/* Remote debugging interface for Hitachi HMS Monitor Version 1.0 Copyright 1992 Free Software Foundation, Inc. Contributed by Steve Chamberlain sac@cygnus.com This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include "defs.h" #include "inferior.h" #include "wait.h" #include "value.h" #include #include #include #include #include #include "terminal.h" #include "target.h" #include "gdbcore.h" /* External data declarations */ extern int stop_soon_quietly; /* for wait_for_inferior */ /* External function declarations */ extern struct value *call_function_by_hand(); /* Forward data declarations */ extern struct target_ops hms_ops; /* Forward declaration */ /* Forward function declarations */ static void hms_fetch_registers (); static int hms_store_registers (); static void hms_close (); static int hms_clear_breakpoints(); extern struct target_ops hms_ops; static int quiet = 1; #ifdef DEBUG # define DENTER(NAME) if (!quiet) (printf_filtered("Entering %s\n",NAME), fflush(stdout)) # define DEXIT(NAME) if (!quiet) (printf_filtered("Exiting %s\n",NAME), fflush(stdout)) #else # define DENTER(NAME) # define DEXIT(NAME) #endif /***********************************************************************/ /* Caching stuff stolen from remote-nindy.c */ /* The data cache records all the data read from the remote machine since the last time it stopped. Each cache block holds LINE_SIZE bytes of data starting at a multiple-of-LINE_SIZE address. */ #define LINE_SIZE_POWER 4 #define LINE_SIZE (1<>2) struct dcache_block { struct dcache_block *next, *last; unsigned int addr; /* Address for which data is recorded. */ int data[LINE_SIZE/sizeof(int)]; }; struct dcache_block dcache_free, dcache_valid; /* Free all the data cache blocks, thus discarding all cached data. */ static void dcache_flush () { register struct dcache_block *db; while ((db = dcache_valid.next) != &dcache_valid) { remque (db); insque (db, &dcache_free); } } /* * If addr is present in the dcache, return the address of the block * containing it. */ static struct dcache_block * dcache_hit (addr) unsigned int addr; { register struct dcache_block *db; if (addr & 3) abort (); /* Search all cache blocks for one that is at this address. */ db = dcache_valid.next; while (db != &dcache_valid) { if ((addr & ~LINE_SIZE_MASK)== db->addr) return db; db = db->next; } return NULL; } /* Return the int data at address ADDR in dcache block DC. */ static int dcache_value (db, addr) struct dcache_block *db; unsigned int addr; { if (addr & 3) abort (); return (db->data[XFORM(addr)]); } /* Get a free cache block, put or keep it on the valid list, and return its address. The caller should store into the block the address and data that it describes, then remque it from the free list and insert it into the valid list. This procedure prevents errors from creeping in if a ninMemGet is interrupted (which used to put garbage blocks in the valid list...). */ static struct dcache_block * dcache_alloc () { register struct dcache_block *db; if ((db = dcache_free.next) == &dcache_free) { /* If we can't get one from the free list, take last valid and put it on the free list. */ db = dcache_valid.last; remque (db); insque (db, &dcache_free); } remque (db); insque (db, &dcache_valid); return (db); } /* Return the contents of the word at address ADDR in the remote machine, using the data cache. */ static int dcache_fetch (addr) CORE_ADDR addr; { register struct dcache_block *db; db = dcache_hit (addr); if (db == 0) { db = dcache_alloc (); immediate_quit++; hms_read_inferior_memory(addr & ~LINE_SIZE_MASK, (unsigned char *)db->data, LINE_SIZE); immediate_quit--; db->addr = addr & ~LINE_SIZE_MASK; remque (db); /* Off the free list */ insque (db, &dcache_valid); /* On the valid list */ } return (dcache_value (db, addr)); } /* Write the word at ADDR both in the data cache and in the remote machine. */ static void dcache_poke (addr, data) CORE_ADDR