/* Print values for GNU debugger GDB. Copyright (C) 1986, 1987, 1988 Free Software Foundation, Inc. GDB is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to anyone for the consequences of using it or for whether it serves any particular purpose or works at all, unless he says so in writing. Refer to the GDB General Public License for full details. Everyone is granted permission to copy, modify and redistribute GDB, but only under the conditions described in the GDB General Public License. A copy of this license is supposed to have been given to you along with GDB so you can know your rights and responsibilities. It should be in a file named COPYING. Among other things, the copyright notice and this notice must be preserved on all copies. In other words, go ahead and share GDB, but don't try to stop anyone else from sharing it farther. Help stamp out software hoarding! */ #include #include "defs.h" #include "param.h" #include "frame.h" #include "symtab.h" #include "value.h" #include "expression.h" struct format_data { int count; char format; char size; }; /* Last specified output format. */ static char last_format = 'x'; /* Last specified examination size. 'b', 'h', 'w' or `q'. */ static char last_size = 'w'; /* Default address to examine next. */ static CORE_ADDR next_address; /* Last address examined. */ static CORE_ADDR last_examine_address; /* Contents of last address examined. This is not valid past the end of the `x' command! */ static value last_examine_value; /* Number of auto-display expression currently being displayed. So that we can deleted it if we get an error or a signal within it. -1 when not doing one. */ int current_display_number; static void do_one_display (); void do_displays (); void print_address (); void print_scalar_formatted (); /* Decode a format specification. *STRING_PTR should point to it. OFORMAT and OSIZE are used as defaults for the format and size if none are given in the format specification. The structure returned describes all the data found in the specification. In addition, *STRING_PTR is advanced past the specification and past all whitespace following it. */ struct format_data decode_format (string_ptr, oformat, osize) char **string_ptr; char oformat; char osize; { struct format_data val; register char *p = *string_ptr; val.format = oformat; val.size = osize; val.count = 1; if (*p >= '0' && *p <= '9') val.count = atoi (p); while (*p >= '0' && *p <= '9') p++; /* Now process size or format letters that follow. */ while (1) { if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g') val.size = *p++; #ifdef LONG_LONG else if (*p == 'l') { val.size = 'g'; p++; } #endif else if (*p >= 'a' && *p <= 'z') val.format = *p++; else break; } #ifndef LONG_LONG /* Make sure 'g' size is not used on integer types. Well, actually, we can handle hex. */ if (val.size == 'g' && val.format != 'f' && val.format != 'x') val.size = 'w'; #endif while (*p == ' ' || *p == '\t') p++; *string_ptr = p; return val; } /* Print value VAL on stdout according to FORMAT, a letter or 0. Do not end with a newline. 0 means print VAL according to its own type. SIZE is the letter for the size of datum being printed. This is used to pad hex numbers so they line up. */ static void print_formatted (val, format, size) register value val; register char format; char size; { int len = TYPE_LENGTH (VALUE_TYPE (val)); if (VALUE_LVAL (val) == lval_memory) next_address = VALUE_ADDRESS (val) + len; switch (format) { case 's': next_address = VALUE_ADDRESS (val) + value_print (value_addr (val), stdout, 0); break; case 'i': next_address = VALUE_ADDRESS (val) + print_insn (VALUE_ADDRESS (val), stdout); break; default: if (format == 0 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_ARRAY || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_STRUCT || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_UNION || VALUE_REPEATED (val)) value_print (val, stdout, format); else print_scalar_formatted (VALUE_CONTENTS (val), VALUE_TYPE (val), format, size, stdout); } } /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR, according to letters FORMAT and SIZE on STREAM. FORMAT may not be zero. Formats s and i are not supported at this level. This is how the elements of an array or structure are printed with a format. */ void print_scalar_formatted (valaddr, type, format, size, stream) char *valaddr; struct type *type; char