/* Ada Ravenscar thread support. Copyright (C) 2004-2020 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "gdbcore.h" #include "gdbthread.h" #include "ada-lang.h" #include "target.h" #include "inferior.h" #include "command.h" #include "ravenscar-thread.h" #include "observable.h" #include "gdbcmd.h" #include "top.h" #include "regcache.h" #include "objfiles.h" /* This module provides support for "Ravenscar" tasks (Ada) when debugging on bare-metal targets. The typical situation is when debugging a bare-metal target over the remote protocol. In that situation, the system does not know about high-level concepts such as threads, only about some code running on one or more CPUs. And since the remote protocol does not provide any handling for CPUs, the de facto standard for handling them is to have one thread per CPU, where the thread's ptid has its lwp field set to the CPU number (eg: 1 for the first CPU, 2 for the second one, etc). This module will make that assumption. This module then creates and maintains the list of threads based on the list of Ada tasks, with one thread per Ada task. The convention is that threads corresponding to the CPUs (see assumption above) have a ptid_t of the form (PID, LWP, 0), while threads corresponding to our Ada tasks have a ptid_t of the form (PID, 0, TID) where TID is the Ada task's ID as extracted from Ada runtime information. Switching to a given Ada task (or its underlying thread) is performed by fetching the registers of that task from the memory area where the registers were saved. For any of the other operations, the operation is performed by first finding the CPU on which the task is running, switching to its corresponding ptid, and then performing the operation on that ptid using the target beneath us. */ /* If true, ravenscar task support is enabled. */ static bool ravenscar_task_support = true; static const char running_thread_name[] = "__gnat_running_thread_table"; static const char known_tasks_name[] = "system__tasking__debug__known_tasks"; static const char first_task_name[] = "system__tasking__debug__first_task"; static const char ravenscar_runtime_initializer[] = "system__bb__threads__initialize"; static const target_info ravenscar_target_info = { "ravenscar", N_("Ravenscar tasks."), N_("Ravenscar tasks support.") }; struct ravenscar_thread_target final : public target_ops { ravenscar_thread_target () : m_base_ptid (inferior_ptid) { thread_info *thr = add_active_thread (); if (thr != nullptr) switch_to_thread (thr); } const target_info &info () const override { return ravenscar_target_info; } strata stratum () const override { return thread_stratum; } ptid_t wait (ptid_t, struct target_waitstatus *, int) override; void resume (ptid_t, int, enum gdb_signal) override; void fetch_registers (struct regcache *, int) override; void store_registers (struct regcache *, int) override; void prepare_to_store (struct regcache *) override; bool stopped_by_sw_breakpoint () override; bool stopped_by_hw_breakpoint () override; bool stopped_by_watchpoint () override; bool stopped_data_address (CORE_ADDR *) override; bool thread_alive (ptid_t ptid) override; int core_of_thread (ptid_t ptid) override; void update_thread_list () override; const char *extra_thread_info (struct thread_info *) override; std::string pid_to_str (ptid_t) override; ptid_t get_ada_task_ptid (long lwp, long thread) override; void mourn_inferior () override; void close () override { delete this; } private: /* PTID of the last thread that received an event. This can be useful to determine the associated task that received the event, to make it the current task. */ ptid_t m_base_ptid; thread_info *add_active_thread (); ptid_t active_task (int cpu); bool task_is_currently_active (ptid_t ptid); bool runtime_initialized (); }; /* Return true iff PTID corresponds to a ravenscar task. */ static bool is_ravenscar_task (ptid_t ptid) { /* By construction, ravenscar tasks have their LWP set to zero. Also make sure that the TID is nonzero, as some remotes, when asked for the list of threads, will return the first thread as having its TID set to zero. For instance, TSIM version 2.0.48 for LEON3 sends 'm0' as a