/* Cache and manage the values of registers for GDB, the GNU debugger. Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001, 2002 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "inferior.h" #include "target.h" #include "gdbarch.h" #include "gdbcmd.h" #include "regcache.h" #include "gdb_assert.h" #include "gdb_string.h" #include "gdbcmd.h" /* For maintenanceprintlist. */ /* * DATA STRUCTURE * * Here is the actual register cache. */ /* Per-architecture object describing the layout of a register cache. Computed once when the architecture is created */ struct gdbarch_data *regcache_descr_handle; struct regcache_descr { /* The architecture this descriptor belongs to. */ struct gdbarch *gdbarch; /* Is this a ``legacy'' register cache? Such caches reserve space for raw and pseudo registers and allow access to both. */ int legacy_p; /* The raw register cache. This should contain just [0 .. NUM_RAW_REGISTERS). However, for older targets, it contains space for the full [0 .. NUM_RAW_REGISTERS + NUM_PSEUDO_REGISTERS). */ int nr_raw_registers; long sizeof_raw_registers; long sizeof_raw_register_valid_p; /* The cooked register space. Each cooked register in the range [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw register. The remaining [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) (a.k.a. pseudo regiters) are mapped onto both raw registers and memory by the architecture methods gdbarch_register_read and gdbarch_register_write. */ int nr_cooked_registers; /* Offset and size (in 8 bit bytes), of reach register in the register cache. All registers (including those in the range [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an offset. Assigning all registers an offset makes it possible to keep legacy code, such as that found in read_register_bytes() and write_register_bytes() working. */ long *register_offset; long *sizeof_register; /* Useful constant. Largest of all the registers. */ long max_register_size; /* Cached table containing the type of each register. */ struct type **register_type; }; void init_legacy_regcache_descr (struct gdbarch *gdbarch, struct regcache_descr *descr) { int i; /* FIXME: cagney/2002-05-11: gdbarch_data() should take that ``gdbarch'' as a parameter. */ gdb_assert (gdbarch != NULL); /* FIXME: cagney/2002-05-11: Shouldn't be including pseudo-registers in the register buffer. Unfortunatly some architectures do. */ descr->nr_raw_registers = descr->nr_cooked_registers; descr->sizeof_raw_register_valid_p = descr->nr_cooked_registers; /* FIXME: cagney/2002-05-11: Instead of using REGISTER_BYTE() this code should compute the offets et.al. at runtime. This currently isn't possible because some targets overlap register locations - see the mess in read_register_bytes() and write_register_bytes() registers. */ descr->sizeof_register = XCALLOC (descr->nr_cooked_registers, long); descr->register_offset = XCALLOC (descr->nr_cooked_registers, long); descr->max_register_size = 0; for (i = 0; i < descr->nr_cooked_registers; i++) { descr->register_offset[i] = REGISTER_BYTE (i); descr->sizeof_register[i] = REGISTER_RAW_SIZE (i); if (descr->max_register_size < REGISTER_RAW_SIZE (i)) descr->max_register_size = REGISTER_RAW_SIZE (i); if (descr->max_register_size < REGISTER_VIRTUAL_SIZE (i)) descr->max_register_size = REGISTER_VIRTUAL_SIZE (i); } /* Come up with the real size of the registers buffer. */ descr->sizeof_raw_registers = REGISTER_BYTES; /* OK use. */ for (i = 0; i < descr->nr_cooked_registers; i++) { long regend; /* Keep extending the buffer so that there is always enough space for all registers. The comparison is necessary since legacy code is free to put registers in random places in the buffer separated by holes. Once REGISTER_BYTE() is killed this can be greatly simplified. */ /* FIXME: cagney/2001-12-04: This code shouldn't need to use REGISTER_BYTE(). Unfortunatly, legacy code likes to lay the buffer out so that certain registers just happen to overlap. Ulgh! New targets use gdbarch's register read/write and entirely avoid this uglyness. */ regend = descr->register_offset[i] + descr->sizeof_register[i]; if (descr->sizeof_raw_registers < regend) descr->sizeof_raw_registers = regend; } } static void * init_regcache_descr (struct gdbarch *gdbarch) { int i; struct regcache_descr *descr; gdb_assert (gdbarch != NULL); /* Create an initial, zero filled, table. */ descr = XCALLOC (1, struct regcache_descr); descr->gdbarch = gdbarch; /* Total size of the register space. The raw registers are mapped directly onto the raw register cache while the pseudo's are either mapped onto raw-registers or memory. */ descr->nr_cooked_registers = NUM_REGS + NUM_PSEUDO_REGS; /* Fill in a table of register types. */ descr->register_type = XCALLOC (descr->nr_cooked_registers, struct type *); for (i = 0; i < descr->nr_cooked_registers; i++) { descr->register_type[i] = REGISTER_VIRTUAL_TYPE (i); } /* If an old style architecture, fill in the remainder of the register cache descriptor using the register macros. */ if (!gdbarch_pseudo_register_read_p (gdbarch) && !gdbarch_pseudo_register_write_p (gdbarch)) { descr->legacy_p = 1; init_legacy_regcache_descr (gdbarch, descr); return descr; } /* Construct a strictly RAW register cache. Don't allow pseudo's into the register cache. */ descr->nr_raw_registers = NUM_REGS; /* FIXME: cagney/2002-08-13: Overallocate the register_valid_p array. This pretects GDB from erant code that accesses elements of the global register_valid_p[] array in the range [NUM_REGS .. NUM_REGS + NUM_PSEUDO_REGS). */ descr->sizeof_raw_register_valid_p = NUM_REGS + NUM_PSEUDO_REGS; /* Lay out the register cache. The pseud-registers are included in the layout even though their value isn't stored in the register cache. Some code, via read_register_bytes() access a register using an offset/length rather than a register number. NOTE: cagney/2002-05-22: Only register_type() is used