format; int size; FILE *stream; { LONGEST val_long; int len = TYPE_LENGTH (type); if (size == 'g' && sizeof (LONGEST) < 8 && format == 'x') { /* ok, we're going to have to get fancy here. Assumption: a long is four bytes. */ unsigned long v1, v2, tmp; v1 = unpack_long (builtin_type_long, valaddr); v2 = unpack_long (builtin_type_long, valaddr + 4); #ifdef BYTES_BIG_ENDIAN #else /* Little endian -- swap the two for printing */ tmp = v1; v1 = v2; v2 = tmp; #endif switch (format) { case 'x': fprintf (stream, "0x%08x%08x", v1, v2); break; default: error ("Output size \"g\" unimplemented for format \"%c\".", format); } return; } val_long = unpack_long (type, valaddr); /* If value is unsigned, truncate it in case negative. */ if (format != 'd') { if (len == sizeof (char)) val_long &= (1 << 8 * sizeof(char)) - 1; else if (len == sizeof (short)) val_long &= (1 << 8 * sizeof(short)) - 1; else if (len == sizeof (long)) val_long &= (unsigned long) - 1; } switch (format) { case 'x': #ifdef LONG_LONG if (!size) size = (len < sizeof (long long) ? 'w' : 'g'); switch (size) { case 'b': fprintf (stream, "0x%02llx", val_long); break; case 'h': fprintf (stream, "0x%04llx", val_long); break; case 0: /* no size specified, like in print */ case 'w': fprintf (stream, "0x%08llx", val_long); break; case 'g': fprintf (stream, "0x%16llx", val_long); break; default: error ("Undefined output size \"%c\".", size); } #else switch (size) { case 'b': fprintf (stream, "0x%02x", val_long); break; case 'h': fprintf (stream, "0x%04x", val_long); break; case 0: /* no size specified, like in print */ case 'w': fprintf (stream, "0x%08x", val_long); break; case 'g': fprintf (stream, "0x%16x", val_long); break; default: error ("Undefined output size \"%c\".", size); } #endif /* not LONG_LONG */ break; case 'd': #ifdef LONG_LONG fprintf (stream, "%lld", val_long); #else fprintf (stream, "%d", val_long); #endif break; case 'u': #ifdef LONG_LONG fprintf (stream, "%llu", val_long); #else fprintf (stream, "%u", val_long); #endif break; case 'o': if (val_long) #ifdef LONG_LONG fprintf (stream, "0%llo", val_long); #else fprintf (stream, "0%o", val_long); #endif else fprintf (stream, "0"); break; case 'a': print_address ((CORE_ADDR) val_long, stream); break; case 'c': value_print (value_from_long (builtin_type_char, val_long), stream, 0); break; case 'f': if (len == sizeof (float)) type = builtin_type_float; else if (len == sizeof (double)) type = builtin_type_double; else abort(); #ifdef IEEE_FLOAT if (is_nan (valaddr, len)) { fprintf (stream, "NaN"); break; } #endif { double doub; int inv; doub = unpack_double (type, valaddr, &inv); if (inv) fprintf (stream, "Invalid float value"); else fprintf (stream, len > 4? "%.16g": "%.6g", doub); } break; case 0: abort (); default: error ("Undefined output format \"%c\".", format); } } /* Specify default address for `x' command. `info lines' uses this. */ void set_next_address (addr) CORE_ADDR addr; { next_address = addr; /* Make address available to the user as $_. */ set_internalvar (lookup_internalvar ("_"), value_from_long (builtin_type_int, (LONGEST) addr)); } /* Print address ADDR symbolically on STREAM. First print it as a number. Then perhaps print after the number. */ void print_address (addr, stream) CORE_ADDR addr; FILE *stream; { register int i; struct symbol *fs; char *name; int name_location; fprintf (stream, "0x%x", addr); fs = find_pc_function (addr); if (!fs) { i = find_pc_misc_function (addr); if (i < 0) return; /* If nothing comes through, don't print anything symbolic */ name = misc_function_vector[i].name; name_location = misc_function_vector[i].address; } else { name = fs->name; name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (fs)); } if (addr - name_location) fprintf (stream, " <%s+%d>", name, addr - name_location); else fprintf (stream, " <%s>", name); } /* Examine data at address ADDR in format FMT. Fetch it from memory and print on stdout. */ static void do_examine (fmt, addr) struct format_data fmt; CORE_ADDR addr; { register char format = 0; register char size; register int count = 1; struct type *val_type; register int i; register int maxelts; format = fmt.format; size = fmt.size; count = fmt.count; next_address = addr; /* String or instruction format implies fetch single bytes regardless of the specified size. */ if (format == 's' || format == 'i') size = 'b'; if (size == 