reply to the 'qfThreadInfo' query, which the remote protocol layer then treats as a thread whose TID is 0. This is obviously not a ravenscar task. */ return ptid.lwp () == 0 && ptid.tid () != 0; } /* Given PTID, which can be either a ravenscar task or a CPU thread, return which CPU that ptid is running on. This assume that PTID is a valid ptid_t. Otherwise, a gdb_assert will be triggered. */ static int ravenscar_get_thread_base_cpu (ptid_t ptid) { int base_cpu; if (is_ravenscar_task (ptid)) { struct ada_task_info *task_info = ada_get_task_info_from_ptid (ptid); gdb_assert (task_info != NULL); base_cpu = task_info->base_cpu; } else { /* We assume that the LWP of the PTID is equal to the CPU number. */ base_cpu = ptid.lwp (); } return base_cpu; } /* Given a ravenscar task (identified by its ptid_t PTID), return true if this task is the currently active task on the cpu that task is running on. In other words, this function determine which CPU this task is currently running on, and then return nonzero if the CPU in question is executing the code for that task. If that's the case, then that task's registers are in the CPU bank. Otherwise, the task is currently suspended, and its registers have been saved in memory. */ bool ravenscar_thread_target::task_is_currently_active (ptid_t ptid) { ptid_t active_task_ptid = active_task (ravenscar_get_thread_base_cpu (ptid)); return ptid == active_task_ptid; } /* Return the CPU thread (as a ptid_t) on which the given ravenscar task is running. This is the thread that corresponds to the CPU on which the task is running. */ static ptid_t get_base_thread_from_ravenscar_task (ptid_t ptid) { int base_cpu; if (!is_ravenscar_task (ptid)) return ptid; base_cpu = ravenscar_get_thread_base_cpu (ptid); return ptid_t (ptid.pid (), base_cpu, 0); } /* Fetch the ravenscar running thread from target memory, make sure there's a corresponding thread in the thread list, and return it. If the runtime is not initialized, return NULL. */ thread_info * ravenscar_thread_target::add_active_thread () { process_stratum_target *proc_target = as_process_stratum_target (this->beneath ()); int base_cpu; gdb_assert (!is_ravenscar_task (m_base_ptid)); base_cpu = ravenscar_get_thread_base_cpu (m_base_ptid); if (!runtime_initialized ()) return nullptr; /* Make sure we set m_base_ptid before calling active_task as the latter relies on it. */ ptid_t active_ptid = active_task (base_cpu); gdb_assert (active_ptid != null_ptid); /* The running thread may not have been added to system.tasking.debug's list yet; so ravenscar_update_thread_list may not always add it to the thread list. Add it here. */ thread_info *active_thr = find_thread_ptid (proc_target, active_ptid); if (active_thr == nullptr) active_thr = add_thread (proc_target, active_ptid); return active_thr; } /* The Ravenscar Runtime exports a symbol which contains the ID of the thread that is currently running. Try to locate that symbol and return its associated minimal symbol. Return NULL if not found. */ static struct bound_minimal_symbol get_running_thread_msymbol () { struct bound_minimal_symbol msym; msym = lookup_minimal_symbol (running_thread_name, NULL, NULL); if (!msym.minsym) /* Older versions of the GNAT runtime were using a different (less ideal) name for the symbol where the active thread ID is stored. If we couldn't find the symbol using the latest name, then try the old one. */ msym = lookup_minimal_symbol ("running_thread", NULL, NULL); return msym; } /* Return True if the Ada Ravenscar run-time can be found in the application. */ static bool has_ravenscar_runtime () { struct bound_minimal_symbol msym_ravenscar_runtime_initializer = lookup_minimal_symbol (ravenscar_runtime_initializer, NULL, NULL); struct bound_minimal_symbol msym_known_tasks = lookup_minimal_symbol (known_tasks_name, NULL, NULL); struct bound_minimal_symbol msym_first_task = lookup_minimal_symbol (first_task_name, NULL, NULL); struct bound_minimal_symbol msym_running_thread = get_running_thread_msymbol (); return (msym_ravenscar_runtime_initializer.minsym && (msym_known_tasks.minsym || msym_first_task.minsym) && msym_running_thread.minsym); } /* Return True if the Ada