when constructing the register cache. It is assumed that the register's raw size, virtual size and type length are all the same. */ { long offset = 0; descr->sizeof_register = XCALLOC (descr->nr_cooked_registers, long); descr->register_offset = XCALLOC (descr->nr_cooked_registers, long); descr->max_register_size = 0; for (i = 0; i < descr->nr_cooked_registers; i++) { descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]); descr->register_offset[i] = offset; offset += descr->sizeof_register[i]; if (descr->max_register_size < descr->sizeof_register[i]) descr->max_register_size = descr->sizeof_register[i]; } /* Set the real size of the register cache buffer. */ /* FIXME: cagney/2002-05-22: Should only need to allocate space for the raw registers. Unfortunatly some code still accesses the register array directly using the global registers[]. Until that code has been purged, play safe and over allocating the register buffer. Ulgh! */ descr->sizeof_raw_registers = offset; /* = descr->register_offset[descr->nr_raw_registers]; */ } #if 0 /* Sanity check. Confirm that the assumptions about gdbarch are true. The REGCACHE_DESCR_HANDLE is set before doing the checks so that targets using the generic methods supplied by regcache don't go into infinite recursion trying to, again, create the regcache. */ set_gdbarch_data (gdbarch, regcache_descr_handle, descr); for (i = 0; i < descr->nr_cooked_registers; i++) { gdb_assert (descr->sizeof_register[i] == REGISTER_RAW_SIZE (i)); gdb_assert (descr->sizeof_register[i] == REGISTER_VIRTUAL_SIZE (i)); gdb_assert (descr->register_offset[i] == REGISTER_BYTE (i)); } /* gdb_assert (descr->sizeof_raw_registers == REGISTER_BYTES (i)); */ #endif return descr; } static struct regcache_descr * regcache_descr (struct gdbarch *gdbarch) { return gdbarch_data (gdbarch, regcache_descr_handle); } static void xfree_regcache_descr (struct gdbarch *gdbarch, void *ptr) { struct regcache_descr *descr = ptr; if (descr == NULL) return; xfree (descr->register_offset); xfree (descr->sizeof_register); descr->register_offset = NULL; descr->sizeof_register = NULL; xfree (descr); } /* Utility functions returning useful register attributes stored in the regcache descr. */ struct type * register_type (struct gdbarch *gdbarch, int regnum) { struct regcache_descr *descr = regcache_descr (gdbarch); gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers); return descr->register_type[regnum]; } /* Utility functions returning useful register attributes stored in the regcache descr. */ int max_register_size (struct gdbarch *gdbarch) { struct regcache_descr *descr = regcache_descr (gdbarch); return descr->max_register_size; } /* The register cache for storing raw register values. */ struct regcache { struct regcache_descr *descr; char *raw_registers; char *raw_register_valid_p; /* If a value isn't in the cache should the corresponding target be queried for a value. */ int passthrough_p; }; struct regcache * regcache_xmalloc (struct gdbarch *gdbarch) { struct regcache_descr *descr; struct regcache *regcache; gdb_assert (gdbarch != NULL); descr = regcache_descr (gdbarch); regcache = XMALLOC (struct regcache); regcache->descr = descr; regcache->raw_registers = XCALLOC (descr->sizeof_raw_registers, char); regcache->raw_register_valid_p = XCALLOC (descr->sizeof_raw_register_valid_p, char); regcache->passthrough_p = 0; return regcache; } void regcache_xfree (struct regcache *regcache) { if (regcache == NULL) return; xfree (regcache->raw_registers); xfree (regcache->raw_register_valid_p); xfree (regcache); } void do_regcache_xfree (void *data) { regcache_xfree (data); } struct cleanup * make_cleanup_regcache_xfree (struct regcache *regcache) { return make_cleanup (do_regcache_xfree, regcache); } void regcache_cpy (struct regcache *dst, struct regcache *src) { int i; char *buf; gdb_assert (src != NULL && dst != NULL); gdb_assert (src->descr->gdbarch == dst->descr->gdbarch); gdb_assert (src != dst); /* FIXME: cagney/2002-05-17: To say this bit is bad is being polite. It keeps the existing code working where things rely on going through to the register cache. */ if (src == current_regcache && src->descr->legacy_p) { /* ULGH!!!! Old way. Use REGISTER bytes and let code below untangle fetch. */ read_register_bytes (0, dst->raw_registers, REGISTER_BYTES); return; } /* FIXME: cagney/2002-05-17: To say this bit is bad is being polite. It keeps the existing code working where things rely on going through to the register cache. */ if (dst == current_regcache && dst->descr->legacy_p) { /* ULGH!!!! Old way. Use REGISTER bytes and let code below untangle fetch. */ write_register_bytes (0, src->raw_registers, REGISTER_BYTES); return; } buf = alloca (src->descr->max_register_size); for (i = 0; i < src->descr->nr_raw_registers; i++) { /* Should we worry about the valid bit here? */ regcache_raw_read (src, i, buf); regcache_raw_write (dst, i, buf); } } void regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src) { int i; gdb_assert (src != NULL && dst != NULL); gdb_assert (src->descr->gdbarch == dst->descr->gdbarch); /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough move of data into the current_regcache(). Doing this would be silly - it would mean that valid_p would be completly invalid. */ gdb_assert (dst != current_regcache); memcpy (dst->raw_registers, src->raw_registers, dst->descr->sizeof_raw_registers); memcpy (dst->raw_register_valid_p, src->raw_register_valid_p, dst->descr->sizeof_raw_register_valid_p); } struct regcache * regcache_dup (struct regcache *src) { struct regcache *newbuf; gdb_assert (current_regcache != NULL); newbuf = regcache_xmalloc (src->descr->gdbarch); regcache_cpy (newbuf, src); return newbuf; } struct regcache * regcache_dup_no_passthrough (struct regcache *src) { struct regcache *newbuf; gdb_assert (current_regcache != NULL); newbuf = regcache_xmalloc (src->descr->gdbarch); regcache_cpy_no_passthrough (newbuf, src); return newbuf; } int regcache_valid_p (struct regcache *regcache, int regnum) { gdb_assert (regcache != NULL); gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); return regcache->raw_register_valid_p[regnum]; } char * deprecated_grub_regcache_for_registers (struct regcache *regcache) { return regcache->raw_registers; } char * deprecated_grub_regcache_for_register_valid (struct regcache *regcache) { return regcache->raw_register_valid_p; } /* Global structure containing the current regcache. */ /* FIXME: cagney/2002-05-11: The two global arrays registers[] and register_valid[] currently point into this structure. */ struct regcache *current_regcache; /* NOTE: this is a write-through cache. There is no "dirty" bit for recording if the register values have been changed (eg. by the user). Therefore all registers must be written back to the target when appropriate. */ /* REGISTERS contains the cached register values (in target byte order). */ char *registers; /* REGISTER_VALID is 0 if the register needs to be fetched, 1 if it has been fetched, and -1 if the register value was not available. "Not available" indicates that the target is not not able to supply the register at this state. The register may become available at a later time (after the next resume). This often occures when GDB is manipulating a target that contains only a snapshot of the entire system being debugged - some of the registers in such a system may not have been saved. */ signed char *register_valid; /* The thread/process associated with the current set of registers. */ static ptid_t registers_ptid; /* * FUNCTIONS: */ /* REGISTER_CACHED() Returns 0 if the value is not in the cache (needs fetch). >0 if the value is in the cache. <0 if the value is permanently unavailable (don't ask again). */ int register_cached (int regnum) { return register_valid[regnum]; } /* Record that REGNUM's value is cached if STATE is >0, uncached but fetchable if STATE is 0, and uncached and unfetchable if STATE is <0. */ void set_register_cached (int regnum, int state) { gdb_assert (regnum >= 0); gdb_assert (regnum < current_regcache->descr->nr_raw_registers); current_regcache->raw_register_valid_p[regnum] = state; } /* REGISTER_CHANGED invalidate a single register REGNUM in the cache */ void register_changed (int regnum) { set_register_cached (regnum, 0); } /* If REGNUM >= 0, return a pointer to register REGNUM's cache buffer area, else return a pointer to the start of the cache buffer. */ static char * register_buffer (struct regcache *regcache, int regnum) { return regcache->raw_registers + regcache->descr->register_offset[regnum]; } /* Return whether register REGNUM is a real register. */ static int real_register (int regnum) { return regnum >= 0 && regnum < NUM_REGS; } /* Low level examining and depositing of registers. The caller is responsible for making sure that the inferior is stopped before calling the fetching routines, or it will get garbage. (a change from GDB version 3, in which the caller got the value from the last stop). */ /* REGISTERS_CHANGED () Indicate that registers may have changed, so invalidate the cache. */ void registers_changed (void) { int i; registers_ptid = pid_to_ptid (-1); /* Force cleanup of any alloca areas if using C alloca instead of a builtin alloca. This particular call is used to clean up areas allocated by low level target code which may build up during lengthy interactions between gdb and the target before gdb gives control to the user (ie watchpoints). */ alloca (0); for (i = 0; i < current_regcache->descr->nr_raw_registers; i++) set_register_cached (i, 0); if (registers_changed_hook) registers_changed_hook (); } /* REGISTERS_FETCHED () Indicate that all registers have been fetched, so mark them all valid. */ /* NOTE: cagney/2001-12-04: This function does not set valid on the pseudo-register range since pseudo registers are always supplied using supply_register(). */ /* FIXME: cagney/2001-12-04: This function is DEPRECATED. The target code was blatting the registers[] array and then calling this. Since targets should only be using supply_register() the need for this function/hack is eliminated. */ void registers_fetched (void) { int i; for (i = 0; i < NUM_REGS; i++) set_register_cached (i, 1); /* Do not assume that the pseudo-regs have also been fetched. Fetching all real regs NEVER accounts for pseudo-regs. */ } /* read_register_bytes and write_register_bytes are generally a *BAD* idea. They are inefficient because they need to check for partial updates, which can only be done by scanning through all of the registers and seeing if the bytes that are being read/written fall inside of an invalid register. [The main reason this is necessary is that register sizes can vary, so a simple index won't suffice.] It is far better to call read_register_gen and write_register_gen if you want to get at the raw register contents, as it only takes a regnum as an argument, and therefore can't do a partial register update. Prior to the recent fixes to check for partial updates, both read and write_register_bytes always checked to see if any registers were stale, and then called target_fetch_registers (-1) to update the whole set. This caused really slowed things down for remote targets. */ /* Copy INLEN bytes of consecutive data from registers starting with the INREGBYTE'th byte of register data into memory at MYADDR. */ void read_register_bytes (int in_start, char *in_buf, int in_len) { int in_end = in_start + in_len; int regnum; char *reg_buf = alloca (MAX_REGISTER_RAW_SIZE); /* See if we are trying to read bytes from out-of-date registers. If so, update just those registers. */ for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++) { int reg_start; int reg_end; int reg_len; int start; int end; int byte; reg_start = REGISTER_BYTE (regnum); reg_len = REGISTER_RAW_SIZE (regnum); reg_end = reg_start + reg_len; if (reg_end <= in_start || in_end <= reg_start) /* The range the user wants to read doesn't overlap with regnum. */ continue; if (REGISTER_NAME (regnum) != NULL && *REGISTER_NAME (regnum) != '\0') /* Force the cache to fetch the entire register. */ read_register_gen (regnum, reg_buf); else /* Legacy note: even though this register is ``invalid'' we still need to return something. It would appear that some code relies on apparent gaps in the register array also being returned. */ /* FIXME: cagney/2001-08-18: This is just silly. It defeats the entire register read/write flow of control. Must resist temptation to return 0xdeadbeef. */ memcpy (reg_buf, registers + reg_start, reg_len); /* Legacy note: This function, for some reason, allows a NULL input buffer. If the buffer is NULL, the registers are still fetched, just the final transfer is skipped. */ if (in_buf == NULL) continue; /* start = max (reg_start, in_start) */ if (reg_start > in_start) start = reg_start; else start = in_start; /* end = min (reg_end, in_end) */ if (reg_end < in_end) end = reg_end; else end = in_end; /* Transfer just the bytes common to both IN_BUF and REG_BUF */ for (byte = start; byte < end; byte++) { in_buf[byte - in_start] = reg_buf[byte - reg_start]; } } } /* Read register REGNUM into memory at MYADDR, which must be large enough for REGISTER_RAW_BYTES (REGNUM). Target byte-order. If the register is known to be the size of a CORE_ADDR or smaller, read_register can be used instead. */ static void legacy_read_register_gen (int regnum, char *myaddr) { gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS)); if (! ptid_equal (registers_ptid, inferior_ptid)) { registers_changed (); registers_ptid = inferior_ptid; } if (!register_cached (regnum)) target_fetch_registers (regnum); memcpy (myaddr, register_buffer (current_regcache, regnum), REGISTER_RAW_SIZE (regnum)); } void regcache_raw_read (struct regcache *regcache, int regnum, void *buf) { gdb_assert (regcache != NULL && buf != NULL); gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); if (regcache->descr->legacy_p && regcache->passthrough_p) { gdb_assert (regcache == current_regcache); /* For moment, just use underlying legacy code. Ulgh!!! This silently and very indirectly updates the regcache's regcache via the global register_valid[]. */ legacy_read_register_gen (regnum, buf); return; } /* Make certain that the register cache is up-to-date with respect to the current thread. This switching shouldn't be necessary only there is still only one target side register cache. Sigh! On the bright side, at least there is a regcache object. */ if (regcache->passthrough_p) { gdb_assert (regcache == current_regcache); if (! ptid_equal (registers_ptid, inferior_ptid)) { registers_changed (); registers_ptid = inferior_ptid; } if (!register_cached (regnum)) target_fetch_registers (regnum); } /* Copy the value directly into the register cache. */ memcpy (buf, (regcache->raw_registers + regcache->descr->register_offset[regnum]), regcache->descr->sizeof_register[regnum]); } void regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val) { char *buf; gdb_assert (regcache != NULL); gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); buf = alloca (regcache->descr->sizeof_register[regnum]); regcache_raw_read (regcache, regnum, buf); (*val) = extract_signed_integer (buf, regcache->descr->sizeof_register[regnum]); } void regcache_raw_read_unsigned (struct regcache *regcache, int regnum, ULONGEST *val) { char *buf; gdb_assert (regcache != NULL); gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); buf = alloca (regcache->descr->sizeof_register[regnum]); regcache_raw_read (regcache, regnum, buf); (*val) = extract_unsigned_integer (buf, regcache->descr->sizeof_register[regnum]); } void regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val) { void *buf; gdb_assert (regcache != NULL); gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers); buf = alloca (regcache->descr->sizeof_register[regnum]); store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val); regcache_raw_write (regcache, regnum, buf); } void regcache_raw_write_unsigned (struct regcache *regcache, int regnum, ULONGEST val) { void *buf; gdb_assert (regcache != NULL); gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers); buf = alloca (regcache->descr->sizeof_register[regnum]); store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val); regcache_raw_write (regcache, regnum, buf); } void read_register_gen (int regnum, char *buf) { gdb_assert (current_regcache != NULL); gdb_assert (current_regcache->descr->gdbarch == current_gdbarch); if (current_regcache->descr->legacy_p) { legacy_read_register_gen (regnum, buf); return; } regcache_cooked_read (current_regcache, regnum, buf); } void regcache_cooked_read (struct regcache *regcache, int regnum, void *buf) { gdb_assert (regnum >= 0); gdb_assert (regnum < regcache->descr->nr_cooked_registers); if (regnum < regcache->descr->nr_raw_registers) regcache_raw_read (regcache, regnum, buf); else gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache, regnum, buf); } void regcache_cooked_read_signed (struct regcache *regcache, int regnum, LONGEST *val) { char *buf; gdb_assert (regcache != NULL); gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); buf = alloca (regcache->descr->sizeof_register[regnum]); regcache_cooked_read (regcache, regnum, buf); (*val) = extract_signed_integer (buf, regcache->descr->sizeof_register[regnum]); } void regcache_cooked_read_unsigned (struct regcache *regcache, int regnum, ULONGEST *val) { char *buf; gdb_assert (regcache != NULL); gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); buf = alloca (regcache->descr->sizeof_register[regnum]); regcache_cooked_read (regcache, regnum, buf); (*val) = extract_unsigned_integer (buf, regcache->descr->sizeof_register[regnum]); } /* Write register REGNUM at MYADDR to the target. MYADDR