'b') val_type = builtin_type_char; else if (size == 'h') val_type = builtin_type_short; else if (size == 'w') val_type = builtin_type_long; else if (size == 'g') #ifndef LONG_LONG val_type = builtin_type_double; #else val_type = builtin_type_long_long; #endif maxelts = 8; if (size == 'w') maxelts = 4; if (size == 'g') maxelts = 2; if (format == 's' || format == 'i') maxelts = 1; /* Print as many objects as specified in COUNT, at most maxelts per line, with the address of the next one at the start of each line. */ while (count > 0) { print_address (next_address, stdout); fputc (':', stdout); for (i = maxelts; i > 0 && count > 0; i--, count--) { fputc ('\t', stdout); /* Note that print_formatted sets next_address for the next object. */ last_examine_address = next_address; last_examine_value = value_at (val_type, next_address); print_formatted (last_examine_value, format, size); } fputc ('\n', stdout); fflush (stdout); } } static void validate_format (fmt, cmdname) struct format_data fmt; char *cmdname; { if (fmt.size != 0) error ("Size letters are meaningless in \"%s\" command.", cmdname); if (fmt.count != 1) error ("Item count other than 1 is meaningless in \"%s\" command.", cmdname); if (fmt.format == 'i' || fmt.format == 's') error ("Format letter \"%c\" is meaningless in \"%s\" command.", fmt.format, cmdname); } static void print_command (exp) char *exp; { struct expression *expr; register struct cleanup *old_chain = 0; register char format = 0; register value val; struct format_data fmt; int histindex; int cleanup = 0; if (exp && *exp == '/') { exp++; fmt = decode_format (&exp, last_format, 0); validate_format (fmt, "print"); last_format = format = fmt.format; } if (exp && *exp) { expr = parse_c_expression (exp); old_chain = make_cleanup (free_current_contents, &expr); cleanup = 1; val = evaluate_expression (expr); } else val = access_value_history (0); histindex = record_latest_value (val); if (histindex >= 0) printf ("$%d = ", histindex); print_formatted (val, format, fmt.size); printf ("\n"); if (cleanup) do_cleanups (old_chain); } static void output_command (exp) char *exp; { struct expression *expr; register struct cleanup *old_chain; register char format = 0; register value val; struct format_data fmt; if (exp && *exp == '/') { exp++; fmt = decode_format (&exp, 0, 0); validate_format (fmt, "print"); format = fmt.format; } expr = parse_c_expression (exp); old_chain = make_cleanup (free_current_contents, &expr); val = evaluate_expression (expr); print_formatted (val, format, fmt.size); do_cleanups (old_chain); } static void set_command (exp) char *exp; { struct expression *expr = parse_c_expression (exp); register struct cleanup *old_chain = make_cleanup (free_current_contents, &expr); evaluate_expression (expr); do_cleanups (old_chain); } static void address_info (exp) char *exp; { register struct symbol *sym; register CORE_ADDR val; int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero if exp is a field of `this'. */ if (exp == 0) error ("Argument required."); sym = lookup_symbol (exp, get_selected_block (), VAR_NAMESPACE, &is_a_field_of_this); if (sym == 0) { register int i; if (is_a_field_of_this) { printf("Symbol \"%s\" is a field of the local class variable `this'\n", exp); return; } for (i = 0; i < misc_function_count; i++) if (!strcmp (misc_function_vector[i].name, exp)) break; if (i < misc_function_count) printf ("Symbol \"%s\" is at 0x%x in a file compiled without -g.\n", exp, misc_function_vector[i].address); else error ("No symbol \"%s\" in current context.", exp); return; } printf ("Symbol \"%s\" is ", SYMBOL_NAME (sym)); val = SYMBOL_VALUE (sym); switch (SYMBOL_CLASS (sym)) { case LOC_CONST: case LOC_CONST_BYTES: printf ("constant"); break; case LOC_LABEL: printf ("a label at address 0x%x", val); break; case LOC_REGISTER: printf ("a variable in register %s", reg_names[val]); break; case LOC_STATIC: printf ("static at address 0x%x", val); break; case LOC_REGPARM: printf ("an argument in register %s", reg_names[val]); break; case LOC_ARG: printf ("an argument at offset %d", val); break; case LOC_LOCAL: printf ("a local variable at frame offset %d", val); break; case LOC_TYPEDEF: printf ("a typedef"); break; case LOC_BLOCK: printf ("a function at address 0x%x", BLOCK_START (SYMBOL_BLOCK_VALUE (sym))); break; } printf (".