/* Cache and manage the values of registers for GDB, the GNU debugger. Copyright (C) 1986-2018 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "inferior.h" #include "target.h" #include "gdbarch.h" #include "gdbcmd.h" #include "regcache.h" #include "reggroups.h" #include "observer.h" #include "regset.h" #include /* * DATA STRUCTURE * * Here is the actual register cache. */ /* Per-architecture object describing the layout of a register cache. Computed once when the architecture is created. */ struct gdbarch_data *regcache_descr_handle; struct regcache_descr { /* The architecture this descriptor belongs to. */ struct gdbarch *gdbarch; /* The raw register cache. Each raw (or hard) register is supplied by the target interface. The raw cache should not contain redundant information - if the PC is constructed from two registers then those registers and not the PC lives in the raw cache. */ long sizeof_raw_registers; /* The cooked register space. Each cooked register in the range [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw register. The remaining [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto both raw registers and memory by the architecture methods gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */ int nr_cooked_registers; long sizeof_cooked_registers; /* Offset and size (in 8 bit bytes), of each register in the register cache. All registers (including those in the range [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an offset. */ long *register_offset; long *sizeof_register; /* Cached table containing the type of each register. */ struct type **register_type; }; static void * init_regcache_descr (struct gdbarch *gdbarch) { int i; struct regcache_descr *descr; gdb_assert (gdbarch != NULL); /* Create an initial, zero filled, table. */ descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr); descr->gdbarch = gdbarch; /* Total size of the register space. The raw registers are mapped directly onto the raw register cache while the pseudo's are either mapped onto raw-registers or memory. */ descr->nr_cooked_registers = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch); /* Fill in a table of register types. */ descr->register_type = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, struct type *); for (i = 0; i < descr->nr_cooked_registers; i++) descr->register_type[i] = gdbarch_register_type (gdbarch, i); /* Construct a strictly RAW register cache. Don't allow pseudo's into the register cache. */ /* Lay out the register cache. NOTE: cagney/2002-05-22: Only register_type() is used when constructing the register cache. It is assumed that the register's raw size, virtual size and type length are all the same. */ { long offset = 0; descr->sizeof_register = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long); descr->register_offset = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long); for (i = 0; i < gdbarch_num_regs (gdbarch); i++) { descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]); descr->register_offset[i] = offset; offset += descr->sizeof_register[i]; } /* Set the real size of the raw register cache buffer. */ descr->sizeof_raw_registers = offset; for (; i < descr->nr_cooked_registers; i++) { descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]); descr->register_offset[i] = offset; offset += descr->sizeof_register[i]; } /* Set the real size of the readonly register cache buffer. */ descr->sizeof_cooked_registers = offset; } return descr; } static struct regcache_descr * regcache_descr (struct gdbarch *gdbarch) { return (struct regcache_descr *) gdbarch_data (gdbarch, regcache_descr_handle); } /* Utility functions returning useful register attributes stored in the regcache descr. */ struct type * register_type (struct gdbarch *gdbarch, int regnum) { struct regcache_descr *descr = regcache_descr (gdbarch); gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers); return descr->register_type[regnum]; } /* Utility functions returning useful register attributes stored in the regcache descr. */ int register_size (struct gdbarch *gdbarch, int regnum) { struct regcache_descr *descr = regcache_descr (gdbarch); int size; gdb_assert (regnum >= 0 && regnum < (gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch))); size = descr->sizeof_register[regnum]; return size; } /* See common/common-regcache.h. */ int regcache_register_size (const struct regcache *regcache, int n) { return register_size (regcache->arch (), n); } reg_buffer::reg_buffer (gdbarch *gdbarch, bool has_pseudo) : m_has_pseudo (has_pseudo) { gdb_assert (gdbarch != NULL); m_descr = regcache_descr (gdbarch); if (has_pseudo) { m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_cooked_registers); m_register_status = XCNEWVEC (signed char, m_descr->nr_cooked_registers); } else { m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_raw_registers); m_register_status = XCNEWVEC (signed char, gdbarch_num_regs (gdbarch)); } } regcache::regcache (gdbarch *gdbarch, const address_space *aspace_) /* The register buffers. A read/write register cache can only hold [0 .. gdbarch_num_regs). */ : detached_regcache (gdbarch, false), m_aspace (aspace_) { m_ptid = minus_one_ptid; } static enum register_status do_cooked_read (void *src, int regnum, gdb_byte *buf) { struct regcache *regcache = (struct regcache *) src; return regcache_cooked_read (regcache, regnum, buf); } readonly_detached_regcache::readonly_detached_regcache (const regcache &src) : readonly_detached_regcache (src.arch (), do_cooked_read, (void *) &src) { } gdbarch * reg_buffer::arch () const { return m_descr->gdbarch; } /* See regcache.h. */ ptid_t regcache_get_ptid (const struct regcache *regcache) { gdb_assert (!ptid_equal (regcache->ptid (), minus_one_ptid)); return regcache->ptid (); } /* Cleanup class for invalidating a