points at REGISTER_RAW_BYTES(REGNUM), which must be in target byte-order. */ static void legacy_write_register_gen (int regnum, const void *myaddr) { int size; gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS)); /* On the sparc, writing %g0 is a no-op, so we don't even want to change the registers array if something writes to this register. */ if (CANNOT_STORE_REGISTER (regnum)) return; if (! ptid_equal (registers_ptid, inferior_ptid)) { registers_changed (); registers_ptid = inferior_ptid; } size = REGISTER_RAW_SIZE (regnum); if (real_register (regnum)) { /* If we have a valid copy of the register, and new value == old value, then don't bother doing the actual store. */ if (register_cached (regnum) && (memcmp (register_buffer (current_regcache, regnum), myaddr, size) == 0)) return; else target_prepare_to_store (); } memcpy (register_buffer (current_regcache, regnum), myaddr, size); set_register_cached (regnum, 1); target_store_registers (regnum); } void regcache_raw_write (struct regcache *regcache, int regnum, const void *buf) { gdb_assert (regcache != NULL && buf != NULL); gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); if (regcache->passthrough_p && regcache->descr->legacy_p) { /* For moment, just use underlying legacy code. Ulgh!!! This silently and very indirectly updates the regcache's buffers via the globals register_valid[] and registers[]. */ gdb_assert (regcache == current_regcache); legacy_write_register_gen (regnum, buf); return; } /* On the sparc, writing %g0 is a no-op, so we don't even want to change the registers array if something writes to this register. */ if (CANNOT_STORE_REGISTER (regnum)) return; /* Handle the simple case first -> not write through so just store value in cache. */ if (!regcache->passthrough_p) { memcpy ((regcache->raw_registers + regcache->descr->register_offset[regnum]), buf, regcache->descr->sizeof_register[regnum]); regcache->raw_register_valid_p[regnum] = 1; return; } /* Make certain that the correct cache is selected. */ gdb_assert (regcache == current_regcache); if (! ptid_equal (registers_ptid, inferior_ptid)) { registers_changed (); registers_ptid = inferior_ptid; } /* If we have a valid copy of the register, and new value == old value, then don't bother doing the actual store. */ if (regcache_valid_p (regcache, regnum) && (memcmp (register_buffer (regcache, regnum), buf, regcache->descr->sizeof_register[regnum]) == 0)) return; target_prepare_to_store (); memcpy (register_buffer (regcache, regnum), buf, regcache->descr->sizeof_register[regnum]); regcache->raw_register_valid_p[regnum] = 1; target_store_registers (regnum); } void write_register_gen (int regnum, char *buf) { gdb_assert (current_regcache != NULL); gdb_assert (current_regcache->descr->gdbarch == current_gdbarch); if (current_regcache->descr->legacy_p) { legacy_write_register_gen (regnum, buf); return; } regcache_cooked_write (current_regcache, regnum, buf); } void regcache_cooked_write (struct regcache *regcache, int regnum, const void *buf) { gdb_assert (regnum >= 0); gdb_assert (regnum < regcache->descr->nr_cooked_registers); if (regnum < regcache->descr->nr_raw_registers) regcache_raw_write (regcache, regnum, buf); else gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache, regnum, buf); } /* Copy INLEN bytes of consecutive data from memory at MYADDR into registers starting with the MYREGSTART'th byte of register data. */ void write_register_bytes (int myregstart, char *myaddr, int inlen) { int myregend = myregstart + inlen; int regnum; target_prepare_to_store (); /* Scan through the registers updating any that are covered by the range myregstart<=>myregend using write_register_gen, which does nice things like handling threads, and avoiding updates when the new and old contents are the same. */ for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++) { int regstart, regend; regstart = REGISTER_BYTE (regnum); regend = regstart + REGISTER_RAW_SIZE (regnum); /* Is this register completely outside the range the user is writing? */ if (myregend <= regstart || regend <= myregstart) /* do nothing */ ; /* Is this register completely within the range the user is writing? */ else if (myregstart <= regstart && regend <= myregend) write_register_gen (regnum, myaddr + (regstart - myregstart)); /* The register partially overlaps the range being written. */ else { char *regbuf = (char*) alloca (MAX_REGISTER_RAW_SIZE); /* What's the overlap between this register's bytes and those the caller wants to write? */ int overlapstart = max (regstart, myregstart); int overlapend = min (regend, myregend); /* We may be doing a partial update of an invalid register. Update it from the target before scribbling on it. */ read_register_gen (regnum, regbuf); memcpy (registers + overlapstart, myaddr + (overlapstart - myregstart), overlapend - overlapstart); target_store_registers (regnum); } } } /* Perform a partial register transfer using a read, modify, write operation. */ typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum, void *buf); typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum, const void *buf); void regcache_xfer_part (struct regcache *regcache, int regnum, int offset, int len, void *in, const void *out, regcache_read_ftype *read, regcache_write_ftype *write) { struct regcache_descr *descr = regcache->descr; bfd_byte *reg = alloca (descr->max_register_size); gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]); gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]); /* Something to do? */ if (offset + len == 0) return; /* Read (when needed) ... */ if (in != NULL || offset > 0 || offset + len < descr->sizeof_register[regnum]) { gdb_assert (read != NULL); read (regcache, regnum, reg); } /* ... modify ... */ if (in != NULL) memcpy (in, reg + offset, len); if (out != NULL) memcpy (reg + offset, out, len); /* ... write (when needed). */ if (out != NULL) { gdb_assert (write != NULL); write (regcache, regnum, reg); } } void regcache_raw_read_part (struct regcache *regcache, int regnum, int offset, int len, void *buf) { struct regcache_descr *descr = regcache->descr; gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers); regcache_xfer_part (regcache, regnum, offset, len, buf, NULL, regcache_raw_read, regcache_raw_write); } void regcache_raw_write_part (struct regcache *regcache, int regnum, int offset, int len, const void *buf) { struct regcache_descr *descr = regcache->descr; gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers); regcache_xfer_part (regcache, regnum, offset, len, NULL, buf, regcache_raw_read, regcache_raw_write); } void regcache_cooked_read_part (struct regcache *regcache, int regnum, int offset, int len, void *buf) { struct regcache_descr *descr = regcache->descr; gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers); regcache_xfer_part (regcache, regnum, offset, len, buf, NULL, regcache_cooked_read, regcache_cooked_write); } void regcache_cooked_write_part (struct regcache *regcache, int regnum, int offset, int len, const void *buf) { struct regcache_descr *descr = regcache->descr; gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers); regcache_xfer_part (regcache, regnum, offset, len, NULL, buf, regcache_cooked_read, regcache_cooked_write); } /* Hack to keep code that view the register buffer as raw bytes working. */ int register_offset_hack (struct gdbarch *gdbarch, int regnum) { struct regcache_descr *descr = regcache_descr (gdbarch); gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers); return descr->register_offset[regnum]; } static void cooked_xfer_using_offset_hack (struct regcache *regcache, int buf_start, int buf_len, void *in_b, const void *out_b) { struct regcache_descr *descr = regcache->descr; struct gdbarch *gdbarch = descr->gdbarch; bfd_byte *in_buf = in_b; const bfd_byte *out_buf = out_b; int buf_end = buf_start + buf_len; int regnum; char *reg_buf = alloca (descr->max_register_size); /* NOTE: cagney/2002-08-17: This code assumes that the register offsets are strictly increasing and do not overlap. If this isn't the case then the bug is in the target architecture and NOT this code. */ /* NOTE: cagney/2002-08-17: This code assumes that only the registers covered by BUF_START:BUF_LEN should be transfered. If, for some reason, there is a gap between two registers, then that gap isn't transfered. (The gap shouldn't be there but that is another story.) */ /* Iterate through all registers looking for those that lie within BUF_START:BUF_LEN. */ for (regnum = 0; regnum < descr->nr_cooked_registers; regnum++) { /* The register's location. */ int reg_start = descr->register_offset[regnum]; int reg_len = descr->sizeof_register[regnum]; int reg_end = reg_start + reg_len; /* The START, END and LEN that falls within the current register. */ int xfer_start; int xfer_end; int xfer_len; /* start = max (reg_start, buf_start) */ if (reg_start > buf_start) xfer_start = reg_start; else xfer_start = buf_start; /* end = min (reg_end, buf_end) */ if (reg_end < buf_end) xfer_end = reg_end; else xfer_end = buf_end; /* The number of bytes to transfer. If there isn't anything to transfer (the end is before the start) this will be -ve. */ xfer_len = xfer_end - xfer_start; if (xfer_len > 0) regcache_xfer_part (regcache, regnum, xfer_start - reg_start, xfer_len, in_b, out_b, regcache_cooked_read, regcache_cooked_write); } } void regcache_cooked_read_using_offset_hack (struct regcache *regcache, int buf_start, int buf_len, void *b) { cooked_xfer_using_offset_hack (regcache, buf_start, buf_len, b, NULL); } void regcache_cooked_write_using_offset_hack (struct regcache *regcache, int buf_start, int buf_len, const void *b) { cooked_xfer_using_offset_hack (regcache, buf_start, buf_len, NULL, b); } /* Return the contents of register REGNUM as an unsigned integer. */ ULONGEST read_register (int regnum) { char *buf = alloca (REGISTER_RAW_SIZE (regnum)); read_register_gen (regnum, buf); return (extract_unsigned_integer (buf, REGISTER_RAW_SIZE (regnum))); } ULONGEST read_register_pid (int regnum, ptid_t ptid) { ptid_t save_ptid; int save_pid; CORE_ADDR retval; if (ptid_equal (ptid, inferior_ptid)) return read_register (regnum); save_ptid = inferior_ptid; inferior_ptid = ptid; retval = read_register (regnum); inferior_ptid = save_ptid; return retval; } /* Return the contents of register REGNUM as a signed integer. */ LONGEST read_signed_register (int regnum) { void *buf = alloca (REGISTER_RAW_SIZE (regnum)); read_register_gen (regnum, buf); return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum))); } LONGEST read_signed_register_pid (int regnum, ptid_t ptid) { ptid_t save_ptid; LONGEST retval; if (ptid_equal (ptid, inferior_ptid)) return read_signed_register (regnum); save_ptid = inferior_ptid; inferior_ptid = ptid; retval = read_signed_register (regnum); inferior_ptid = save_ptid; return retval; } /* Store VALUE into the raw contents of register number REGNUM. */ void write_register (int regnum, LONGEST val) { void *buf; int size; size = REGISTER_RAW_SIZE (regnum); buf = alloca (size); store_signed_integer (buf, size, (LONGEST) val); write_register_gen (regnum, buf); } void write_register_pid (int regnum, CORE_ADDR val, ptid_t ptid) { ptid_t save_ptid; if (ptid_equal (ptid, inferior_ptid)) { write_register (regnum, val); return; } save_ptid = inferior_ptid; inferior_ptid = ptid; write_register (regnum, val); inferior_ptid = save_ptid; } /* SUPPLY_REGISTER() Record that register REGNUM contains VAL. This is used when the value is obtained from the inferior or core dump, so there is no need to store the value there. If VAL is a NULL pointer, then it's probably an unsupported register. We just set its value to all zeros. We might want to record this fact, and report it to the users of read_register and friends. */ void supply_register (int regnum, const