/* IBM RS/6000 native-dependent code for GDB, the GNU debugger. Copyright (C) 1986-2014 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "inferior.h" #include "target.h" #include "gdbcore.h" #include "symfile.h" #include "objfiles.h" #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */ #include "bfd.h" #include "exceptions.h" #include "gdb-stabs.h" #include "regcache.h" #include "arch-utils.h" #include "inf-child.h" #include "inf-ptrace.h" #include "ppc-tdep.h" #include "rs6000-tdep.h" #include "rs6000-aix-tdep.h" #include "exec.h" #include "observer.h" #include "xcoffread.h" #include #include #include #include #include #include #include #include #include #include #include #include "gdb_bfd.h" #include #define __LDINFO_PTRACE32__ /* for __ld_info32 */ #define __LDINFO_PTRACE64__ /* for __ld_info64 */ #include #include /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for debugging 32-bit and 64-bit processes. Define a typedef and macros for accessing fields in the appropriate structures. */ /* In 32-bit compilation mode (which is the only mode from which ptrace() works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */ #if defined (__ld_info32) || defined (__ld_info64) # define ARCH3264 #endif /* Return whether the current architecture is 64-bit. */ #ifndef ARCH3264 # define ARCH64() 0 #else # define ARCH64() (register_size (target_gdbarch (), 0) == 8) #endif static void exec_one_dummy_insn (struct regcache *); static target_xfer_partial_ftype rs6000_xfer_shared_libraries; /* Given REGNO, a gdb register number, return the corresponding number suitable for use as a ptrace() parameter. Return -1 if there's no suitable mapping. Also, set the int pointed to by ISFLOAT to indicate whether REGNO is a floating point register. */ static int regmap (struct gdbarch *gdbarch, int regno, int *isfloat) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); *isfloat = 0; if (tdep->ppc_gp0_regnum <= regno && regno < tdep->ppc_gp0_regnum + ppc_num_gprs) return regno; else if (tdep->ppc_fp0_regnum >= 0 && tdep->ppc_fp0_regnum <= regno && regno < tdep->ppc_fp0_regnum + ppc_num_fprs) { *isfloat = 1; return regno - tdep->ppc_fp0_regnum + FPR0; } else if (regno == gdbarch_pc_regnum (gdbarch)) return IAR; else if (regno == tdep->ppc_ps_regnum) return MSR; else if (regno == tdep->ppc_cr_regnum) return CR; else if (regno == tdep->ppc_lr_regnum) return LR; else if (regno == tdep->ppc_ctr_regnum) return CTR; else if (regno == tdep->ppc_xer_regnum) return XER; else if (tdep->ppc_fpscr_regnum >= 0 && regno == tdep->ppc_fpscr_regnum) return FPSCR; else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum) return MQ; else return -1; } /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */ static int rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf) { #ifdef HAVE_PTRACE64 int ret = ptrace64 (req, id, (uintptr_t) addr, data, buf); #else int ret = ptrace (req, id, (int *)addr, data, buf); #endif #if 0 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n", req, id, (unsigned int)addr, data, (unsigned int)buf, ret); #endif return ret; } /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */ static int rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf) { #ifdef ARCH3264 # ifdef HAVE_PTRACE64 int ret = ptrace64 (req, id, addr, data, buf); # else int ret = ptracex (req, id, addr, data, buf); # endif #else int ret = 0; #endif #if 0 printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n", req, id, hex_string (addr), data, (unsigned int)buf, ret); #endif return ret; } /* Fetch register REGNO from the inferior. */ static void fetch_register (struct regcache *regcache, int regno) { struct gdbarch *gdbarch = get_regcache_arch (regcache); int addr[MAX_REGISTER_SIZE]; int nr, isfloat; /* Retrieved values may be -1, so infer errors from errno. */ errno = 0; nr = regmap (gdbarch, regno, &isfloat); /* Floating-point registers. */ if (isfloat) rs6000_ptrace32 (PT_READ_FPR, ptid_get_pid (inferior_ptid), addr, nr, 0); /* Bogus register number. */ else if (nr < 0) { if (regno >= gdbarch_num_regs (gdbarch)) fprintf_unfiltered (gdb_stderr, "gdb error: register no %d not implemented.