Ravenscar run-time can be found in the application, and if it has been initialized on target. */ bool ravenscar_thread_target::runtime_initialized () { return active_task (1) != null_ptid; } /* Return the ID of the thread that is currently running. Return 0 if the ID could not be determined. */ static CORE_ADDR get_running_thread_id (int cpu) { struct bound_minimal_symbol object_msym = get_running_thread_msymbol (); int object_size; int buf_size; gdb_byte *buf; CORE_ADDR object_addr; struct type *builtin_type_void_data_ptr = builtin_type (target_gdbarch ())->builtin_data_ptr; if (!object_msym.minsym) return 0; object_size = TYPE_LENGTH (builtin_type_void_data_ptr); object_addr = (BMSYMBOL_VALUE_ADDRESS (object_msym) + (cpu - 1) * object_size); buf_size = object_size; buf = (gdb_byte *) alloca (buf_size); read_memory (object_addr, buf, buf_size); return extract_typed_address (buf, builtin_type_void_data_ptr); } void ravenscar_thread_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal) { /* If we see a wildcard resume, we simply pass that on. Otherwise, arrange to resume the base ptid. */ inferior_ptid = m_base_ptid; if (ptid != minus_one_ptid) ptid = m_base_ptid; beneath ()->resume (ptid, step, siggnal); } ptid_t ravenscar_thread_target::wait (ptid_t ptid, struct target_waitstatus *status, int options) { process_stratum_target *beneath = as_process_stratum_target (this->beneath ()); ptid_t event_ptid; if (ptid != minus_one_ptid) ptid = m_base_ptid; event_ptid = beneath->wait (ptid, status, 0); /* Find any new threads that might have been created, and return the active thread. Only do it if the program is still alive, though. Otherwise, this causes problems when debugging through the remote protocol, because we might try switching threads (and thus sending packets) after the remote has disconnected. */ if (status->kind != TARGET_WAITKIND_EXITED && status->kind != TARGET_WAITKIND_SIGNALLED) { m_base_ptid = event_ptid; this->update_thread_list (); return this->add_active_thread ()->ptid; } return m_base_ptid; } /* Add the thread associated to the given TASK to the thread list (if the thread has already been added, this is a no-op). */ static void ravenscar_add_thread (struct ada_task_info *task) { if (find_thread_ptid (current_inferior (), task->ptid) == NULL) add_thread (current_inferior ()->process_target (), task->ptid); } void ravenscar_thread_target::update_thread_list () { /* Do not clear the thread list before adding the Ada task, to keep the thread that the process stratum has included into it (m_base_ptid) and the running thread, that may not have been included to system.tasking.debug's list yet. */ iterate_over_live_ada_tasks (ravenscar_add_thread); } ptid_t ravenscar_thread_target::active_task (int cpu) { CORE_ADDR tid = get_running_thread_id (cpu); if (tid == 0) return null_ptid; else return ptid_t (m_base_ptid.pid (), 0, tid); } const char * ravenscar_thread_target::extra_thread_info (thread_info *tp) { return "Ravenscar task"; } bool ravenscar_thread_target::thread_alive (ptid_t ptid) { /* Ravenscar tasks are non-terminating. */ return true; } std::string ravenscar_thread_target::pid_to_str (ptid_t ptid) { return string_printf ("Thread %#x", (int) ptid.tid ()); } void ravenscar_thread_target::fetch_registers (struct regcache *regcache, int regnum) { ptid_t ptid = regcache->ptid (); if (runtime_initialized () && is_ravenscar_task (ptid) && !task_is_currently_active (ptid)) { struct gdbarch *gdbarch = regcache->arch (); struct ravenscar_arch_ops *arch_ops = gdbarch_ravenscar_ops (gdbarch); arch_ops->fetch_registers (regcache, regnum); } else beneath ()->fetch_registers (regcache, regnum); } void ravenscar_thread_target::store_registers (struct regcache *regcache, int regnum) { ptid_t ptid = regcache->ptid (); if (runtime_initialized () && is_ravenscar_task (ptid) && !task_is_currently_active (ptid)) { struct gdbarch *gdbarch = regcache->arch (); struct ravenscar_arch_ops *arch_ops = gdbarch_ravenscar_ops (gdbarch); arch_ops->store_registers (regcache, regnum); } else beneath ()->store_registers (regcache, regnum); } void ravenscar_thread_target::prepare_to_store (struct regcache *regcache) { ptid_t