register. */ class regcache_invalidator { public: regcache_invalidator (struct regcache *regcache, int regnum) : m_regcache (regcache), m_regnum (regnum) { } ~regcache_invalidator () { if (m_regcache != nullptr) regcache_invalidate (m_regcache, m_regnum); } DISABLE_COPY_AND_ASSIGN (regcache_invalidator); void release () { m_regcache = nullptr; } private: struct regcache *m_regcache; int m_regnum; }; /* Return a pointer to register REGNUM's buffer cache. */ gdb_byte * reg_buffer::register_buffer (int regnum) const { return m_registers + m_descr->register_offset[regnum]; } void reg_buffer::save (regcache_cooked_read_ftype *cooked_read, void *src) { struct gdbarch *gdbarch = m_descr->gdbarch; int regnum; /* It should have pseudo registers. */ gdb_assert (m_has_pseudo); /* Clear the dest. */ memset (m_registers, 0, m_descr->sizeof_cooked_registers); memset (m_register_status, 0, m_descr->nr_cooked_registers); /* Copy over any registers (identified by their membership in the save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) range is checked since some architectures need to save/restore `cooked' registers that live in memory. */ for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++) { if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup)) { gdb_byte *dst_buf = register_buffer (regnum); enum register_status status = cooked_read (src, regnum, dst_buf); gdb_assert (status != REG_UNKNOWN); if (status != REG_VALID) memset (dst_buf, 0, register_size (gdbarch, regnum)); m_register_status[regnum] = status; } } } void regcache::restore (readonly_detached_regcache *src) { struct gdbarch *gdbarch = m_descr->gdbarch; int regnum; gdb_assert (src != NULL); gdb_assert (src->m_has_pseudo); gdb_assert (gdbarch == src->arch ()); /* Copy over any registers, being careful to only restore those that were both saved and need to be restored. The full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) range is checked since some architectures need to save/restore `cooked' registers that live in memory. */ for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++) { if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup)) { if (src->m_register_status[regnum] == REG_VALID) cooked_write (regnum, src->register_buffer (regnum)); } } } enum register_status regcache_register_status (const struct regcache *regcache, int regnum) { gdb_assert (regcache != NULL); return regcache->get_register_status (regnum); } enum register_status reg_buffer::get_register_status (int regnum) const { assert_regnum (regnum); return (enum register_status) m_register_status[regnum]; } void regcache_invalidate (struct regcache *regcache, int regnum) { gdb_assert (regcache != NULL); regcache->invalidate (regnum); } void detached_regcache::invalidate (int regnum) { assert_regnum (regnum); m_register_status[regnum] = REG_UNKNOWN; } void reg_buffer::assert_regnum (int regnum) const { gdb_assert (regnum >= 0); if (m_has_pseudo) gdb_assert (regnum < m_descr->nr_cooked_registers); else gdb_assert (regnum < gdbarch_num_regs (arch ())); } /* Global structure containing the current regcache. */ /* NOTE: this is a write-through cache. There is no "dirty" bit for recording if the register values have been changed (eg. by the user). Therefore all registers must be written back to the target when appropriate. */ std::forward_list regcache::current_regcache; struct regcache * get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch, struct address_space *aspace) { for (const auto ®cache : regcache::current_regcache) if (ptid_equal (regcache->ptid (), ptid) && regcache->arch () == gdbarch) return regcache; regcache *new_regcache = new regcache (gdbarch, aspace); regcache::current_regcache.push_front (new_regcache); new_regcache->set_ptid (ptid); return new_regcache; } struct regcache * get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch) { address_space *aspace = target_thread_address_space (ptid); return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace); } static ptid_t current_thread_ptid; static struct gdbarch *current_thread_arch; struct regcache * get_thread_regcache (ptid_t ptid) { if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid)) { current_thread_ptid = ptid; current_thread_arch = target_thread_architecture (ptid); } return get_thread_arch_regcache (ptid, current_thread_arch); } struct regcache * get_current_regcache (void) { return get_thread_regcache (inferior_ptid); } /* See common/common-regcache.h. */ struct regcache * get_thread_regcache_for_ptid (ptid_t ptid) { return get_thread_regcache (ptid); } /* Observer for the target_changed event. */ static void regcache_observer_target_changed (struct target_ops *target) { registers_changed (); } /* Update global variables old ptids to hold NEW_PTID if they were holding OLD_PTID. */ void regcache::regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid) { for (auto ®cache : regcache::current_regcache) { if (ptid_equal (regcache->ptid (), old_ptid)) regcache->set_ptid (new_ptid); } } /* Low level examining and depositing of registers. The caller is responsible for making sure that the inferior is stopped before calling the fetching routines, or it will get garbage. (a change from GDB version 3, in which the caller got the value from the last stop). */ /* REGISTERS_CHANGED () Indicate that registers may have changed, so invalidate the cache. */ void registers_changed_ptid (ptid_t ptid) { for (auto oit = regcache::current_regcache.before_begin (), it = std::next (oit); it != regcache::current_regcache.end (); ) { if (ptid_match ((*it)->ptid (), ptid)) { delete *it; it = regcache::current_regcache.erase_after (oit); } else oit = it++; } if (ptid_match (current_thread_ptid, ptid)) { current_thread_ptid = null_ptid; current_thread_arch = NULL; } if (ptid_match (inferior_ptid, ptid)) { /* We just deleted the regcache of the current thread. Need to forget about any frames we have cached, too. */ reinit_frame_cache (); } } void registers_changed (void) { registers_changed_ptid (minus_one_ptid); /* Force cleanup of any alloca areas if using C alloca instead of a builtin alloca. This particular call is used to clean up areas allocated by low level target code which may build up during lengthy interactions between gdb and the target before gdb gives control to the user (ie watchpoints). */ alloca (0); } void regcache_raw_update (struct regcache *regcache, int regnum) { gdb_assert (regcache != NULL); regcache->raw_update (regnum); } void regcache::raw_update (int regnum) { assert_regnum (regnum); /* Make certain that the register cache is up-to-date with respect to the current thread. This switching shouldn't be necessary only there is still only one target side register cache. Sigh! On the bright side, at least there is a regcache object. */ if (get_register_status (regnum) == REG_UNKNOWN) { target_fetch_registers (this, regnum); /* A number of targets can't access the whole set of raw registers (because the debug API provides no means to get at them). */ if (m_register_status[regnum] == REG_UNKNOWN) m_register_status[regnum] = REG_UNAVAILABLE; } } enum register_status regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf) { return regcache->raw_read (regnum, buf); } enum register_status readable_regcache::raw_read (int regnum, gdb_byte *buf) { gdb_assert (buf != NULL); raw_update (regnum); if (m_register_status[regnum] != REG_VALID) memset (buf, 0, m_descr->sizeof_register[regnum]); else memcpy (buf, register_buffer (regnum), m_descr->sizeof_register[regnum]); return (enum register_status) m_register_status[regnum]; } enum register_status regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val) { gdb_assert (regcache != NULL); return regcache->raw_read (regnum, val); } template enum register_status readable_regcache::raw_read (int regnum, T *val) { gdb_byte *buf; enum register_status status; assert_regnum (regnum); buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]); status = raw_read (regnum, buf); if (status == REG_VALID) *val = extract_integer (buf, m_descr->sizeof_register[regnum], gdbarch_byte_order (m_descr->gdbarch)); else *val = 0; return status; } enum register_status regcache_raw_read_unsigned (struct regcache *regcache, int regnum, ULONGEST *val) { gdb_assert (regcache != NULL); return regcache->raw_read (regnum, val); } void regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val) { gdb_assert (regcache != NULL); regcache->raw_write (regnum, val); } template void regcache::raw_write (int regnum, T val) { gdb_byte *buf; assert_regnum (regnum); buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]); store_integer (buf, m_descr->sizeof_register[regnum], gdbarch_byte_order (m_descr->gdbarch), val); raw_write (regnum, buf); } void regcache_raw_write_unsigned (struct regcache *regcache, int regnum, ULONGEST val) { gdb_assert (regcache != NULL); regcache->raw_write (regnum, val); } LONGEST regcache_raw_get_signed (struct regcache *regcache, int regnum) { LONGEST value; enum register_status status; status = regcache_raw_read_signed (regcache, regnum, &value); if (status == REG_UNAVAILABLE) throw_error (NOT_AVAILABLE_ERROR, _("Register %d is not available"), regnum); return value; } enum register_status regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf) { return regcache->cooked_read (regnum, buf); } enum register_status readable_regcache::cooked_read (int regnum, gdb_byte *buf) { gdb_assert (regnum >= 0); gdb_assert (regnum < m_descr->nr_cooked_registers); if (regnum < num_raw_registers ()) return raw_read (regnum, buf); else if (m_has_pseudo && m_register_status[regnum] != REG_UNKNOWN) { if (m_register_status[regnum] == REG_VALID) memcpy (buf, register_buffer (regnum), m_descr->sizeof_register[regnum]); else memset (buf, 0, m_descr->sizeof_register[regnum]); return (enum register_status) m_register_status[regnum]; } else if (gdbarch_pseudo_register_read_value_p (m_descr->gdbarch)) { struct value *mark, *computed; enum register_status result = REG_VALID; mark = value_mark (); computed = gdbarch_pseudo_register_read_value (m_descr->gdbarch, this, regnum); if (value_entirely_available (computed)) memcpy (buf, value_contents_raw (computed), m_descr->sizeof_register[regnum]); else { memset (buf, 0, m_descr->sizeof_register[regnum]); result = REG_UNAVAILABLE; } value_free_to_mark (mark); return result; } else return gdbarch_pseudo_register_read (m_descr->gdbarch, this, regnum, buf); } struct value * regcache_cooked_read_value (struct regcache *regcache, int regnum) { return regcache->cooked_read_value (regnum); } struct value * readable_regcache::cooked_read_value (int regnum) { gdb_assert (regnum >= 0); gdb_assert (regnum < m_descr->nr_cooked_registers); if (regnum < num_raw_registers () || (m_has_pseudo && m_register_status[regnum] != REG_UNKNOWN) || !gdbarch_pseudo_register_read_value_p (m_descr->gdbarch)) { struct value *result; result = allocate_value (register_type (m_descr->gdbarch, regnum)); VALUE_LVAL (result) = lval_register; VALUE_REGNUM (result) = regnum; /* It is more efficient in general to do this delegation in this direction than in the other one, even though the value-based API is preferred. */ if (cooked_read (regnum, value_contents_raw (result)) == REG_UNAVAILABLE) mark_value_bytes_unavailable (result, 0, TYPE_LENGTH (value_type (result))); return result; } else return gdbarch_pseudo_register_read_value (m_descr->gdbarch, this, regnum); } enum register_status regcache_cooked_read_signed (struct regcache *regcache, int regnum, LONGEST *val) { gdb_assert (regcache != NULL); return regcache->cooked_read (regnum, val); } template enum