\n", regno); return; } /* Fixed-point registers. */ else { if (!ARCH64 ()) *addr = rs6000_ptrace32 (PT_READ_GPR, ptid_get_pid (inferior_ptid), (int *) nr, 0, 0); else { /* PT_READ_GPR requires the buffer parameter to point to long long, even if the register is really only 32 bits. */ long long buf; rs6000_ptrace64 (PT_READ_GPR, ptid_get_pid (inferior_ptid), nr, 0, &buf); if (register_size (gdbarch, regno) == 8) memcpy (addr, &buf, 8); else *addr = buf; } } if (!errno) regcache_raw_supply (regcache, regno, (char *) addr); else { #if 0 /* FIXME: this happens 3 times at the start of each 64-bit program. */ perror (_("ptrace read")); #endif errno = 0; } } /* Store register REGNO back into the inferior. */ static void store_register (struct regcache *regcache, int regno) { struct gdbarch *gdbarch = get_regcache_arch (regcache); int addr[MAX_REGISTER_SIZE]; int nr, isfloat; /* Fetch the register's value from the register cache. */ regcache_raw_collect (regcache, regno, addr); /* -1 can be a successful return value, so infer errors from errno. */ errno = 0; nr = regmap (gdbarch, regno, &isfloat); /* Floating-point registers. */ if (isfloat) rs6000_ptrace32 (PT_WRITE_FPR, ptid_get_pid (inferior_ptid), addr, nr, 0); /* Bogus register number. */ else if (nr < 0) { if (regno >= gdbarch_num_regs (gdbarch)) fprintf_unfiltered (gdb_stderr, "gdb error: register no %d not implemented.\n", regno); } /* Fixed-point registers. */ else { if (regno == gdbarch_sp_regnum (gdbarch)) /* Execute one dummy instruction (which is a breakpoint) in inferior process to give kernel a chance to do internal housekeeping. Otherwise the following ptrace(2) calls will mess up user stack since kernel will get confused about the bottom of the stack (%sp). */ exec_one_dummy_insn (regcache); /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors, the register's value is passed by value, but for 64-bit inferiors, the address of a buffer containing the value is passed. */ if (!ARCH64 ()) rs6000_ptrace32 (PT_WRITE_GPR, ptid_get_pid (inferior_ptid), (int *) nr, *addr, 0); else { /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte area, even if the register is really only 32 bits. */ long long buf; if (register_size (gdbarch, regno) == 8) memcpy (&buf, addr, 8); else buf = *addr; rs6000_ptrace64 (PT_WRITE_GPR, ptid_get_pid (inferior_ptid), nr, 0, &buf); } } if (errno) { perror (_("ptrace write")); errno = 0; } } /* Read from the inferior all registers if REGNO == -1 and just register REGNO otherwise. */ static void rs6000_fetch_inferior_registers (struct target_ops *ops, struct regcache *regcache, int regno) { struct gdbarch *gdbarch = get_regcache_arch (regcache); if (regno != -1) fetch_register (regcache, regno); else { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); /* Read 32 general purpose registers. */ for (regno = tdep->ppc_gp0_regnum; regno < tdep->ppc_gp0_regnum + ppc_num_gprs; regno++) { fetch_register (regcache, regno); } /* Read general purpose floating point registers. */ if (tdep->ppc_fp0_regnum >= 0) for (regno = 0; regno < ppc_num_fprs; regno++) fetch_register (regcache, tdep->ppc_fp0_regnum + regno); /* Read special registers. */ fetch_register (regcache, gdbarch_pc_regnum (gdbarch)); fetch_register (regcache, tdep->ppc_ps_regnum); fetch_register (regcache, tdep->ppc_cr_regnum); fetch_register (regcache, tdep->ppc_lr_regnum); fetch_register (regcache, tdep->ppc_ctr_regnum); fetch_register (regcache, tdep->ppc_xer_regnum); if (tdep->ppc_fpscr_regnum >= 0) fetch_register (regcache, tdep->ppc_fpscr_regnum); if (tdep->ppc_mq_regnum >= 0) fetch_register (regcache, tdep->ppc_mq_regnum); } } /* Store our register values back into the inferior. If REGNO is -1, do this for all registers. Otherwise, REGNO specifies which register (so we can save time). */ static void rs6000_store_inferior_registers (struct target_ops *ops, struct regcache *regcache, int regno) { struct gdbarch *gdbarch = get_regcache_arch (regcache); if (regno != -1) store_register (regcache, regno); else { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); /* Write general purpose registers first. */ for (regno = tdep->ppc_gp0_regnum; regno < tdep->ppc_gp0_regnum + ppc_num_gprs; regno++) { store_register (regcache, regno); } /* Write floating point registers. */ if (tdep->ppc_fp0_regnum >= 0) for (regno = 0; regno < ppc_num_fprs; regno++) store_register (regcache, tdep->ppc_fp0_regnum + regno); /* Write special registers. */ store_register (regcache, gdbarch_pc_regnum (gdbarch)); store_register (regcache, tdep->ppc_ps_regnum); store_register (regcache, tdep->ppc_cr_regnum); store_register (regcache, tdep->ppc_lr_regnum); store_register (regcache, tdep->ppc_ctr_regnum); store_register (regcache, tdep->ppc_xer_regnum); if (tdep->ppc_fpscr_regnum >= 0) store_register (regcache, tdep->ppc_fpscr_regnum); if (tdep->ppc_mq_regnum >= 0) store_register (regcache, tdep->ppc_mq_regnum); } } /* Attempt a transfer all LEN bytes starting at OFFSET between the inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer. Return the number of bytes actually transferred. */ static LONGEST rs6000_xfer_partial (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len) { pid_t pid = ptid_get_pid (inferior_ptid); int arch64 = ARCH64 (); switch (object) { case TARGET_OBJECT_LIBRARIES_AIX: return rs6000_xfer_shared_libraries (ops, object, annex, readbuf, writebuf, offset, len); case TARGET_OBJECT_MEMORY: { union { PTRACE_TYPE_RET word; gdb_byte byte[sizeof (PTRACE_TYPE_RET)]; } buffer; ULONGEST rounded_offset; LONGEST partial_len; /* Round the start offset down to the next long word boundary. */ rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET); /* Since ptrace will transfer a single word starting at that rounded_offset the partial_len needs to be adjusted down to that (remember this function only does a single transfer). Should the required length be even less, adjust it down again. */ partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset; if (partial_len > len) partial_len = len; if (writebuf) { /* If OFFSET:PARTIAL_LEN is smaller than ROUNDED_OFFSET:WORDSIZE then a read/modify write will be needed. Read in the entire word. */ if (rounded_offset < offset || (offset + partial_len < rounded_offset + sizeof (PTRACE_TYPE_RET))) { /* Need part of initial word -- fetch it. */ if (arch64) buffer.word = rs6000_ptrace64 (PT_READ_I, pid, rounded_offset, 0, NULL); else buffer.word = rs6000_ptrace32 (PT_READ_I, pid, (int *) (uintptr_t) rounded_offset, 0, NULL); } /* Copy data to be written over corresponding part of buffer. */ memcpy (buffer.byte + (offset - rounded_offset), writebuf, partial_len); errno = 0; if (arch64) rs6000_ptrace64 (PT_WRITE_D, pid, rounded_offset, buffer.word, NULL); else rs6000_ptrace32 (PT_WRITE_D, pid, (int *) (uintptr_t) rounded_offset, buffer.word, NULL); if (errno) return 0; } if (readbuf) { errno = 0; if (arch64) buffer.word = rs6000_ptrace64 (PT_READ_I, pid, rounded_offset, 0, NULL); else buffer.word = rs6000_ptrace32 (PT_READ_I, pid, (int *)(uintptr_t)rounded_offset, 0, NULL); if (errno) return 0; /* Copy appropriate bytes out of the buffer. */ memcpy (readbuf, buffer.byte + (offset - rounded_offset), partial_len); } return partial_len; } default: return TARGET_XFER_E_IO; } } /* Wait for the child specified by PTID to do something. Return the process ID of the child, or MINUS_ONE_PTID in case of error; store the status in *OURSTATUS. */ static ptid_t rs6000_wait (struct target_ops *ops, ptid_t ptid, struct target_waitstatus *ourstatus, int options) { pid_t pid; int status, save_errno; do { set_sigint_trap (); do { pid = waitpid (ptid_get_pid (ptid), &status, 0); save_errno = errno; } while (pid == -1 && errno == EINTR); clear_sigint_trap (); if (pid == -1) { fprintf_unfiltered (gdb_stderr, _("Child process unexpectedly missing: %s.\n"), safe_strerror (save_errno)); /* Claim it exited with unknown signal. */ ourstatus->kind = TARGET_WAITKIND_SIGNALLED; ourstatus->value.sig = GDB_SIGNAL_UNKNOWN; return inferior_ptid; } /* Ignore terminated detached child processes. */ if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid)) pid = -1; } while (pid == -1); /* AIX has a couple of strange returns from wait(). */ /* stop after load" status. */ if (status == 0x57c) ourstatus->kind = TARGET_WAITKIND_LOADED; /* signal 0. I have no idea why wait(2) returns with this status word. */ else if (status == 0x7f) ourstatus->kind = TARGET_WAITKIND_SPURIOUS; /* A normal waitstatus. Let the usual macros deal with it. */ else store_waitstatus (ourstatus, status); return pid_to_ptid (pid); } /* Execute one dummy breakpoint instruction. This way we give the kernel a chance to do some housekeeping and update inferior's internal data, including u_area. */ static void exec_one_dummy_insn (struct regcache *regcache) { #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200 struct gdbarch *gdbarch = get_regcache_arch (regcache); int ret, status, pid; CORE_ADDR