\n"); } static void x_command (exp, from_tty) char *exp; int from_tty; { struct expression *expr; struct format_data fmt; struct cleanup *old_chain; fmt.format = last_format; fmt.size = last_size; fmt.count = 1; if (exp && *exp == '/') { exp++; fmt = decode_format (&exp, last_format, last_size); last_size = fmt.size; last_format = fmt.format; } /* If we have an expression, evaluate it and use it as the address. */ if (exp != 0 && *exp != 0) { expr = parse_c_expression (exp); /* Cause expression not to be there any more if this command is repeated with Newline. But don't clobber a user-defined command's definition. */ if (from_tty) *exp = 0; old_chain = make_cleanup (free_current_contents, &expr); next_address = (CORE_ADDR) value_as_long (evaluate_expression (expr)); do_cleanups (old_chain); } do_examine (fmt, next_address); /* Set a couple of internal variables if appropriate. */ if (last_examine_value) { /* Make last address examined available to the user as $_. */ set_internalvar (lookup_internalvar ("_"), value_from_long (builtin_type_int, (LONGEST) last_examine_address)); /* Make contents of last address examined available to the user as $__.*/ set_internalvar (lookup_internalvar ("__"), last_examine_value); } } /* Commands for printing types of things. */ static void whatis_command (exp) char *exp; { struct expression *expr; register value val; register struct cleanup *old_chain; if (exp) { expr = parse_c_expression (exp); old_chain = make_cleanup (free_current_contents, &expr); val = evaluate_type (expr); } else val = access_value_history (0); printf ("type = "); type_print (VALUE_TYPE (val), "", stdout, 1); printf ("\n"); if (exp) do_cleanups (old_chain); } static void ptype_command (typename) char *typename; { register char *p = typename; register int len; extern struct block *get_current_block (); register struct block *b = (have_inferior_p () || have_core_file_p ()) ? get_current_block () : 0; register struct type *type; if (typename == 0) error_no_arg ("type name"); while (*p && *p != ' ' && *p != '\t') p++; len = p - typename; while (*p == ' ' || *p == '\t') p++; if (len == 6 && !strncmp (typename, "struct", 6)) type = lookup_struct (p, b); else if (len == 5 && !strncmp (typename, "union", 5)) type = lookup_union (p, b); else if (len == 4 && !strncmp (typename, "enum", 4)) type = lookup_enum (p, b); else { type = lookup_typename (typename, b, 1); if (type == 0) { register struct symbol *sym = lookup_symbol (typename, b, STRUCT_NAMESPACE, 0); if (sym == 0) error ("No type named %s.", typename); printf ("No type named %s, but there is a ", typename); switch (TYPE_CODE (SYMBOL_TYPE (sym))) { case TYPE_CODE_STRUCT: printf ("struct"); break; case TYPE_CODE_UNION: printf ("union"); break; case TYPE_CODE_ENUM: printf ("enum"); } printf (" %s. Type \"help ptype\".\n", typename); type = SYMBOL_TYPE (sym); } } type_print (type, "", stdout, 1); printf ("\n"); } enum display_status {disabled, enabled}; struct display { /* Chain link to next auto-display item. */ struct display *next; /* Expression to be evaluated and displayed. */ struct expression *exp; /* Item number of this auto-display item. */ int number; /* Display format specified. */ struct format_data format; /* Innermost block required by this expression when evaluated */ struct block *block; /* Status of this display (enabled or disabled) */ enum display_status status; }; /* Chain of expressions whose values should be displayed automatically each time the program stops. */ static struct display *display_chain; static int display_number; /* Add an expression to the auto-display chain. Specify the expression. */ static void display_command (exp, from_tty) char *exp; int from_tty; { struct format_data fmt; register struct expression *expr; register struct display *new; extern struct block *innermost_block; if (exp == 0) { do_displays (); return; } if (*exp == '/') { exp++; fmt = decode_format (&exp, 0, 0); if (fmt.size && fmt.format == 0) fmt.format = 'x'; if (fmt.format == 'i' || fmt.format == 's') fmt.size = 'b'; } else { fmt.format = 0; fmt.size = 0; fmt.count = 0; } innermost_block = 0; expr = parse_c_expression (exp); new = (struct display *) xmalloc (sizeof (struct display)); new->exp = expr; new->block = innermost_block; new->next = display_chain; new->number = ++display_number; new->format = fmt; new->status = enabled; display_chain = new; if (from_tty && have_inferior_p ()) do_one_display (new); dont_repeat (); } static void free_display (d) struct display *d; { free (d->exp); free (d); } /* Clear out the display_chain. Done when new symtabs are loaded, since this invalidates the types stored in many expressions. */ void clear_displays () { register struct display *d; while (d = display_chain) { free (d->exp); display_chain = d->next; free (d); } } /* Delete the auto-display number NUM. */ void delete_display (num) int num; { register struct display *d1, *d; if (!display_chain) error ("No display number %d.", num); if (display_chain->number == num) { d1 = display_chain; display_chain = d1->next; free_display (d1); } else for (d = display_chain; ; d = d->next) { if (d->next == 0) error ("No display number %d.", num); if (d->next->number == num) { d1 = d->next; d->next = d1->next; free_display (d1); break; } } } /* Delete some values from the auto-display chain. Specify the element numbers. */ static void undisplay_command (args) char *args; { register char *p = args; register char *p1; register int num; register struct display *d, *d1; if (args == 0) { if (query ("Delete all auto-display expressions? ")) clear_displays (); dont_repeat (); return; } while (*p) { p1 = p; while (*p1 >= '0' && *p1 <= '9') p1++; if (*p1 && *p1 != ' ' && *p1 != '\t') error ("Arguments must be display numbers."); num = atoi (p); delete_display (num); p = p1; while (*p == ' ' || *p == '\t') p++; } dont_repeat (); } /* Display a single auto-display. Do nothing if the display cannot be printed in the current context, or if the display is disabled. */ static void do_one_display (d) struct display *d; { int within_current_scope; if (d->status == disabled) return; if (d->block) within_current_scope = contained_in (get_selected_block (), d->block); else within_current_scope = 1; if (!within_current_scope) return; current_display_number = d->number; printf ("%d: ", d->number); if (d->format.size) { printf ("x/"); if (d->format.count != 1) printf ("%d", d->format.count); printf ("%c", d->format.format); if (d->format.format != 'i' && d->format.format != 's') printf ("%c", d->format.size); printf (" "); print_expression (d->exp, stdout); if (d->format.count != 1) printf ("\n"); else printf (" "); do_examine (d->format, (CORE_ADDR) value_as_long (evaluate_expression (d->exp))); } else { if (d->format.format) printf ("/%c ", d->format.format); print_expression (d->exp, stdout); printf (" = "); print_formatted (evaluate_expression (d->exp), d->format.format, d->format.size); printf ("\n"); } fflush (stdout); current_display_number = -1; } /* Display all of the values on the auto-display chain which can be evaluated in the current scope. */ void do_displays () { register struct display *d; for (d = display_chain; d; d = d->next) do_one_display (d); } /* Delete the auto-display which we were in the process of displaying. This is done when there is an error or a signal. */ void delete_current_display () { if (current_display_number >= 0) { delete_display (current_display_number); fprintf (stderr, "Deleting display %d to avoid infinite recursion.\n", current_display_number); } current_display_number = -1; } static void display_info () { register struct display *d; if (!display_chain) printf ("There are no auto-display expressions now.\n"); else printf ("Auto-display expressions now in effect:\n\ Num Enb Expression\n"); for (d = display_chain; d; d = d->next) { printf ("%d: %c ", d->number, "ny"[(int)d->status]); if (d->format.size) printf ("/%d%c%c ", d->format.count, d->format.size, d->format.format); else if (d->format.format) printf ("/%c ", d->format.format); print_expression (d->exp, stdout); if (d->block && !contained_in (get_selected_block (), d->block)) printf (" (cannot be evaluated in the current context)"); printf ("\n"); fflush (stdout); } } void enable_display (args) char *args; { register char *p = args; register char *p1; register int num; register struct display *d; if (p == 0) { for (d = display_chain; d; d->next) d->status = enabled; } else while (*p) { p1 = p; while (*p1 >= '0' && *p1 <= '9') p1++; if (*p1 && *p1 != ' ' && *p1 != '\t') error ("Arguments must be display numbers."); num = atoi (p); for (d = display_chain; d; d = d->next) if (d->number == num) { d->status = enabled; goto win; } printf ("No display number %d.