ long pswm; errno = 0; pswm = (long) ptrace (PTRACE_PEEKUSER, s390_inferior_tid (), PT_PSWMASK, 0); if (errno == 0 && (pswm & 0x100000000ul) != 0) wordsize = 8; #endif return wordsize; } static int s390_auxv_parse (struct target_ops *ops, gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp) { int sizeof_auxv_field = s390_target_wordsize (); enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); gdb_byte *ptr = *readptr; if (endptr == ptr) return 0; if (endptr - ptr < sizeof_auxv_field * 2) return -1; *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); ptr += sizeof_auxv_field; *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); ptr += sizeof_auxv_field; *readptr = ptr; return 1; } static const struct target_desc * s390_read_description (struct target_ops *ops) { int tid = s390_inferior_tid (); have_regset_last_break = check_regset (tid, NT_S390_LAST_BREAK, 8); have_regset_system_call = check_regset (tid, NT_S390_SYSTEM_CALL, 4); /* If GDB itself is compiled as 64-bit, we are running on a machine in z/Architecture mode. If the target is running in 64-bit addressing mode, report s390x architecture. If the target is running in 31-bit addressing mode, but the kernel supports using 64-bit registers in that mode, report s390 architecture with 64-bit GPRs. */ #ifdef __s390x__ { CORE_ADDR hwcap = 0; target_auxv_search (¤t_target, AT_HWCAP, &hwcap); have_regset_tdb = (hwcap & HWCAP_S390_TE) && check_regset (tid, NT_S390_TDB, s390_sizeof_tdbregset); have_regset_vxrs = (hwcap & HWCAP_S390_VX) && check_regset (tid, NT_S390_VXRS_LOW, 16 * 8) && check_regset (tid, NT_S390_VXRS_HIGH, 16 * 16); if (s390_target_wordsize () == 8) return (have_regset_vxrs ? (have_regset_tdb ? tdesc_s390x_tevx_linux64 : tdesc_s390x_vx_linux64) : have_regset_tdb ? tdesc_s390x_te_linux64 : have_regset_system_call ? tdesc_s390x_linux64v2 : have_regset_last_break ? tdesc_s390x_linux64v1 : tdesc_s390x_linux64); if (hwcap & HWCAP_S390_HIGH_GPRS) return (have_regset_vxrs ? (have_regset_tdb ? tdesc_s390_tevx_linux64 : tdesc_s390_vx_linux64) : have_regset_tdb ? tdesc_s390_te_linux64 : have_regset_system_call ? tdesc_s390_linux64v2 : have_regset_last_break ? tdesc_s390_linux64v1 : tdesc_s390_linux64); } #endif /* If GDB itself is compiled as 31-bit, or if we're running a 31-bit inferior on a 64-bit kernel that does not support using 64-bit registers in 31-bit mode, report s390 architecture with 32-bit GPRs. */ return (have_regset_system_call? tdesc_s390_linux32v2 : have_regset_last_break? tdesc_s390_linux32v1 : tdesc_s390_linux32); } void _initialize_s390_nat (void); void _initialize_s390_nat (void) { struct target_ops *t; /* Fill in the generic GNU/Linux methods. */ t = linux_target (); /* Add our register access methods. */ t->to_fetch_registers = s390_linux_fetch_inferior_registers; t->to_store_registers = s390_linux_store_inferior_registers; /* Add our watchpoint methods. */ t->to_can_use_hw_breakpoint = s390_can_use_hw_breakpoint; t->to_region_ok_for_hw_watchpoint = s390_region_ok_for_hw_watchpoint; t->to_have_continuable_watchpoint = 1; t->to_stopped_by_watchpoint = s390_stopped_by_watchpoint; t->to_insert_watchpoint = s390_insert_watchpoint; t->to_remove_watchpoint = s390_remove_watchpoint; /* Detect target architecture. */ t->to_read_description = s390_read_description; t->to_auxv_parse = s390_auxv_parse; /* Register the target. */ linux_nat_add_target (t); linux_nat_set_new_thread (t, s390_new_thread); linux_nat_set_prepare_to_resume (t, s390_prepare_to_resume); }