prev_pc; void *bp; /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We assume that this address will never be executed again by the real code. */ bp = deprecated_insert_raw_breakpoint (gdbarch, NULL, DUMMY_INSN_ADDR); /* You might think this could be done with a single ptrace call, and you'd be correct for just about every platform I've ever worked on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up -- the inferior never hits the breakpoint (it's also worth noting powerpc-ibm-aix4.1.3 works correctly). */ prev_pc = regcache_read_pc (regcache); regcache_write_pc (regcache, DUMMY_INSN_ADDR); if (ARCH64 ()) ret = rs6000_ptrace64 (PT_CONTINUE, ptid_get_pid (inferior_ptid), 1, 0, NULL); else ret = rs6000_ptrace32 (PT_CONTINUE, ptid_get_pid (inferior_ptid), (int *) 1, 0, NULL); if (ret != 0) perror (_("pt_continue")); do { pid = waitpid (ptid_get_pid (inferior_ptid), &status, 0); } while (pid != ptid_get_pid (inferior_ptid)); regcache_write_pc (regcache, prev_pc); deprecated_remove_raw_breakpoint (gdbarch, bp); } /* Set the current architecture from the host running GDB. Called when starting a child process. */ static void (*super_create_inferior) (struct target_ops *,char *exec_file, char *allargs, char **env, int from_tty); static void rs6000_create_inferior (struct target_ops * ops, char *exec_file, char *allargs, char **env, int from_tty) { enum bfd_architecture arch; unsigned long mach; bfd abfd; struct gdbarch_info info; super_create_inferior (ops, exec_file, allargs, env, from_tty); if (__power_rs ()) { arch = bfd_arch_rs6000; mach = bfd_mach_rs6k; } else { arch = bfd_arch_powerpc; mach = bfd_mach_ppc; } /* FIXME: schauer/2002-02-25: We don't know if we are executing a 32 or 64 bit executable, and have no way to pass the proper word size to rs6000_gdbarch_init. So we have to avoid switching to a new architecture, if the architecture matches already. Blindly calling rs6000_gdbarch_init used to work in older versions of GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to determine the wordsize. */ if (exec_bfd) { const struct bfd_arch_info *exec_bfd_arch_info; exec_bfd_arch_info = bfd_get_arch_info (exec_bfd); if (arch == exec_bfd_arch_info->arch) return; } bfd_default_set_arch_mach (&abfd, arch, mach); gdbarch_info_init (&info); info.bfd_arch_info = bfd_get_arch_info (&abfd); info.abfd = exec_bfd; if (!gdbarch_update_p (info)) internal_error (__FILE__, __LINE__, _("rs6000_create_inferior: failed " "to select architecture")); } /* Shared Object support. */ /* Return the LdInfo data for the given process. Raises an error if the data could not be obtained. The returned value must be deallocated after use. */ static gdb_byte * rs6000_ptrace_ldinfo (ptid_t ptid) { const int pid = ptid_get_pid (ptid); int ldi_size = 1024; gdb_byte *ldi = xmalloc (ldi_size); int rc = -1; while (1) { if (ARCH64 ()) rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, ldi_size, NULL); else rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, ldi_size, NULL); if (rc != -1) break; /* Success, we got the entire ld_info data. */ if (errno != ENOMEM) perror_with_name (_("ptrace ldinfo")); /* ldi is not big enough. Double it and try again. */ ldi_size *= 2; ldi = xrealloc (ldi, ldi_size); } return ldi; } /* Implement the to_xfer_partial target_ops method for TARGET_OBJECT_LIBRARIES_AIX objects. */ static LONGEST rs6000_xfer_shared_libraries (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len) { gdb_byte *ldi_buf; ULONGEST result; struct cleanup *cleanup; /* This function assumes that it is being run with a live process. Core files are handled via gdbarch. */ gdb_assert (target_has_execution); if (writebuf) return TARGET_XFER_E_IO; ldi_buf = rs6000_ptrace_ldinfo (inferior_ptid); gdb_assert (ldi_buf != NULL); cleanup = make_cleanup (xfree, ldi_buf); result = rs6000_aix_ld_info_to_xml (target_gdbarch (), ldi_buf, readbuf, offset, len, 1); xfree (ldi_buf); do_cleanups (cleanup); return result; } void _initialize_rs6000_nat (void); void _initialize_rs6000_nat (void) { struct target_ops *t; t = inf_ptrace_target (); t->to_fetch_registers = rs6000_fetch_inferior_registers; t->to_store_registers = rs6000_store_inferior_registers; t->to_xfer_partial = rs6000_xfer_partial; super_create_inferior = t->to_create_inferior; t->to_create_inferior = rs6000_create_inferior; t->to_wait = rs6000_wait; add_target (t); }