\n", num); win: p = p1; while (*p == ' ' || *p == '\t') p++; } } void disable_display (args) char *args; { register char *p = args; register char *p1; register int num; register struct display *d; if (p == 0) { for (d = display_chain; d; d->next) d->status = disabled; } else while (*p) { p1 = p; while (*p1 >= '0' && *p1 <= '9') p1++; if (*p1 && *p1 != ' ' && *p1 != '\t') error ("Arguments must be display numbers."); num = atoi (p); for (d = display_chain; d; d = d->next) if (d->number == num) { d->status = disabled; goto win; } printf ("No display number %d.\n", num); win: p = p1; while (*p == ' ' || *p == '\t') p++; } } /* Print the value in stack frame FRAME of a variable specified by a struct symbol. */ void print_variable_value (var, frame, stream) struct symbol *var; CORE_ADDR frame; FILE *stream; { value val = read_var_value (var, frame); value_print (val, stream, 0); } /* Print the arguments of a stack frame, given the function FUNC running in that frame (as a symbol), the info on the frame, and the number of args according to the stack frame (or -1 if unknown). */ static void print_frame_nameless_args (); void print_frame_args (func, fi, num, stream) struct symbol *func; struct frame_info *fi; int num; FILE *stream; { struct block *b; int nsyms = 0; int first = 1; register int i; register int last_offset = FRAME_ARGS_SKIP; register int last_regparm = 0; register struct symbol *lastsym, *sym, *nextsym; register value val; register CORE_ADDR addr = FRAME_ARGS_ADDRESS (fi); if (func) { b = SYMBOL_BLOCK_VALUE (func); nsyms = BLOCK_NSYMS (b); } lastsym = 0; while (1) { /* Find first arg that is not before LAST_OFFSET. */ nextsym = 0; for (i = 0; i < nsyms; i++) { QUIT; sym = BLOCK_SYM (b, i); if (SYMBOL_CLASS (sym) == LOC_ARG) { if (SYMBOL_VALUE (sym) >= last_offset && (nextsym == 0 || SYMBOL_VALUE (sym) < SYMBOL_VALUE (nextsym))) nextsym = sym; } else if (SYMBOL_CLASS (sym) == LOC_REGPARM) { /* This shouldn't be sorted by number. Since we can't find nameless args with register parameters, print this out in order by .stabs. */ if (sym > lastsym && nextsym == 0) nextsym = sym; } } if (nextsym == 0) break; sym = nextsym; /* Print any nameless args between the last arg printed and the next arg. */ if (SYMBOL_CLASS (sym) == LOC_ARG && last_offset != (SYMBOL_VALUE (sym) / sizeof (int)) * sizeof (int)) { print_frame_nameless_args (addr, last_offset, SYMBOL_VALUE (sym), stream); first = 0; } /* Print the next arg. */ if (SYMBOL_CLASS (sym) == LOC_REGPARM) val = value_from_register (SYMBOL_TYPE (sym), SYMBOL_VALUE (sym), FRAME_INFO_ID (fi)); else val = value_at (SYMBOL_TYPE (sym), addr + SYMBOL_VALUE (sym)); if (! first) fprintf (stream, ", "); fprintf (stream, "%s=", SYMBOL_NAME (sym)); value_print (val, stream, 0); first = 0; if (SYMBOL_CLASS (sym) == LOC_ARG) last_offset = SYMBOL_VALUE (sym) + TYPE_LENGTH (SYMBOL_TYPE (sym)); else { last_regparm = SYMBOL_VALUE (sym) + 1; last_offset += TYPE_LENGTH (SYMBOL_TYPE (sym)); } /* Round up address of next arg to multiple of size of int. */ last_offset = ((last_offset + sizeof (int) - 1) / sizeof (int)) * sizeof (int); lastsym = sym; } if (num >= 0 && num * sizeof (int) + FRAME_ARGS_SKIP > last_offset) print_frame_nameless_args (addr, last_offset, num * sizeof (int) + FRAME_ARGS_SKIP, stream); } static void print_frame_nameless_args (argsaddr, start, end, stream) CORE_ADDR argsaddr; int start; int end; FILE *stream; { while (start < end) { QUIT; if (start != FRAME_ARGS_SKIP) fprintf (stream, ", "); fprintf (stream, "%d", read_memory_integer (argsaddr + start, sizeof (int))); start += sizeof (int); } } static void printf_command (arg) char *arg; { register char *f; register char *s = arg; char *string; value *val_args; int nargs = 0; int allocated_args = 20; char *arg_bytes; char *argclass; int i; int argindex; int nargs_wanted; val_args = (value *) xmalloc (allocated_args * sizeof (value)); if (s == 0) error_no_arg ("format-control string and values to print"); /* Skip white space before format string */ while (*s == ' ' || *s == '\t') s++; /* A format string should follow, enveloped in double quotes */ if (*s++ != '"') error ("Bad format string, missing '\"'."); /* Parse the format-control string and copy it into the string STRING, processing some kinds of escape sequence. */ f = string = (char *) alloca (strlen (s) + 1); while (*s != '"') { int c = *s++; switch (c) { case '\0': error ("Bad format string, non-terminated '\"'."); /* doesn't return */ case '\\': switch (c = *s++) { case '\\': *f++ = '\\'; break; case 'n': *f++ = '\n'; break; case 't': *f++ = '\t'; break; case 'r': *f++ = '\r'; break; case '"': *f++ = '"'; break; default: /* ??? TODO: handle other escape sequences */ error ("Unrecognized \\ escape character in format string."); } break; default: *f++ = c; } } /* Skip over " and following space and comma. */ s++; *f++ = '\0'; while (*s == ' ' || *s == '\t') s++; if (*s != ',' && *s != 0) error ("Invalid argument syntax"); if (*s == ',') s++; while (*s == ' ' || *s == '\t') s++; /* Now scan the string for %-specs and see what kinds of args they want. argclass[I] is set to 1 if the Ith arg should be a string. It's set to 2 if the Ith arg should be floating point. */ argclass = (char *) alloca (strlen (s)); nargs_wanted = 0; f = string; while (*f) if (*f++ == '%') { while (index ("0123456789.hlL-+ #", *f)) f++; if (*f == 's') argclass[nargs_wanted++] = 1; else if (*f == 'e' || *f == 'f' || *f == 'g') argclass[nargs_wanted++] = 2; else if (*f != '%') argclass[nargs_wanted++] = 0; f++; } /* Now, parse all arguments and evaluate them. Store the VALUEs in VAL_ARGS. */ while (*s != '\0') { char *s1; if (nargs == allocated_args) val_args = (value *) xrealloc (val_args, (allocated_args *= 2) * sizeof (value)); s1 = s; val_args[nargs] = parse_to_comma_and_eval (&s1); /* If format string wants a float, unchecked-convert the value to floating point of the same size */ if (argclass[nargs] == 2) { argclass[nargs] = 0; if (TYPE_LENGTH (VALUE_TYPE (val_args[nargs])) == sizeof (float)) VALUE_TYPE (val_args[nargs]) = builtin_type_float; if (TYPE_LENGTH (VALUE_TYPE (val_args[nargs])) == sizeof (double)) VALUE_TYPE (val_args[nargs]) = builtin_type_double; } nargs++; s = s1; if (*s == ',') s++; } if (nargs != nargs_wanted) error ("Wrong number of arguments for specified format-string"); /* Now lay out an argument-list containing the arguments as doubles, integers and C pointers. */ arg_bytes = (char *) alloca (sizeof (double) * nargs); argindex = 0; for (i = 0; i < nargs; i++) { if (argclass[i]) { char *str; int tem, j; tem = value_as_long (val_args[i]); /* This is a %s argument. Find the length of the string. */ for (j = 0; ; j++) { char c; QUIT; read_memory (tem + j, &c, 1); if (c == 0) break; } /* Copy the string contents into a string inside GDB. */ str = (char *) alloca (j + 1); read_memory (tem, str, j); str[j] = 0; /* Pass address of internal copy as the arg to vprintf. */ *((int *) &arg_bytes[argindex]) = (int) str; argindex += sizeof (int); } else if (VALUE_TYPE (val_args[i])->code == TYPE_CODE_FLT) { *((double *) &arg_bytes[argindex]) = value_as_double (val_args[i]); argindex += sizeof (double); } else #ifdef LONG_LONG if (TYPE_LENGTH (VALUE_TYPE (val_args[i])) == sizeof (long long)) { *(long long *) &arg_bytes[argindex] = value_as_long (val_args[i]); argindex += sizeof (long long); } else #endif { *((int *) &arg_bytes[argindex]) = value_as_long (val_args[i]); argindex += sizeof (int); } } vprintf (string, arg_bytes); } extern struct cmd_list_element *enablelist, *disablelist, *deletelist; extern struct cmd_list_element *cmdlist, *setlist; void _initialize_printcmd () { current_display_number = -1; add_info ("address", address_info, "Describe where variable VAR is stored."); add_com ("x", class_vars, x_command, "Examine memory: x/FMT ADDRESS.\n\ ADDRESS is an expression for the memory address to examine.\n\ FMT is a repeat count followed by a format letter and a size letter.\n\ Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\ f(float), a(address), i(instruction), c(char) and s(string).\n\ Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\ g is meaningful only with f, for type double.\n\ The specified number of objects of the specified size are printed\n\ according to the format.\n\n\ Defaults for format and size letters are those previously used.\n\ Default count is 1. Default address is following last thing printed\n\ with this command or \"print\"."); add_com ("ptype", class_vars, ptype_command, "Print definition of type TYPE.\n\ Argument may be a type name defined by typedef, or \"struct STRUCTNAME\"\n\ or \"union UNIONNAME\" or \"enum ENUMNAME\".\n\ The selected stack frame's lexical context is used to look up the name."); add_com ("whatis", class_vars, whatis_command, "Print data type of expression EXP."); add_info ("display", display_info, "Expressions to display when program stops, with code numbers."); add_abbrev_cmd ("undisplay", class_vars, undisplay_command, "Cancel some expressions to be displayed when program stops.