register_status readable_regcache::cooked_read (int regnum, T *val) { enum register_status status; gdb_byte *buf; gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers); buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]); status = cooked_read (regnum, buf); if (status == REG_VALID) *val = extract_integer (buf, m_descr->sizeof_register[regnum], gdbarch_byte_order (m_descr->gdbarch)); else *val = 0; return status; } enum register_status regcache_cooked_read_unsigned (struct regcache *regcache, int regnum, ULONGEST *val) { gdb_assert (regcache != NULL); return regcache->cooked_read (regnum, val); } void regcache_cooked_write_signed (struct regcache *regcache, int regnum, LONGEST val) { gdb_assert (regcache != NULL); regcache->cooked_write (regnum, val); } template void regcache::cooked_write (int regnum, T val) { gdb_byte *buf; gdb_assert (regnum >=0 && regnum < m_descr->nr_cooked_registers); buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]); store_integer (buf, m_descr->sizeof_register[regnum], gdbarch_byte_order (m_descr->gdbarch), val); cooked_write (regnum, buf); } void regcache_cooked_write_unsigned (struct regcache *regcache, int regnum, ULONGEST val) { gdb_assert (regcache != NULL); regcache->cooked_write (regnum, val); } void regcache_raw_write (struct regcache *regcache, int regnum, const gdb_byte *buf) { gdb_assert (regcache != NULL && buf != NULL); regcache->raw_write (regnum, buf); } void regcache::raw_write (int regnum, const gdb_byte *buf) { gdb_assert (buf != NULL); assert_regnum (regnum); /* On the sparc, writing %g0 is a no-op, so we don't even want to change the registers array if something writes to this register. */ if (gdbarch_cannot_store_register (arch (), regnum)) return; /* If we have a valid copy of the register, and new value == old value, then don't bother doing the actual store. */ if (get_register_status (regnum) == REG_VALID && (memcmp (register_buffer (regnum), buf, m_descr->sizeof_register[regnum]) == 0)) return; target_prepare_to_store (this); raw_supply (regnum, buf); /* Invalidate the register after it is written, in case of a failure. */ regcache_invalidator invalidator (this, regnum); target_store_registers (this, regnum); /* The target did not throw an error so we can discard invalidating the register. */ invalidator.release (); } void regcache_cooked_write (struct regcache *regcache, int regnum, const gdb_byte *buf) { regcache->cooked_write (regnum, buf); } void regcache::cooked_write (int regnum, const gdb_byte *buf) { gdb_assert (regnum >= 0); gdb_assert (regnum < m_descr->nr_cooked_registers); if (regnum < num_raw_registers ()) raw_write (regnum, buf); else gdbarch_pseudo_register_write (m_descr->gdbarch, this, regnum, buf); } /* Perform a partial register transfer using a read, modify, write operation. */ typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum, void *buf); typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum, const void *buf); enum register_status readable_regcache::read_part (int regnum, int offset, int len, void *in, bool is_raw) { struct gdbarch *gdbarch = arch (); gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum)); gdb_assert (in != NULL); gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]); gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]); /* Something to do? */ if (offset + len == 0) return REG_VALID; /* Read (when needed) ... */ enum register_status status; if (is_raw) status = raw_read (regnum, reg); else status = cooked_read (regnum, reg); if (status != REG_VALID) return status; /* ... modify ... */ memcpy (in, reg + offset, len); return REG_VALID; } enum register_status regcache::write_part (int regnum, int offset, int len, const void *out, bool is_raw) { struct gdbarch *gdbarch = arch (); gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum)); gdb_assert (out != NULL); gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]); gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]); /* Something to do? */ if (offset + len == 0) return REG_VALID; /* Read (when needed) ... */ if (offset > 0 || offset + len < m_descr->sizeof_register[regnum]) { enum register_status status; if (is_raw) status = raw_read (regnum, reg); else status = cooked_read (regnum, reg); if (status != REG_VALID) return status; } memcpy (reg + offset, out, len); /* ... write (when needed). */ if (is_raw) raw_write (regnum, reg); else cooked_write (regnum, reg); return REG_VALID; } enum register_status regcache_raw_read_part (struct regcache *regcache, int regnum, int offset, int len, gdb_byte *buf) { return regcache->raw_read_part (regnum, offset, len, buf); } enum register_status readable_regcache::raw_read_part (int regnum, int offset, int len, gdb_byte *buf) { assert_regnum (regnum); return read_part (regnum, offset, len, buf, true); } void regcache_raw_write_part (struct regcache *regcache, int regnum, int offset, int len, const gdb_byte *buf) { regcache->raw_write_part (regnum, offset, len, buf); } void regcache::raw_write_part (int regnum, int offset, int len, const gdb_byte *buf) { assert_regnum (regnum); write_part (regnum, offset, len, buf, true); } enum register_status regcache_cooked_read_part (struct regcache *regcache, int regnum, int offset, int len, gdb_byte *buf) { return regcache->cooked_read_part (regnum, offset, len, buf); } enum register_status readable_regcache::cooked_read_part (int regnum, int offset, int len, gdb_byte *buf) { gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers); return read_part (regnum, offset, len, buf, false); } void regcache_cooked_write_part (struct regcache *regcache, int regnum, int offset, int len, const gdb_byte *buf) { regcache->cooked_write_part (regnum, offset, len, buf); } void regcache::cooked_write_part (int regnum, int offset, int len, const gdb_byte *buf) { gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers); write_part (regnum, offset, len, buf, false); } /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */ void regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf) { gdb_assert (regcache != NULL); regcache->raw_supply (regnum, buf); } void detached_regcache::raw_supply (int regnum, const void *buf) { void *regbuf; size_t size; assert_regnum (regnum); regbuf = register_buffer (regnum); size = m_descr->sizeof_register[regnum]; if (buf) { memcpy (regbuf, buf, size); m_register_status[regnum] = REG_VALID; } else { /* This memset not strictly necessary, but better than garbage in case the register value manages to escape somewhere (due to a bug, no less). */ memset (regbuf, 0, size); m_register_status[regnum] = REG_UNAVAILABLE; } } /* Supply register REGNUM to REGCACHE. Value to supply is an integer stored at address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED. If the register size is greater than ADDR_LEN, then the integer will be sign or zero extended. If the register size is smaller than the integer, then the most significant bytes of the integer will be truncated. */ void detached_regcache::raw_supply_integer (int regnum, const gdb_byte *addr, int addr_len, bool is_signed) { enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch); gdb_byte *regbuf; size_t regsize; assert_regnum (regnum); regbuf = register_buffer (regnum); regsize = m_descr->sizeof_register[regnum]; copy_integer_to_size (regbuf, regsize, addr, addr_len, is_signed, byte_order); m_register_status[regnum] = REG_VALID; } /* Supply register REGNUM with zeroed value to REGCACHE. This is not the same as calling raw_supply with NULL (which will set the state to unavailable). */ void detached_regcache::raw_supply_zeroed (int regnum) { void *regbuf; size_t size; assert_regnum (regnum); regbuf = register_buffer (regnum); size = m_descr->sizeof_register[regnum]; memset (regbuf, 0, size); m_register_status[regnum] = REG_VALID; } /* Collect register REGNUM from REGCACHE and store its contents in BUF. */ void regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf) { gdb_assert (regcache != NULL && buf != NULL); regcache->raw_collect (regnum, buf); } void regcache::raw_collect (int regnum, void *buf) const { const void *regbuf; size_t size; gdb_assert (buf != NULL); assert_regnum (regnum); regbuf = register_buffer (regnum); size = m_descr->sizeof_register[regnum]; memcpy (buf, regbuf, size); } /* Transfer a single or all registers belonging to a certain register set to or from a buffer. This is the main worker function for regcache_supply_regset and regcache_collect_regset. */ /* Collect register REGNUM from REGCACHE. Store collected value as an integer at address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED. If ADDR_LEN is greater than the register size, then the integer will be sign or zero extended. If ADDR_LEN is smaller than the register size, then the most significant bytes of the integer will be truncated. */ void regcache::raw_collect_integer (int regnum, gdb_byte *addr, int addr_len, bool is_signed) const { enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch); const gdb_byte *regbuf; size_t regsize; assert_regnum (regnum); regbuf = register_buffer (regnum); regsize = m_descr->sizeof_register[regnum]; copy_integer_to_size (addr, addr_len, regbuf, regsize, is_signed, byte_order); } void regcache::transfer_regset (const struct regset *regset, struct regcache *out_regcache, int regnum, const void *in_buf, void *out_buf, size_t size) const { const struct regcache_map_entry *map; int offs = 0, count; for (map = (const struct regcache_map_entry *) regset->regmap; (count = map->count) != 0; map++) { int regno = map->regno; int slot_size = map->size; if (slot_size == 0 && regno != REGCACHE_MAP_SKIP) slot_size = m_descr->sizeof_register[regno]; if (regno == REGCACHE_MAP_SKIP || (regnum != -1 && (regnum < regno || regnum >= regno + count))) offs += count * slot_size; else if (regnum == -1) for (; count--; regno++, offs += slot_size) { if (offs + slot_size > size) break; if (out_buf) raw_collect (regno, (gdb_byte *) out_buf + offs); else out_regcache->raw_supply (regno, in_buf ? (const gdb_byte *) in_buf + offs : NULL); } else { /* Transfer a single register and return. */ offs += (regnum - regno) * slot_size; if (offs + slot_size > size) return; if (out_buf) raw_collect (regnum, (gdb_byte *) out_buf + offs); else out_regcache->raw_supply (regnum, in_buf ? (const gdb_byte *) in_buf + offs : NULL); return; } } } /* Supply register REGNUM from BUF to REGCACHE, using the register map in REGSET. If REGNUM is -1, do this for all registers in REGSET. If BUF is NULL, set the register(s) to "unavailable" status. */ void regcache_supply_regset (const struct regset *regset, struct regcache *regcache, int regnum, const void *buf, size_t size) { regcache->supply_regset (regset, regnum, buf, size); } void regcache::supply_regset (const struct regset *regset, int regnum, const void *buf, size_t size) { transfer_regset (regset, this, regnum, buf, NULL, size); } /* Collect register REGNUM from REGCACHE to BUF, using the register map in REGSET. If REGNUM is -1, do this for all registers in REGSET. */ void regcache_collect_regset (const struct regset *regset, const struct regcache *regcache, int regnum, void *buf, size_t size) { regcache->collect_regset (regset, regnum, buf, size); } void regcache::collect_regset (const struct regset *regset, int regnum, void *buf, size_t size) const { transfer_regset (regset, NULL, regnum, NULL, buf, size); } /* Special handling for register PC. */ CORE_ADDR regcache_read_pc (struct regcache *regcache) { struct gdbarch *gdbarch = regcache->arch (); CORE_ADDR pc_val; if (gdbarch_read_pc_p (gdbarch)) pc_val = gdbarch_read_pc (gdbarch, regcache); /* Else use per-frame method on get_current_frame. */ else if (gdbarch_pc_regnum (gdbarch) >= 0) { ULONGEST raw_val; if (regcache_cooked_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &raw_val) == REG_UNAVAILABLE) throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available")); pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val); } else internal_error (__FILE__, __LINE__, _("regcache_read_pc: Unable to find PC")); return pc_val; } void regcache_write_pc (struct regcache *regcache, CORE_ADDR pc) { struct gdbarch *gdbarch = regcache->arch (); if (gdbarch_write_pc_p (gdbarch)) gdbarch_write_pc (gdbarch, regcache, pc); else if (gdbarch_pc_regnum (gdbarch) >= 0) regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc); else internal_error (__FILE__, __LINE__, _("regcache_write_pc: Unable to update PC")); /* Writing the PC (for instance, from "load") invalidates the current frame. */ reinit_frame_cache (); } int reg_buffer::num_raw_registers () const { return gdbarch_num_regs (arch ()); } void regcache::debug_print_register (const char *func, int regno) { struct gdbarch *gdbarch = arch (); fprintf_unfiltered (gdb_stdlog, "%s ", func); if (regno >= 0 && regno < gdbarch_num_regs (gdbarch) && gdbarch_register_name (gdbarch, regno) != NULL && gdbarch_register_name (gdbarch, regno)[0] != '\0') fprintf_unfiltered (gdb_stdlog, "(%s)", gdbarch_register_name (gdbarch, regno)); else fprintf_unfiltered (gdb_stdlog, "(%d)", regno); if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)) { enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); int size = register_size (gdbarch, regno); gdb_byte *buf = register_buffer (regno); fprintf_unfiltered (gdb_stdlog, " = "); for (int i = 0; i < size; i++) { fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]); } if (size <= sizeof (LONGEST)) { ULONGEST val = extract_unsigned_integer (buf, size, byte_order); fprintf_unfiltered (gdb_stdlog, " %s %s", core_addr_to_string_nz (val), plongest (val)); } } fprintf_unfiltered (gdb_stdlog, "\n"); } static void reg_flush_command (const char *command, int from_tty) { /* Force-flush the register cache. */ registers_changed (); if (from_tty) printf_filtered (_("Register cache flushed.\n")); } void register_dump::dump (ui_file *file) { auto descr = regcache_descr (m_gdbarch); int regnum; int footnote_nr = 0; int footnote_register_offset = 0; int footnote_register_type_name_null = 0; long register_offset = 0; gdb_assert (descr->nr_cooked_registers == (gdbarch_num_regs (m_gdbarch) + gdbarch_num_pseudo_regs (m_gdbarch))); for (regnum = -1; regnum < descr->nr_cooked_registers; regnum++) { /* Name. */ if (regnum < 0) fprintf_unfiltered (file, " %-10s", "Name"); else { const char *p = gdbarch_register_name (m_gdbarch, regnum); if (p == NULL) p = ""; else if (p[0] == '\0') p = "''"; fprintf_unfiltered (file, " %-10s", p); } /* Number. */ if (regnum < 0) fprintf_unfiltered (file, " %4s", "Nr"); else fprintf_unfiltered (file, " %4d", regnum); /* Relative number. */ if (regnum < 0) fprintf_unfiltered (file, " %4s", "Rel"); else if (regnum < gdbarch_num_regs (m_gdbarch)) fprintf_unfiltered (file, " %4d", regnum); else fprintf_unfiltered (file, " %4d", (regnum - gdbarch_num_regs (m_gdbarch))); /* Offset. */ if (regnum < 0) fprintf_unfiltered (file, " %6s ", "Offset"); else { fprintf_unfiltered (file, " %6ld", descr->register_offset[regnum]); if (register_offset != descr->register_offset[regnum] || (regnum > 0 && (descr->register_offset[regnum] != (descr->register_offset[regnum - 1] + descr->sizeof_register[regnum - 1]))) ) { if (!footnote_register_offset) footnote_register_offset = ++footnote_nr; fprintf_unfiltered (file, "*%d", footnote_register_offset); } else fprintf_unfiltered (file, " "); register_offset = (descr->register_offset[regnum] + descr->sizeof_register[regnum]); } /* Size. */ if (regnum < 0) fprintf_unfiltered (file, " %5s ", "Size"); else fprintf_unfiltered (file, " %5ld", descr->sizeof_register[regnum]); /* Type. */ { const char *t; std::string name_holder; if (regnum < 0) t = "Type"; else { static const char blt[] = "builtin_type"; t = TYPE_NAME (register_type (m_gdbarch, regnum)); if (t == NULL) { if (!footnote_register_type_name_null) footnote_register_type_name_null = ++footnote_nr; name_holder = string_printf ("*%d", footnote_register_type_name_null); t = name_holder.c_str (); } /* Chop a leading builtin_type. */ if (startswith (t, blt)) t += strlen (blt); } fprintf_unfiltered (file, " %-15s", t); } /* Leading space always present. */ fprintf_unfiltered (file, " "); dump_reg (file, regnum); fprintf_unfiltered (file, "\n"); } if (footnote_register_offset) fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n", footnote_register_offset); if (footnote_register_type_name_null) fprintf_unfiltered (file, "*%d: Register type's name NULL.\n", footnote_register_type_name_null); } #if GDB_SELF_TEST #include "selftest.h" #include "selftest-arch.h" #include "gdbthread.h" #include "target-float.h" namespace selftests { class regcache_access : public regcache { public: /* Return the number of elements in current_regcache. */ static size_t current_regcache_size () { return std::distance (regcache::current_regcache.begin (), regcache::current_regcache.end ()); } }; static void current_regcache_test (void) { /* It is empty at the start. */ SELF_CHECK (regcache_access::current_regcache_size () == 0); ptid_t ptid1 (1), ptid2 (2), ptid3 (3); /* Get regcache from ptid1, a new regcache is added to current_regcache. */ regcache *regcache = get_thread_arch_aspace_regcache (ptid1, target_gdbarch (), NULL); SELF_CHECK (regcache != NULL); SELF_CHECK (regcache->ptid () == ptid1); SELF_CHECK (regcache_access::current_regcache_size () == 1); /* Get regcache from ptid2, a new regcache is added to current_regcache. */ regcache = get_thread_arch_aspace_regcache (ptid2, target_gdbarch (), NULL); SELF_CHECK (regcache != NULL); SELF_CHECK (regcache->ptid () == ptid2); SELF_CHECK (regcache_access::current_regcache_size () == 2); /* Get regcache from ptid3, a new regcache is added to current_regcache. */ regcache = get_thread_arch_aspace_regcache (ptid3, target_gdbarch (), NULL); SELF_CHECK (regcache != NULL); SELF_CHECK (regcache->ptid () == ptid3); SELF_CHECK (regcache_access::current_regcache_size () == 3); /* Get regcache from ptid2 again, nothing is added to current_regcache. */ regcache = get_thread_arch_aspace_regcache (ptid2, target_gdbarch (), NULL); SELF_CHECK (regcache != NULL); SELF_CHECK (regcache->ptid () == ptid2); SELF_CHECK (regcache_access::current_regcache_size () == 3); /* Mark ptid2 is changed, so regcache of ptid2 should be removed from current_regcache. */ registers_changed_ptid (ptid2); SELF_CHECK (regcache_access::current_regcache_size () == 2); } static void test_target_fetch_registers (target_ops *self, regcache *regs, int regno); static void test_target_store_registers (target_ops *self, regcache *regs, int regno); static enum target_xfer_status test_target_xfer_partial (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, ULONGEST *xfered_len); class target_ops_no_register : public test_target_ops { public: target_ops_no_register () : test_target_ops {} { to_fetch_registers = test_target_fetch_registers; to_store_registers = test_target_store_registers; to_xfer_partial = test_target_xfer_partial; to_data = this; } void reset () { fetch_registers_called = 0; store_registers_called = 0; xfer_partial_called = 0; } unsigned int fetch_registers_called = 0; unsigned int store_registers_called = 0; unsigned int xfer_partial_called = 0; }; static void test_target_fetch_registers (target_ops *self, regcache *regs, int regno) { auto ops = static_cast (self->to_data); /* Mark register available. */ regs->raw_supply_zeroed (regno); ops->fetch_registers_called++; } static void test_target_store_registers (target_ops *self, regcache *regs, int regno) { auto ops = static_cast (self->to_data); ops->store_registers_called++; } static enum target_xfer_status test_target_xfer_partial (struct target_ops *self, enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) { auto ops = static_cast (self->to_data); ops->xfer_partial_called++; *xfered_len = len; return TARGET_XFER_OK; } class readwrite_regcache : public regcache { public: readwrite_regcache (struct gdbarch *gdbarch) : regcache (gdbarch, nullptr) {} }; /* Test regcache::cooked_read gets registers from raw registers and memory instead of target to_{fetch,store}_registers. */ static void cooked_read_test (struct gdbarch *gdbarch) { /* Error out if debugging something, because we're going to push the test target, which would pop any existing target. */ if (current_target.to_stratum >= process_stratum) error (_("target already pushed")); /* Create a mock environment. An inferior with a thread, with a process_stratum target pushed. */ target_ops_no_register mock_target; ptid_t mock_ptid (1, 1); inferior mock_inferior (mock_ptid.pid ()); address_space mock_aspace {}; mock_inferior.gdbarch = gdbarch; mock_inferior.aspace = &mock_aspace; thread_info mock_thread (&mock_inferior, mock_ptid); scoped_restore restore_thread_list = make_scoped_restore (&thread_list, &mock_thread); /* Add the mock inferior to the inferior list so that look ups by target+ptid can find it. */ scoped_restore restore_inferior_list = make_scoped_restore (&inferior_list); inferior_list = &mock_inferior; /* Switch to the mock inferior. */ scoped_restore_current_inferior restore_current_inferior; set_current_inferior (&mock_inferior); /* Push the process_stratum target so we can mock accessing registers. */ push_target (&mock_target); /* Pop it again on exit (return/exception). */ struct on_exit { ~on_exit () { pop_all_targets_at_and_above (process_stratum); } } pop_targets; /* Switch to the mock thread. */ scoped_restore restore_inferior_ptid = make_scoped_restore (&inferior_ptid, mock_ptid); /* Test that read one raw register from regcache_no_target will go to the target layer. */ int regnum; /* Find a raw register which size isn't zero. */ for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++) { if (register_size (gdbarch, regnum) != 0) break; } readwrite_regcache readwrite (gdbarch); gdb::def_vector buf (register_size (gdbarch, regnum)); readwrite.raw_read (regnum, buf.data ()); /* raw_read calls target_fetch_registers. */ SELF_CHECK (mock_target.fetch_registers_called > 0); mock_target.reset (); /* Mark all raw registers valid, so the following raw registers accesses won't go to target. */ for (auto i = 0; i < gdbarch_num_regs (gdbarch); i++) readwrite.raw_update (i); mock_target.reset (); /* Then, read all raw and pseudo registers, and don't expect calling to_{fetch,store}_registers. */ for (int regnum = 0; regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch); regnum++) { if (register_size (gdbarch, regnum) == 0) continue; gdb::def_vector buf (register_size (gdbarch, regnum)); SELF_CHECK (REG_VALID == readwrite.cooked_read (regnum, buf.data ())); SELF_CHECK (mock_target.fetch_registers_called == 0); SELF_CHECK (mock_target.store_registers_called == 0); /* Some SPU pseudo registers are got via TARGET_OBJECT_SPU. */ if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu) SELF_CHECK (mock_target.xfer_partial_called == 0); mock_target.reset (); } readonly_detached_regcache readonly (readwrite); /* GDB may go to target layer to fetch all registers and memory for readonly regcache. */ mock_target.reset (); for (int regnum = 0; regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch); regnum++) { if (register_size (gdbarch, regnum) == 0) continue; gdb::def_vector buf (register_size (gdbarch, regnum)); enum register_status status = readonly.cooked_read (regnum, buf.data ()); if (regnum < gdbarch_num_regs (gdbarch)) { auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch; if (bfd_arch == bfd_arch_frv || bfd_arch == bfd_arch_h8300 || bfd_arch == bfd_arch_m32c || bfd_arch == bfd_arch_sh || bfd_arch == bfd_arch_alpha || bfd_arch == bfd_arch_v850 || bfd_arch == bfd_arch_msp430 || bfd_arch == bfd_arch_mep || bfd_arch == bfd_arch_mips || bfd_arch == bfd_arch_v850_rh850 || bfd_arch == bfd_arch_tic6x || bfd_arch == bfd_arch_mn10300 || bfd_arch == bfd_arch_rl78 || bfd_arch == bfd_arch_score || bfd_arch == bfd_arch_riscv) { /* Raw registers. If raw registers are not in save_reggroup, their status are unknown. */ if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup)) SELF_CHECK (status == REG_VALID); else SELF_CHECK (status == REG_UNKNOWN); } else SELF_CHECK (status == REG_VALID); } else { if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup)) SELF_CHECK (status == REG_VALID); else { /* If pseudo registers are not in save_reggroup, some of them can be computed from saved raw registers, but some of them are unknown. */ auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch; if (bfd_arch == bfd_arch_frv || bfd_arch == bfd_arch_m32c || bfd_arch == bfd_arch_mep || bfd_arch == bfd_arch_sh) SELF_CHECK (status == REG_VALID || status == REG_UNKNOWN); else if (bfd_arch == bfd_arch_mips || bfd_arch == bfd_arch_h8300) SELF_CHECK (status == REG_UNKNOWN); else SELF_CHECK (status == REG_VALID); } } SELF_CHECK (mock_target.fetch_registers_called == 0); SELF_CHECK (mock_target.store_registers_called == 0); SELF_CHECK (mock_target.xfer_partial_called == 0); mock_target.reset (); } } /* Test regcache::cooked_write by writing some expected contents to registers, and checking that contents read from registers and the expected contents are the same. */ static void cooked_write_test (struct gdbarch *gdbarch) { /* Error out if debugging something, because we're going to push the test target, which would pop any existing target. */ if (current_target.to_stratum >= process_stratum) error (_("target already pushed")); /* Create a mock environment. A process_stratum target pushed. */ target_ops_no_register mock_target; /* Push the process_stratum target so we can mock accessing registers. */ push_target (&mock_target); /* Pop it again on exit (return/exception). */ struct on_exit { ~on_exit () { pop_all_targets_at_and_above (process_stratum); } } pop_targets; readwrite_regcache readwrite (gdbarch); const int num_regs = (gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch)); for (auto regnum = 0; regnum < num_regs; regnum++) { if (register_size (gdbarch, regnum) == 0 || gdbarch_cannot_store_register (gdbarch, regnum)) continue; auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch; if ((bfd_arch == bfd_arch_sparc /* SPARC64_CWP_REGNUM, SPARC64_PSTATE_REGNUM, SPARC64_ASI_REGNUM and SPARC64_CCR_REGNUM are hard to test. */ && gdbarch_ptr_bit (gdbarch) == 64 && (regnum >= gdbarch_num_regs (gdbarch) && regnum <= gdbarch_num_regs (gdbarch) + 4)) || (bfd_arch == bfd_arch_sh /* FPSCR_C_REGNUM in sh64 is hard to test. */ && gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh5 && regnum == 243) || (bfd_arch == bfd_arch_spu /* SPU pseudo registers except SPU_SP_REGNUM are got by TARGET_OBJECT_SPU. */ && regnum >= gdbarch_num_regs (gdbarch) && regnum != 130)) continue; std::vector expected (register_size (gdbarch, regnum), 0); std::vector buf (register_size (gdbarch, regnum), 0); const auto type = register_type (gdbarch, regnum); if (TYPE_CODE (type) == TYPE_CODE_FLT || TYPE_CODE (type) == TYPE_CODE_DECFLOAT) { /* Generate valid float format. */ target_float_from_string (expected.data (), type, "1.25"); } else if (TYPE_CODE (type) == TYPE_CODE_INT || TYPE_CODE (type) == TYPE_CODE_ARRAY || TYPE_CODE (type) == TYPE_CODE_PTR || TYPE_CODE (type) == TYPE_CODE_UNION || TYPE_CODE (type) == TYPE_CODE_STRUCT) { if (bfd_arch == bfd_arch_ia64 || (regnum >= gdbarch_num_regs (gdbarch) && (bfd_arch == bfd_arch_xtensa || bfd_arch == bfd_arch_bfin || bfd_arch == bfd_arch_m32c /* m68hc11 pseudo registers are in memory. */ || bfd_arch == bfd_arch_m68hc11 || bfd_arch == bfd_arch_m68hc12 || bfd_arch == bfd_arch_s390)) || (bfd_arch == bfd_arch_frv /* FRV pseudo registers except iacc0. */ && regnum > gdbarch_num_regs (gdbarch))) { /* Skip setting the expected values for some architecture registers. */ } else if (bfd_arch == bfd_arch_rl78 && regnum == 40) { /* RL78_PC_REGNUM */ for (auto j = 0; j < register_size (gdbarch, regnum) - 1; j++) expected[j] = j; } else { for (auto j = 0; j < register_size (gdbarch, regnum); j++) expected[j] = j; } } else if (TYPE_CODE (type) == TYPE_CODE_FLAGS) { /* No idea how to test flags. */ continue; } else { /* If we don't know how to create the expected value for the this type, make it fail. */ SELF_CHECK (0); } readwrite.cooked_write (regnum, expected.data ()); SELF_CHECK (readwrite.cooked_read (regnum, buf.data ()) == REG_VALID); SELF_CHECK (expected == buf); } } } // namespace selftests #endif /* GDB_SELF_TEST */ void _initialize_regcache (void) { regcache_descr_handle = gdbarch_data_register_post_init (init_regcache_descr); observer_attach_target_changed (regcache_observer_target_changed); observer_attach_thread_ptid_changed (regcache::regcache_thread_ptid_changed); add_com ("flushregs", class_maintenance, reg_flush_command, _("Force gdb to flush its register cache (maintainer command)")); #if GDB_SELF_TEST selftests::register_test ("current_regcache", selftests::current_regcache_test); selftests::register_test_foreach_arch ("regcache::cooked_read_test", selftests::cooked_read_test); selftests::register_test_foreach_arch ("regcache::cooked_write_test", selftests::cooked_write_test); #endif }