ptid = regcache->ptid (); if (runtime_initialized () && is_ravenscar_task (ptid) && !task_is_currently_active (ptid)) { /* Nothing. */ } else beneath ()->prepare_to_store (regcache); } /* Implement the to_stopped_by_sw_breakpoint target_ops "method". */ bool ravenscar_thread_target::stopped_by_sw_breakpoint () { scoped_restore save_ptid = make_scoped_restore (&inferior_ptid); inferior_ptid = get_base_thread_from_ravenscar_task (inferior_ptid); return beneath ()->stopped_by_sw_breakpoint (); } /* Implement the to_stopped_by_hw_breakpoint target_ops "method". */ bool ravenscar_thread_target::stopped_by_hw_breakpoint () { scoped_restore save_ptid = make_scoped_restore (&inferior_ptid); inferior_ptid = get_base_thread_from_ravenscar_task (inferior_ptid); return beneath ()->stopped_by_hw_breakpoint (); } /* Implement the to_stopped_by_watchpoint target_ops "method". */ bool ravenscar_thread_target::stopped_by_watchpoint () { scoped_restore save_ptid = make_scoped_restore (&inferior_ptid); inferior_ptid = get_base_thread_from_ravenscar_task (inferior_ptid); return beneath ()->stopped_by_watchpoint (); } /* Implement the to_stopped_data_address target_ops "method". */ bool ravenscar_thread_target::stopped_data_address (CORE_ADDR *addr_p) { scoped_restore save_ptid = make_scoped_restore (&inferior_ptid); inferior_ptid = get_base_thread_from_ravenscar_task (inferior_ptid); return beneath ()->stopped_data_address (addr_p); } void ravenscar_thread_target::mourn_inferior () { m_base_ptid = null_ptid; target_ops *beneath = this->beneath (); unpush_target (this); beneath->mourn_inferior (); } /* Implement the to_core_of_thread target_ops "method". */ int ravenscar_thread_target::core_of_thread (ptid_t ptid) { scoped_restore save_ptid = make_scoped_restore (&inferior_ptid); inferior_ptid = get_base_thread_from_ravenscar_task (inferior_ptid); return beneath ()->core_of_thread (inferior_ptid); } /* Observer on inferior_created: push ravenscar thread stratum if needed. */ static void ravenscar_inferior_created (struct target_ops *target, int from_tty) { const char *err_msg; if (!ravenscar_task_support || gdbarch_ravenscar_ops (target_gdbarch ()) == NULL || !has_ravenscar_runtime ()) return; err_msg = ada_get_tcb_types_info (); if (err_msg != NULL) { warning (_("%s. Task/thread support disabled."), err_msg); return; } target_ops_up target_holder (new ravenscar_thread_target ()); push_target (std::move (target_holder)); } ptid_t ravenscar_thread_target::get_ada_task_ptid (long lwp, long thread) { return ptid_t (m_base_ptid.pid (), 0, thread); } /* Command-list for the "set/show ravenscar" prefix command. */ static struct cmd_list_element *set_ravenscar_list; static struct cmd_list_element *show_ravenscar_list; /* Implement the "show ravenscar task-switching" command. */ static void show_ravenscar_task_switching_command (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { if (ravenscar_task_support) fprintf_filtered (file, _("\ Support for Ravenscar task/thread switching is enabled\n")); else fprintf_filtered (file, _("\ Support for Ravenscar task/thread switching is disabled\n")); } /* Module startup initialization function, automagically called by init.c. */ void _initialize_ravenscar (); void _initialize_ravenscar () { /* Notice when the inferior is created in order to push the ravenscar ops if needed. */ gdb::observers::inferior_created.attach (ravenscar_inferior_created); add_basic_prefix_cmd ("ravenscar", no_class, _("Prefix command for changing Ravenscar-specific settings."), &set_ravenscar_list, "set ravenscar ", 0, &setlist); add_show_prefix_cmd ("ravenscar", no_class, _("Prefix command for showing Ravenscar-specific settings."), &show_ravenscar_list, "show ravenscar ", 0, &showlist); add_setshow_boolean_cmd ("task-switching", class_obscure, &ravenscar_task_support, _("\ Enable or disable support for GNAT Ravenscar tasks."), _("\ Show whether support for GNAT Ravenscar tasks is enabled."), _("\ Enable or disable support for task/thread switching with the GNAT\n\ Ravenscar run-time library for bareboard configuration."), NULL, show_ravenscar_task_switching_command, &set_ravenscar_list, &show_ravenscar_list); }