addr; int data; { register struct dcache_block *db; /* First make sure the word is IN the cache. DB is its cache block. */ db = dcache_hit (addr); if (db == 0) { db = dcache_alloc (); immediate_quit++; hms_write_inferior_memory(addr & ~LINE_SIZE_MASK, (unsigned char *)db->data, LINE_SIZE); immediate_quit--; db->addr = addr & ~LINE_SIZE_MASK; remque (db); /* Off the free list */ insque (db, &dcache_valid); /* On the valid list */ } /* Modify the word in the cache. */ db->data[XFORM(addr)] = data; /* Send the changed word. */ immediate_quit++; hms_write_inferior_memory(addr, (unsigned char *)&data, 4); immediate_quit--; } /* The cache itself. */ struct dcache_block the_cache[DCACHE_SIZE]; /* Initialize the data cache. */ static void dcache_init () { register i; register struct dcache_block *db; db = the_cache; dcache_free.next = dcache_free.last = &dcache_free; dcache_valid.next = dcache_valid.last = &dcache_valid; for (i=0;i= 0) void hms_open(); #define ON 1 #define OFF 0 static void rawmode(desc, turnon) int desc; int turnon; { TERMINAL sg; if (desc < 0) return; ioctl (desc, TIOCGETP, &sg); if (turnon) { #ifdef HAVE_TERMIO sg.c_lflag &= ~(ICANON); #else sg.sg_flags |= RAW; #endif } else { #ifdef HAVE_TERMIO sg.c_lflag |= ICANON; #else sg.sg_flags &= ~(RAW); #endif } ioctl (desc, TIOCSETP, &sg); } /* Read a character from the remote system, doing all the fancy timeout stuff. */ static int readchar () { char buf; buf = '\0'; #ifdef HAVE_TERMIO /* termio does the timeout for us. */ read (hms_desc, &buf, 1); #else alarm (timeout); if (read (hms_desc, &buf, 1) < 0) { if (errno == EINTR) error ("Timeout reading from remote system."); else perror_with_name ("remote"); } alarm (0); #endif if (buf == '\0') error ("Timeout reading from remote system."); if (!quiet) printf("%c",buf); return buf & 0x7f; } static int readchar_nofail () { char buf; buf = '\0'; #ifdef HAVE_TERMIO /* termio does the timeout for us. */ read (hms_desc, &buf, 1); #else alarm (timeout); if (read (hms_desc, &buf, 1) < 0) { return 0; } alarm (0); #endif if (buf == '\0') { return 0; } return buf & 0x7f; } /* Keep discarding input from the remote system, until STRING is found. Let the user break out immediately. */ static void expect (string) char *string; { char *p = string; immediate_quit = 1; while (1) { if (readchar() == *p) { p++; if (*p == '\0') { immediate_quit = 0; return; } } else p = string; } } /* Keep discarding input until we see the hms prompt. The convention for dealing with the prompt is that you o give your command o *then* wait for the prompt. Thus the last thing that a procedure does with the serial line will be an expect_prompt(). Exception: hms_resume does not wait for the prompt, because the terminal is being handed over to the inferior. However, the next thing which happens after that is a hms_wait which does wait for the prompt. Note that this includes abnormal exit, e.g. error(). This is necessary to prevent getting into states from which we can't recover. */ static void expect_prompt () { expect ("HMS>"); } /* Get a hex digit from the remote system & return its value. If ignore_space is nonzero, ignore spaces (not newline, tab, etc). */ static int get_hex_digit (ignore_space) int ignore_space; { int ch; while (1) { ch = readchar (); if (ch >= '0' && ch <= '9') return ch - '0'; else if (ch >= 'A' && ch <= 'F') return ch - 'A' + 10; else if (ch >= 'a' && ch <= 'f') return ch - 'a' + 10; else if (ch == ' ' && ignore_space) ; else { expect_prompt (); error ("Invalid hex digit from remote system."); } } } /* Get a byte from hms_desc and put it in *BYT. Accept any number leading spaces. */ static void get_hex_byte (byt) char *byt; { int val; val = get_hex_digit (1) << 4; val |= get_hex_digit (0); *byt = val; } /* Read a 32-bit hex word from the hms, preceded by a space */ static long get_hex_word() { long val; int j; val = 0; for (j = 0; j < 8; j++) val = (val << 4) + get_hex_digit (j == 0); return val; } /* Called when SIGALRM signal sent due to alarm() timeout. */ #ifndef HAVE_TERMIO #ifndef __STDC__ # ifndef volatile # define volatile /**/ # endif #endif volatile int n_alarms; void hms_timer () { n_alarms++; } #endif /* Number of SIGTRAPs we need to simulate. That is, the next NEED_ARTIFICIAL_TRAP calls to hms_wait should just return SIGTRAP without actually waiting for anything. */ static int need_artificial_trap = 0; void hms_kill(arg,from_tty) char *arg; int from_tty; { } static check_open() { if (!OPEN(hms_desc)) { hms_open("",0); } } /* * Download a file specified in 'args', to the hms. */ static void hms_load(args,fromtty) char *args; int fromtty; { bfd *abfd; asection *s; int n; char buffer[1024]; DENTER("hms_load()"); check_open(); dcache_flush(); inferior_pid = 0; abfd = bfd_openr(args,"coff-h8300"); if (!abfd) { printf_filtered("Unable to open file %s\n", args); return; } if (bfd_check_format(abfd, bfd_object) ==0) { printf_filtered("File is not an object file\n"); return ; } s = abfd->sections; while (s != (asection *)NULL) { if (s->flags & SEC_LOAD) { char *buffer = xmalloc(s->_raw_size); bfd_get_section_contents(abfd, s, buffer, 0, s->_raw_size); hms_write_inferior_memory(s->vma, buffer, s->_raw_size); free(buffer); } s = s->next; } DEXIT("hms_load()"); } /* This is called not only when we first attach, but also when the user types "run" after having attached. */ void hms_create_inferior (execfile, args, env) char *execfile; char *args; char **env; { int entry_pt; DENTER("hms_create_inferior()"); if (args && *args) error ("Can't pass arguments to remote hms process."); if (execfile == 0 || exec_bfd == 0) error ("No exec file specified"); entry_pt = (int) bfd_get_start_address (exec_bfd); check_open(); if (OPEN(hms_desc)) { hms_kill(NULL,NULL); hms_clear_breakpoints(); init_wait_for_inferior (); /* Clear the input because what the hms sends back is different * depending on whether it was running or not. */ hms_write_cr("r"); expect_prompt(); insert_breakpoints (); /* Needed to get correct instruction in cache */ proceed(entry_pt, -1, 0); } DEXIT("hms_create_inferior()"); } /* Translate baud rates from integers to damn B_codes. Unix should have outgrown this crap years ago, but even POSIX wouldn't buck it. */ #ifndef B19200 #define B19200 EXTA #endif #ifndef B38400 #define B38400 EXTB #endif static struct {int rate, damn_b;} baudtab[] = { {9600, B9600}, {19200, B19200}, {300, B300}, {1200, B1200}, {2400, B2400}, {4800, B4800}, {-1, -1}, }; static int damn_b (rate) int rate; { int i; for (i = 0; baudtab[i].rate != -1; i++) if (rate == baudtab[i].rate) return baudtab[i].damn_b; return B19200; } /* Open a connection to a remote debugger. NAME is the filename used for communication, then a space, then the baud rate. */ static char * find_end_of_word(s) char *s; { while (*s && !isspace(*s)) s++; return s; } static char *get_word(p) char **p; { char *s = *p; char *word ; char *copy; size_t len; while (isspace(*s)) s++; word = s; len = 0; while (*s && !isspace(*s)) { s++; len++; } copy = xmalloc(len+1); memcpy(copy, word, len); copy[len] = 0; *p = s; return copy; } static int baudrate = 9600; static int is_baudrate_right() { /* Put this port into NORMAL mode, send the 'normal' character */ hms_write("\001", 1); /* Control A */ hms_write("\r", 1); /* Cr */ while ( readchar_nofail()) /* Skip noise we put there */ ; hms_write("r"); if (readchar_nofail() == 'r') return 1; /* Not the right baudrate, or the board's not on */ return 0; } static void set_rate() { TERMINAL sg; ioctl (hms_desc, TIOCGETP, &sg); #ifdef HAVE_TERMIO sg.c_cc[VMIN] = 0; /* read with timeout. */ sg.c_cc[VTIME] = timeout * 10; sg.c_lflag &= ~(ICANON | ECHO); sg.c_cflag = (sg.c_cflag & ~CBAUD) | damn_b (baudrate); #else sg.sg_ispeed = damn_b (baudrate); sg.sg_ospeed = damn_b (baudrate); sg.sg_flags |= RAW | ANYP; sg.sg_flags &= ~ECHO; #endif ioctl (hms_desc, TIOCSETP, &sg); } static void get_baudrate_right() { int which_rate = 0; while (!is_baudrate_right()) { if (baudtab[which_rate].rate == -1) { which_rate = 0; } else { which_rate++; } baudrate = baudtab[which_rate].rate; printf_filtered("Board not responding, trying %d baud\n",baudrate); QUIT; set_rate(); } } static void hms_open (name, from_tty) char *name; int from_tty; { unsigned int prl; char *p; DENTER("hms_open()"); if(name == 0) { name = ""; } hms_close (0); hms_desc = open (dev_name, O_RDWR); if (hms_desc < 0) perror_with_name (dev_name); set_rate(); dcache_init(); /* start_remote (); /* Initialize gdb process mechanisms */ #ifndef HAVE_TERMIO #ifndef NO_SIGINTERRUPT /* Cause SIGALRM's to make reads fail with EINTR instead of resuming the read. */ if (siginterrupt (SIGALRM, 1) != 0) perror ("hms_open: error in siginterrupt"); #endif /* Set up read timeout timer. */ if ((void (*)) signal (SIGALRM, hms_timer) == (void (*)) -1) perror ("hms_open: error in signal"); #endif get_baudrate_right(); /* Hello? Are you there? */ write (hms_desc, "\r", 1); expect_prompt (); /* Clear any break points */ hms_clear_breakpoints(); printf_filtered("Remote debugging on an H8/300 HMS via %s.\n",dev_name); DEXIT("hms_open()"); } /* Close out all files and local state before this target loses control. */ static void hms_close (quitting) int quitting; { DENTER("hms_close()"); /* Clear any break points */ hms_clear_breakpoints(); /* Put this port back into REMOTE mode */ if (OPEN(hms_desc)) { sleep(1); /* Let any output make it all the way back */ write(hms_desc, "R\r", 2); } /* Due to a bug in Unix, fclose closes not only the stdio stream, but also the file descriptor. So we don't actually close hms_desc. */ if (OPEN(hms_desc)) close (hms_desc); /* Do not try to close hms_desc again, later in the program. */ hms_desc = -1; DEXIT("hms_close()"); } /* Attach to the target that is already loaded and possibly running */ static void hms_attach (args, from_tty) char *args; int from_tty; { DENTER("hms_attach()"); /* push_target(&hms_ops); /* This done in hms_open() */ mark_breakpoints_out (); /* Send the hms a kill. It is ok if it is not already running */ #if 0 fprintf(hms_stream, "K\r"); expect_prompt(); /* Slurp the echo */ #endif /* We will get a task spawn event immediately. */ init_wait_for_inferior (); clear_proceed_status (); stop_soon_quietly = 1; wait_for_inferior (); stop_soon_quietly = 0; normal_stop (); DEXIT("hms_attach()"); } /* Terminate the open connection to the remote debugger. Use this when you want to detach and do something else with your gdb. */ void hms_detach (args,from_tty) char *args; int from_tty; { DENTER("hms_detach()"); if (OPEN(hms_desc)) { /* Send it on its way (tell it to continue) */ hms_clear_breakpoints(); #if 0 fprintf(hms_stream,"G\r"); #endif } pop_target(); /* calls hms_close to do the real work */ if (from_tty) printf_filtered ("Ending remote %s debugging\n", target_shortname); DEXIT("hms_detach()"); } /* Tell the remote machine to resume. */ void hms_resume (step, sig) int step, sig; { DENTER("hms_resume()"); dcache_flush(); if (step) { hms_write_cr("s"); hms_write("\003",1); expect_prompt(); /* Force the next hms_wait to return a trap. Not doing anything about I/O from the target means that the user has to type "continue" to see any. FIXME, this should be fixed. */ need_artificial_trap = 1; } else { hms_write_cr("g"); expect("g\r"); } DEXIT("hms_resume()"); } /* Wait until the remote machine stops, then return, storing status in STATUS just as `wait' would. */ int hms_wait (status) WAITTYPE *status; { /* Strings to look for. '?' means match any single character. Note that with the algorithm we use, the initial character of the string cannot recur in the string, or we will not find some cases of the string in the input. */ static char bpt[] = "At breakpoint:\r"; /* It would be tempting to look for "\n[__exit + 0x8]\n" but