void *val) { #if 1 if (! ptid_equal (registers_ptid, inferior_ptid)) { registers_changed (); registers_ptid = inferior_ptid; } #endif set_register_cached (regnum, 1); if (val) memcpy (register_buffer (current_regcache, regnum), val, REGISTER_RAW_SIZE (regnum)); else memset (register_buffer (current_regcache, regnum), '\000', REGISTER_RAW_SIZE (regnum)); /* On some architectures, e.g. HPPA, there are a few stray bits in some registers, that the rest of the code would like to ignore. */ /* NOTE: cagney/2001-03-16: The macro CLEAN_UP_REGISTER_VALUE is going to be deprecated. Instead architectures will leave the raw register value as is and instead clean things up as they pass through the method gdbarch_pseudo_register_read() clean up the values. */ #ifdef DEPRECATED_CLEAN_UP_REGISTER_VALUE DEPRECATED_CLEAN_UP_REGISTER_VALUE \ (regnum, register_buffer (current_regcache, regnum)); #endif } void regcache_collect (int regnum, void *buf) { memcpy (buf, register_buffer (current_regcache, regnum), REGISTER_RAW_SIZE (regnum)); } /* read_pc, write_pc, read_sp, write_sp, read_fp, etc. Special handling for registers PC, SP, and FP. */ /* NOTE: cagney/2001-02-18: The functions generic_target_read_pc(), read_pc_pid(), read_pc(), generic_target_write_pc(), write_pc_pid(), write_pc(), generic_target_read_sp(), read_sp(), generic_target_write_sp(), write_sp(), generic_target_read_fp() and read_fp(), will eventually be moved out of the reg-cache into either frame.[hc] or to the multi-arch framework. The are not part of the raw register cache. */ /* This routine is getting awfully cluttered with #if's. It's probably time to turn this into READ_PC and define it in the tm.h file. Ditto for write_pc. 1999-06-08: The following were re-written so that it assumes the existence of a TARGET_READ_PC et.al. macro. A default generic version of that macro is made available where needed. Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled by the multi-arch framework, it will eventually be possible to eliminate the intermediate read_pc_pid(). The client would call TARGET_READ_PC directly. (cagney). */ CORE_ADDR generic_target_read_pc (ptid_t ptid) { #ifdef PC_REGNUM if (PC_REGNUM >= 0) { CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, ptid)); return pc_val; } #endif internal_error (__FILE__, __LINE__, "generic_target_read_pc"); return 0; } CORE_ADDR read_pc_pid (ptid_t ptid) { ptid_t saved_inferior_ptid; CORE_ADDR pc_val; /* In case ptid != inferior_ptid. */ saved_inferior_ptid = inferior_ptid; inferior_ptid = ptid; pc_val = TARGET_READ_PC (ptid); inferior_ptid = saved_inferior_ptid; return pc_val; } CORE_ADDR read_pc (void) { return read_pc_pid (inferior_ptid); } void generic_target_write_pc (CORE_ADDR pc, ptid_t ptid) { #ifdef PC_REGNUM if (PC_REGNUM >= 0) write_register_pid (PC_REGNUM, pc, ptid); if (NPC_REGNUM >= 0) write_register_pid (NPC_REGNUM, pc + 4, ptid); #else internal_error (__FILE__, __LINE__, "generic_target_write_pc"); #endif } void write_pc_pid (CORE_ADDR pc, ptid_t ptid) { ptid_t saved_inferior_ptid; /* In case ptid != inferior_ptid. */ saved_inferior_ptid = inferior_ptid; inferior_ptid = ptid; TARGET_WRITE_PC (pc, ptid); inferior_ptid = saved_inferior_ptid; } void write_pc (CORE_ADDR pc) { write_pc_pid (pc, inferior_ptid); } /* Cope with strage ways of getting to the stack and frame pointers */ CORE_ADDR generic_target_read_sp (void) { #ifdef SP_REGNUM if (SP_REGNUM >= 0) return read_register (SP_REGNUM); #endif internal_error (__FILE__, __LINE__, "generic_target_read_sp"); } CORE_ADDR read_sp (void) { return TARGET_READ_SP (); } void generic_target_write_sp (CORE_ADDR val) { #ifdef SP_REGNUM if (SP_REGNUM >= 0) { write_register (SP_REGNUM, val); return; } #endif internal_error (__FILE__, __LINE__, "generic_target_write_sp"); } void write_sp (CORE_ADDR val) { TARGET_WRITE_SP (val); } CORE_ADDR generic_target_read_fp (void) { #ifdef FP_REGNUM if (FP_REGNUM >= 0) return read_register (FP_REGNUM); #endif internal_error (__FILE__, __LINE__, "generic_target_read_fp"); } CORE_ADDR read_fp (void) { return TARGET_READ_FP (); } /* ARGSUSED */ static void reg_flush_command (char *command, int from_tty) { /* Force-flush the register cache. */ registers_changed (); if (from_tty) printf_filtered ("Register cache flushed.\n"); } static void build_regcache (void) { current_regcache = regcache_xmalloc (current_gdbarch); current_regcache->passthrough_p = 1; registers = deprecated_grub_regcache_for_registers (current_regcache); register_valid = deprecated_grub_regcache_for_register_valid (current_regcache); } static void dump_endian_bytes (struct ui_file *file, enum bfd_endian endian, const unsigned char *buf, long len) { int i; switch (endian) { case BFD_ENDIAN_BIG: for (i = 0; i < len; i++) fprintf_unfiltered (file, "%02x", buf[i]); break; case BFD_ENDIAN_LITTLE: for (i = len - 1; i >= 0; i--) fprintf_unfiltered (file, "%02x", buf[i]); break; default: internal_error (__FILE__, __LINE__, "Bad switch"); } } enum regcache_dump_what { regcache_dump_none, regcache_dump_raw, regcache_dump_cooked }; static void regcache_dump (struct regcache *regcache, struct ui_file *file, enum regcache_dump_what what_to_dump) { struct cleanup *cleanups = make_cleanup (null_cleanup, NULL); int regnum; int footnote_nr = 0; int footnote_register_size = 0; int footnote_register_offset = 0; int footnote_register_type_name_null = 0; long register_offset = 0; unsigned char *buf = alloca (regcache->descr->max_register_size); #if 0 fprintf_unfiltered (file, "legacy_p %d\n", regcache->descr->legacy_p); fprintf_unfiltered (file, "nr_raw_registers %d\n", regcache->descr->nr_raw_registers); fprintf_unfiltered (file, "nr_cooked_registers %d\n", regcache->descr->nr_cooked_registers); fprintf_unfiltered (file, "sizeof_raw_registers %ld\n", regcache->descr->sizeof_raw_registers); fprintf_unfiltered (file, "sizeof_raw_register_valid_p %ld\n", regcache->descr->sizeof_raw_register_valid_p); fprintf_unfiltered (file, "max_register_size %ld\n", regcache->descr->max_register_size); fprintf_unfiltered (file, "NUM_REGS %d\n", NUM_REGS); fprintf_unfiltered (file, "NUM_PSEUDO_REGS %d\n", NUM_PSEUDO_REGS); #endif gdb_assert (regcache->descr->nr_cooked_registers == (NUM_REGS + NUM_PSEUDO_REGS)); for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++) { /* Name. */ if (regnum < 0) fprintf_unfiltered (file, " %-10s", "Name"); else { const char *p = REGISTER_NAME (regnum); if (p == NULL) p = ""; else if (p[0] == '\0') p = "''"; fprintf_unfiltered (file, " %-10s", p); } /* Number. */ if (regnum < 0) fprintf_unfiltered (file, " %4s", "Nr"); else fprintf_unfiltered (file, " %4d", regnum); /* Relative number. */ if (regnum < 0) fprintf_unfiltered (file, " %4s", "Rel"); else if (regnum < NUM_REGS) fprintf_unfiltered (file, " %4d", regnum); else fprintf_unfiltered (file, " %4d", (regnum - NUM_REGS)); /* Offset. */ if (regnum < 0) fprintf_unfiltered (file, " %6s ", "Offset"); else { fprintf_unfiltered (file, " %6ld", regcache->descr->register_offset[regnum]); if (register_offset != regcache->descr->register_offset[regnum] || register_offset != REGISTER_BYTE (regnum) || (regnum > 0 && (regcache->descr->register_offset[regnum] != (regcache->descr->register_offset[regnum - 1] + regcache->descr->sizeof_register[regnum - 1]))) ) { if (!footnote_register_offset) footnote_register_offset = ++footnote_nr; fprintf_unfiltered (file, "*%d", footnote_register_offset); } else fprintf_unfiltered (file, " "); register_offset = (regcache->descr->register_offset[regnum] + regcache->descr->sizeof_register[regnum]); } /* Size. */ if (regnum < 0) fprintf_unfiltered (file, " %5s ", "Size"); else { fprintf_unfiltered (file, " %5ld", regcache->descr->sizeof_register[regnum]); if ((regcache->descr->sizeof_register[regnum] != REGISTER_RAW_SIZE (regnum)) || (regcache->descr->sizeof_register[regnum] != REGISTER_VIRTUAL_SIZE (regnum)) || (regcache->descr->sizeof_register[regnum] != TYPE_LENGTH (register_type (regcache->descr->gdbarch, regnum))) ) { if (!footnote_register_size) footnote_register_size = ++footnote_nr; fprintf_unfiltered (file, "*%d", footnote_register_size); } else fprintf_unfiltered (file, " "); } /* Type. */ if (regnum < 0) fprintf_unfiltered (file, " %-20s", "Type"); else { static const char blt[] = "builtin_type"; const char *t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum)); if (t == NULL) { char *n; if (!footnote_register_type_name_null) footnote_register_type_name_null = ++footnote_nr; xasprintf (&n, "*%d", footnote_register_type_name_null); make_cleanup (xfree, n); t = n; } /* Chop a leading builtin_type. */ if (strncmp (t, blt, strlen (blt)) == 0) t += strlen (blt); fprintf_unfiltered (file, " %-20s", t); } /* Value, raw. */ if (what_to_dump == regcache_dump_raw) { if (regnum < 0) fprintf_unfiltered (file, "Raw value"); else if (regnum >= regcache->descr->nr_raw_registers) fprintf_unfiltered (file, "<cooked>"); else if (!regcache_valid_p (regcache, regnum)) fprintf_unfiltered (file, "<invalid>"); else { regcache_raw_read (regcache, regnum, buf); fprintf_unfiltered (file, "0x"); dump_endian_bytes (file, TARGET_BYTE_ORDER, buf, REGISTER_RAW_SIZE (regnum)); } } /* Value, cooked. */ if (what_to_dump == regcache_dump_cooked) { if (regnum < 0) fprintf_unfiltered (file, "Cooked value"); else { regcache_cooked_read (regcache, regnum, buf); fprintf_unfiltered (file, "0x"); dump_endian_bytes (file, TARGET_BYTE_ORDER, buf, REGISTER_VIRTUAL_SIZE (regnum)); } } fprintf_unfiltered (file, "\n"); } if (footnote_register_size) fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n", footnote_register_size); if (footnote_register_offset) fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n", footnote_register_offset); if (footnote_register_type_name_null) fprintf_unfiltered (file, "*%d: Register type's name NULL.\n", footnote_register_type_name_null); do_cleanups (cleanups); } static void regcache_print (char *args, enum regcache_dump_what what_to_dump) { if (args == NULL) regcache_dump (current_regcache, gdb_stdout, what_to_dump); else { struct ui_file *file = gdb_fopen (args, "w"); if (file == NULL) perror_with_name ("maintenance print architecture"); regcache_dump (current_regcache, file, what_to_dump); ui_file_delete (file); } } static void maintenance_print_registers (char *args, int from_tty) { regcache_print (args, regcache_dump_none); } static void maintenance_print_raw_registers (char *args, int from_tty) { regcache_print (args, regcache_dump_raw); } static void maintenance_print_cooked_registers (char *args, int from_tty) { regcache_print (args, regcache_dump_cooked); } void _initialize_regcache (void) { regcache_descr_handle = register_gdbarch_data (init_regcache_descr, xfree_regcache_descr); REGISTER_GDBARCH_SWAP (current_regcache); register_gdbarch_swap (®isters, sizeof (registers), NULL); register_gdbarch_swap (®ister_valid, sizeof (register_valid), NULL); register_gdbarch_swap (NULL, 0, build_regcache); add_com ("flushregs", class_maintenance, reg_flush_command, "Force gdb to flush its register cache (maintainer command)"); /* Initialize the thread/process associated with the current set of registers. For now, -1 is special, and means `no current process'. */ registers_ptid = pid_to_ptid (-1); add_cmd ("registers", class_maintenance, maintenance_print_registers, "Print the internal register configuration.\ Takes an optional file parameter.", &maintenanceprintlist); add_cmd ("raw-registers", class_maintenance, maintenance_print_raw_registers, "Print the internal register configuration including raw values.\ Takes an optional file parameter.", &maintenanceprintlist); add_cmd ("cooked-registers", class_maintenance, maintenance_print_cooked_registers, "Print the internal register configuration including cooked values.\ Takes an optional file parameter.", &maintenanceprintlist); }