\n\ Arguments are the code numbers of the expressions to stop displaying.\n\ No argument means cancel all automatic-display expressions.\n\ \"delete display\" has the same effect as this command.\n\ Do \"info display\" to see current list of code numbers.", &cmdlist); add_com ("display", class_vars, display_command, "Print value of expression EXP each time the program stops.\n\ /FMT may be used before EXP as in the \"print\" command.\n\ /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\ as in the \"x\" command, and then EXP is used to get the address to examine\n\ and examining is done as in the \"x\" command.\n\n\ With no argument, display all currently requested auto-display expressions.\n\ Use \"undisplay\" to cancel display requests previously made."); add_cmd ("display", class_vars, enable_display, "Enable some expressions to be displayed when program stops.\n\ Arguments are the code numbers of the expressions to resume displaying.\n\ No argument means enable all automatic-display expressions.\n\ Do \"info display\" to see current list of code numbers.", &enablelist); add_cmd ("display", class_vars, disable_display, "Disable some expressions to be displayed when program stops.\n\ Arguments are the code numbers of the expressions to stop displaying.\n\ No argument means disable all automatic-display expressions.\n\ Do \"info display\" to see current list of code numbers.", &disablelist); add_cmd ("display", class_vars, undisplay_command, "Cancel some expressions to be displayed when program stops.\n\ Arguments are the code numbers of the expressions to stop displaying.\n\ No argument means cancel all automatic-display expressions.\n\ Do \"info display\" to see current list of code numbers.", &deletelist); add_com ("printf", class_vars, printf_command, "printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\ This is useful for formatted output in user-defined commands."); add_com ("output", class_vars, output_command, "Like \"print\" but don't put in value history and don't print newline.\n\ This is useful in user-defined commands."); add_prefix_cmd ("set", class_vars, set_command, "Perform an assignment VAR = EXP.\n\ You must type the \"=\". VAR may be a debugger \"convenience\" variable\n\ (names starting with $), a register (a few standard names starting with $),\n\ or an actual variable in the program being debugged. EXP is any expression.\n\ Use \"set variable\" for variables with names identical to set subcommands.\n\ \nWith a subcommand, this command modifies parts of the gdb environment", &setlist, "set ", 1, &cmdlist); add_cmd ("variable", class_vars, set_command, "Perform an assignment VAR = EXP.\n\ You must type the \"=\". VAR may be a debugger \"convenience\" variable\n\ (names starting with $), a register (a few standard names starting with $),\n\ or an actual variable in the program being debugged. EXP is any expression.\n\ This may usually be abbreviated to simply \"set\".", &setlist); add_com ("print", class_vars, print_command, concat ("Print value of expression EXP.\n\ Variables accessible are those of the lexical environment of the selected\n\ stack frame, plus all those whose scope is global or an entire file.\n\ \n\ $NUM gets previous value number NUM. $ and $$ are the last two values.\n\ $$NUM refers to NUM'th value back from the last one.\n\ Names starting with $ refer to registers (with the values they would have\n\ if the program were to return to the stack frame now selected, restoring\n\ all registers saved by frames farther in) or else to debugger\n\ \"convenience\" variables (any such name not a known register).\n\ Use assignment expressions to give values to convenience variables.\n", "\n\ \{TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\ @ is a binary operator for treating consecutive data objects\n\ anywhere in memory as an array. FOO@NUM gives an array whose first\n\ element is FOO, whose second element is stored in the space following\n\ where FOO is stored, etc. FOO must be an expression whose value\n\ resides in memory.\n", "\n\ EXP may be preceded with /FMT, where FMT is a format letter\n\ but no count or size letter (see \"x\" command).")); add_com_alias ("p", "print", class_vars, 1); }