that requires loading symbols with "yc i" and even if we did do that we don't know that the file has symbols. */ static char exitmsg[] = "HMS>"; char *bp = bpt; char *ep = exitmsg; /* Large enough for either sizeof (bpt) or sizeof (exitmsg) chars. */ char swallowed[50]; /* Current position in swallowed. */ char *swallowed_p = swallowed; int ch; int ch_handled; int old_timeout = timeout; int old_immediate_quit = immediate_quit; int swallowed_cr = 0; DENTER("hms_wait()"); WSETEXIT ((*status), 0); if (need_artificial_trap != 0) { WSETSTOP ((*status), SIGTRAP); need_artificial_trap--; return 0; } timeout = 0; /* Don't time out -- user program is running. */ immediate_quit = 1; /* Helps ability to QUIT */ while (1) { QUIT; /* Let user quit and leave process running */ ch_handled = 0; ch = readchar (); if (ch == *bp) { bp++; if (*bp == '\0') break; ch_handled = 1; *swallowed_p++ = ch; } else bp = bpt; if (ch == *ep || *ep == '?') { ep++; if (*ep == '\0') break; if (!ch_handled) *swallowed_p++ = ch; ch_handled = 1; } else ep = exitmsg; if (!ch_handled) { char *p; /* Print out any characters which have been swallowed. */ for (p = swallowed; p < swallowed_p; ++p) putc (*p, stdout); swallowed_p = swallowed; if ((ch != '\r' && ch != '\n') || swallowed_cr>10) { putc (ch, stdout); swallowed_cr = 10; } swallowed_cr ++; } } if (*bp== '\0') { WSETSTOP ((*status), SIGTRAP); expect_prompt(); } else { WSETEXIT ((*status), 0); } timeout = old_timeout; immediate_quit = old_immediate_quit; DEXIT("hms_wait()"); return 0; } /* Return the name of register number REGNO in the form input and output by hms. Returns a pointer to a static buffer containing the answer. */ static char * get_reg_name (regno) int regno; { static char *rn[NUM_REGS]= REGISTER_NAMES; return rn[regno]; } /* Read the remote registers. */ static int gethex(length, start, ok) unsigned int length; char *start; int *ok; { int result = 0; while (length--) { result <<= 4 ; if (*start >='a' && *start <= 'f') { result += *start - 'a' + 10; } else if (*start >='A' && *start <= 'F') { result += *start - 'A' + 10; } else if (*start >='0' && *start <= '9') { result += *start - '0' ; } else *ok = 0; start++; } return result; } static int timed_read(buf, n, timeout) char *buf; { int i; char c; i = 0; while (i < n) { c = readchar(); if (c == 0) return i; buf[i] = c; i++; } return i; } hms_write(a,l) char *a; { int i; write(hms_desc,a,l); if (!quiet) for (i = 0; i < l ; i++) { printf("%c", a[i]); } } hms_write_cr(s) char *s; { hms_write( s, strlen(s)); hms_write("\r",1); } static void hms_fetch_registers () { #define REGREPLY_SIZE 79 char linebuf[REGREPLY_SIZE+1]; int i; int s ; int gottok; REGISTER_TYPE reg[NUM_REGS]; int foo[8]; check_open(); do { hms_write_cr("r"); s = timed_read(linebuf, REGREPLY_SIZE, 1); linebuf[REGREPLY_SIZE] = 0; gottok = 0; if (linebuf[0] == 'r' && linebuf[1] == '\r' && linebuf[2] == '\n' && linebuf[3] == 'P' && linebuf[4] == 'C' && linebuf[5] == '=' && linebuf[75] == 'H' && linebuf[76] == 'M' && linebuf[77] == 'S') { /* PC=XXXX CCR=XX:XXXXXXXX R0-R7= XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 5436789012345678901234567890123456789012345678901234567890123456789012 0 1 2 3 4 5 6 */ gottok = 1; reg[PC_REGNUM] = gethex(4,linebuf+6, &gottok); reg[CCR_REGNUM] = gethex(2,linebuf+15, &gottok); for (i = 0; i < 8; i++) { reg[i] = gethex(4, linebuf+34+5*i, &gottok); } } } while (!gottok); for (i = 0; i < NUM_REGS; i++) { supply_register (i, reg+i); } } /* Fetch register REGNO, or all registers if REGNO is -1. */ static void hms_fetch_register (regno) int regno; { hms_fetch_registers (); } /* Store the remote registers from the contents of the block REGS. */ static int hms_store_registers () { int i; for (i = 0; i < NUM_REGS; i++) hms_store_register(i); return 0; } /* Store register REGNO, or all if REGNO == -1. Return errno value. */ int hms_store_register (regno) int regno; { /* printf("hms_store_register() called.\n"); fflush(stdout); /* */ if (regno == -1) hms_store_registers (); else { char *name = get_reg_name (regno); char buffer[100]; sprintf(buffer,"r %s=%x", name, read_register(regno)); hms_write_cr(buffer); expect_prompt(); } DEXIT("hms_store_registers()"); return 0; } /* Get ready to modify the registers array. On machines which store individual registers, this doesn't need to do anything. On machines which store all the registers in one fell swoop, this makes sure that registers contains all the registers from the program being debugged. */ void hms_prepare_to_store () { /* Do nothing, since we can store individual regs */ } static CORE_ADDR translate_addr(addr) CORE_ADDR addr; { return(addr); } /* Read a word from remote address ADDR and return it. * This goes through the data cache. */ int hms_fetch_word (addr) CORE_ADDR addr; { return dcache_fetch (addr); } /* Write a word WORD into remote address ADDR. This goes through the data cache. */ void hms_store_word (addr, word) CORE_ADDR addr; int word; { dcache_poke (addr, word); } int hms_xfer_inferior_memory(memaddr, myaddr, len, write, target) CORE_ADDR memaddr; char *myaddr; int len; int write; struct target_ops *target; /* ignored */ { register int i; /* Round starting address down to longword boundary. */ register CORE_ADDR addr; /* Round ending address up; get number of longwords that makes. */ register int count; /* Allocate buffer of that many longwords. */ register int *buffer ; memaddr &= 0xffff; addr = memaddr & - sizeof (int); count = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int); buffer = (int *)alloca (count * sizeof (int)); if (write) { /* Fill start and end extra bytes of buffer with existing memory data. */ if (addr != memaddr || len < (int)sizeof (int)) { /* Need part of initial word -- fetch it. */ buffer[0] = hms_fetch_word (addr); } if (count > 1) /* FIXME, avoid if even boundary */ { buffer[count - 1] = hms_fetch_word (addr + (count - 1) * sizeof (int)); } /* Copy data to be written over corresponding part of buffer */ bcopy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len); /* Write the entire buffer. */ for (i = 0; i < count; i++, addr += sizeof (int)) { errno = 0; hms_store_word (addr, buffer[i]); if (errno) { return 0; } } } else { /* Read all the longwords */ for (i = 0; i < count; i++, addr += sizeof (int)) { errno = 0; buffer[i] = hms_fetch_word (addr); if (errno) { return 0; } QUIT; } /* Copy appropriate bytes out of the buffer. */ bcopy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len); } return len; } #if 0 int hms_xfer_inferior_memory (memaddr, myaddr, len, write) CORE_ADDR memaddr; char *myaddr; int len; int write; { memaddr &= 0xffff; if (write) return hms_write_inferior_memory (memaddr, myaddr, len); else return hms_read_inferior_memory (memaddr, myaddr, len); } #endif int hms_write_inferior_memory (memaddr, myaddr, len) CORE_ADDR memaddr; char *myaddr; int len; { bfd *abfd = bfd_openw(dev_name, "srec"); asection *a; bfd_set_format(abfd, bfd_object); a = bfd_make_section(abfd, ".text"); a->vma = memaddr; a->_raw_size = len; a->flags = SEC_LOAD | SEC_HAS_CONTENTS; hms_write_cr("tl"); /* tell hms here comes the recs */ bfd_set_section_contents(abfd, a, myaddr, 0, len); bfd_close(abfd); expect_prompt(); } void hms_files_info () { printf_filtered("\tAttached to %s at %d baud and running program %s\n", dev_name, baudrate, bfd_get_filename(exec_bfd)); printf_filtered("\ton an H8/300 processor.\n"); } /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's memory at MEMADDR. Returns errno value. * sb/sh instructions don't work on unaligned addresses, when TU=1. */ /* Read LEN bytes from inferior memory at MEMADDR. Put the result at debugger address MYADDR. Returns errno value. */ int hms_read_inferior_memory(memaddr, myaddr, len) CORE_ADDR memaddr; char *myaddr; int len; { /* Align to nearest low 16 bits */ int i; #if 0 CORE_ADDR start = memaddr & ~0xf; CORE_ADDR end = ((memaddr + len +16) & ~0xf) -1; #endif CORE_ADDR start = memaddr; CORE_ADDR end = memaddr + len -1; int ok =1; /* AAAA: XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX '................' 012345678901234567890123456789012345678901234567890123456789012345 0 1 2 3 4 5 6 */ char buffer[66]; if (memaddr & 0xf) abort(); if (len != 16) abort(); sprintf(buffer, "m %4x %4x", start, end); hms_write_cr(buffer); /* drop the echo and newline*/ for (i = 0; i < 13; i++) readchar(); /* Grab the lines as they come out and fill the area */ /* Skip over cr */ while(1) { int p; int i; int addr; size_t idx; char byte[16]; buffer[0] = readchar(); if (buffer[0] == 'M') break; for (i = 1; i < 66; i++) buffer[i] = readchar(); /* Now parse the line */ addr = gethex(4, buffer, &ok); idx = 6; for (p = 0; p < 16; p+=2) { byte[p] = gethex(2, buffer + idx, &ok); byte[p+1] = gethex(2, buffer+ idx + 2, &ok); idx+=5; } for (p = 0; p<16;p++) { if (addr + p >= memaddr && addr + p < memaddr + len) { myaddr[ (addr + p)-memaddr] = byte[p]; } } } hms_write("\003",1); expect_prompt(); return len; } /* This routine is run as a hook, just before the main command loop is entered. If gdb is configured for the H8, but has not had its target specified yet, this will loop prompting the user to do so. */ hms_before_main_loop () { char ttyname[100]; char *p, *p2; extern FILE *instream; extern jmp_buf to_top_level; push_target (&hms_ops); #if 0 while (current_target != &hms_ops) { /* remote tty not specified yet */ if ( instream == stdin ){ printf("\nEnter device and filename, or \"quit\" to quit: "); fflush( stdout ); } fgets( ttyname, sizeof(ttyname)-1, stdin ); if ( !strcmp("quit", ttyname) ){ exit(1); } hms_open( ttyname, 1 ); /* Now that we have a tty open for talking to the remote machine, download the executable file if one was specified. */ if ( !setjmp(to_top_level) && exec_bfd ) { target_load (bfd_get_filename (exec_bfd), 1); } } #endif } #define MAX_BREAKS 16 static int num_brkpts=0; static int hms_insert_breakpoint(addr, save) CORE_ADDR addr; char *save; /* Throw away, let hms save instructions */ { DENTER("hms_insert_breakpoint()"); check_open(); if (num_brkpts < MAX_BREAKS) { char buffer[100]; num_brkpts++; sprintf(buffer,"b %x", addr & 0xffff); hms_write_cr(buffer); expect_prompt (); DEXIT("hms_insert_breakpoint() success"); return(0); /* Success */ } else { fprintf_filtered(stderr, "Too many break points, break point not installed\n"); DEXIT("hms_insert_breakpoint() failure"); return(1); /* Failure */ } } static int hms_remove_breakpoint(addr, save) CORE_ADDR addr; char *save; /* Throw away, let hms save instructions */ { DENTER("hms_remove_breakpoint()"); if (num_brkpts > 0) { char buffer[100]; num_brkpts--; sprintf(buffer,"b - %x", addr & 0xffff); hms_write_cr(buffer); expect_prompt(); } DEXIT("hms_remove_breakpoint()"); return(0); } /* Clear the hmss notion of what the break points are */ static int hms_clear_breakpoints() { DENTER("hms_clear_breakpoint()"); if (OPEN(hms_desc)) { hms_write_cr("b -"); expect_prompt (); } num_brkpts = 0; DEXIT("hms_clear_breakpoint()"); } static void hms_mourn() { DENTER("hms_mourn()"); hms_clear_breakpoints(); /* pop_target (); /* Pop back to no-child state */ generic_mourn_inferior (); DEXIT("hms_mourn()"); } /* Display everthing we read in from the hms until we match/see the * specified string */ static int display_until(str) char *str; { int i=0,j,c; while (c=readchar()) { if (c==str[i]) { i++; if (i == strlen(str)) return; } else { if (i) { for (j=0 ; j", class_obscure, hms_com, "Send a command to the HMS monitor."); add_com ("snoop", class_obscure, hms_quiet, "Show what commands are going to the monitor"); add_com ("device", class_obscure, hms_device, "Set the terminal line for HMS communications"); add_com ("speed", class_obscure, hms_speed, "Set the terminal line speed for HMS communications"); }