/* Target-dependent code for GDB, the GNU debugger. Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "defs.h" #include "frame.h" #include "inferior.h" #include "symtab.h" #include "target.h" #include "gdbcore.h" #include "gdbcmd.h" #include "symfile.h" #include "objfiles.h" #include "regcache.h" #include "value.h" #include "osabi.h" #include "regset.h" #include "solib-svr4.h" #include "ppc-tdep.h" #include "trad-frame.h" #include "frame-unwind.h" #include "tramp-frame.h" /* From , values for PT_NIP, PT_R1, and PT_LNK */ #define PPC_LINUX_PT_R0 0 #define PPC_LINUX_PT_R1 1 #define PPC_LINUX_PT_R2 2 #define PPC_LINUX_PT_R3 3 #define PPC_LINUX_PT_R4 4 #define PPC_LINUX_PT_R5 5 #define PPC_LINUX_PT_R6 6 #define PPC_LINUX_PT_R7 7 #define PPC_LINUX_PT_R8 8 #define PPC_LINUX_PT_R9 9 #define PPC_LINUX_PT_R10 10 #define PPC_LINUX_PT_R11 11 #define PPC_LINUX_PT_R12 12 #define PPC_LINUX_PT_R13 13 #define PPC_LINUX_PT_R14 14 #define PPC_LINUX_PT_R15 15 #define PPC_LINUX_PT_R16 16 #define PPC_LINUX_PT_R17 17 #define PPC_LINUX_PT_R18 18 #define PPC_LINUX_PT_R19 19 #define PPC_LINUX_PT_R20 20 #define PPC_LINUX_PT_R21 21 #define PPC_LINUX_PT_R22 22 #define PPC_LINUX_PT_R23 23 #define PPC_LINUX_PT_R24 24 #define PPC_LINUX_PT_R25 25 #define PPC_LINUX_PT_R26 26 #define PPC_LINUX_PT_R27 27 #define PPC_LINUX_PT_R28 28 #define PPC_LINUX_PT_R29 29 #define PPC_LINUX_PT_R30 30 #define PPC_LINUX_PT_R31 31 #define PPC_LINUX_PT_NIP 32 #define PPC_LINUX_PT_MSR 33 #define PPC_LINUX_PT_CTR 35 #define PPC_LINUX_PT_LNK 36 #define PPC_LINUX_PT_XER 37 #define PPC_LINUX_PT_CCR 38 #define PPC_LINUX_PT_MQ 39 #define PPC_LINUX_PT_FPR0 48 /* each FP reg occupies 2 slots in this space */ #define PPC_LINUX_PT_FPR31 (PPC_LINUX_PT_FPR0 + 2*31) #define PPC_LINUX_PT_FPSCR (PPC_LINUX_PT_FPR0 + 2*32 + 1) static CORE_ADDR ppc_linux_skip_trampoline_code (CORE_ADDR pc) { gdb_byte buf[4]; struct obj_section *sect; struct objfile *objfile; unsigned long insn; CORE_ADDR plt_start = 0; CORE_ADDR symtab = 0; CORE_ADDR strtab = 0; int num_slots = -1; int reloc_index = -1; CORE_ADDR plt_table; CORE_ADDR reloc; CORE_ADDR sym; long symidx; char symname[1024]; struct minimal_symbol *msymbol; /* Find the section pc is in; return if not in .plt */ sect = find_pc_section (pc); if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0) return 0; objfile = sect->objfile; /* Pick up the instruction at pc. It had better be of the form li r11, IDX where IDX is an index into the plt_table. */ if (target_read_memory (pc, buf, 4) != 0) return 0; insn = extract_unsigned_integer (buf, 4); if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ ) return 0; reloc_index = (insn << 16) >> 16; /* Find the objfile that pc is in and obtain the information necessary for finding the symbol name. */ for (sect = objfile->sections; sect < objfile->sections_end; ++sect) { const char *secname = sect->the_bfd_section->name; if (strcmp (secname, ".plt") == 0) plt_start = sect->addr; else if (strcmp (secname, ".rela.plt") == 0) num_slots = ((int) sect->endaddr - (int) sect->addr) / 12; else if (strcmp (secname, ".dynsym") == 0) symtab = sect->addr; else if (strcmp (secname, ".dynstr") == 0) strtab = sect->addr; } /* Make sure we have all the information we need. */ if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0) return 0; /* Compute the value of the plt table */ plt_table = plt_start + 72 + 8 * num_slots; /* Get address of the relocation entry (Elf32_Rela) */ if (target_read_memory (plt_table + reloc_index, buf, 4) != 0) return 0; reloc = extract_unsigned_integer (buf, 4); sect = find_pc_section (reloc); if (!sect) return 0; if (strcmp (sect->the_bfd_section->name, ".text") == 0) return reloc; /* Now get the r_info field which is the relocation type and symbol index. */ if (target_read_memory (reloc + 4, buf, 4) != 0) return 0; symidx = extract_unsigned_integer (buf, 4); /* Shift out the relocation type leaving just the symbol index */ /* symidx = ELF32_R_SYM(symidx); */ symidx = symidx >> 8; /* compute the address of the symbol */ sym = symtab + symidx * 4; /* Fetch the string table index */ if (target_read_memory (sym, buf, 4) != 0) return 0; symidx = extract_unsigned_integer (buf, 4); /* Fetch the string; we don't know how long it is. Is it possible that the following will fail because we're trying to fetch too much? */ if (target_read_memory (strtab + symidx, (gdb_byte *) symname, sizeof (symname)) != 0) return 0; /* This might not work right if we have multiple symbols with the same name; the only way to really get it right is to perform the same sort of lookup as the dynamic linker. */ msymbol = lookup_minimal_symbol_text (symname, NULL); if (!msymbol) return 0; return SYMBOL_VALUE_ADDRESS (msymbol); } /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint in much the same fashion as memory_remove_breakpoint in mem-break.c, but is careful not to write back the previous contents if the code in question has changed in between inserting the breakpoint and removing it. Here is the problem that we're trying to solve... Once upon a time, before introducing this function to remove breakpoints from the inferior, setting a breakpoint on a shared library function prior to running the program would not work properly. In order to understand the problem, it is first necessary to understand a little bit about dynamic linking on this platform. A call to a shared library function is accomplished via a bl (branch-and-link) instruction whose branch target is an entry in the procedure linkage table (PLT). The PLT in the object file is uninitialized. To gdb, prior to running the program, the entries in the PLT are all zeros. Once the program starts running, the shared libraries are loaded and the procedure linkage table is initialized, but the entries in the table are not (necessarily) resolved. Once a function is actually called, the code in the PLT is hit and the function is resolved. In order to better illustrate this, an example is in order; the following example is from the gdb testsuite. We start the program shmain. [kev@arroyo testsuite]$ ../gdb gdb.base/shmain [...] We place two breakpoints, one on shr1 and the other on main. (gdb) b shr1 Breakpoint 1 at 0x100409d4 (gdb) b main Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44. Examine the instruction (and the immediatly following instruction) upon which the breakpoint was placed. Note that the PLT entry for shr1 contains zeros. (gdb) x/2i 0x100409d4 0x100409d4 : .long 0x0 0x100409d8 : .long 0x0 Now run 'til main. (gdb) r Starting program: gdb.base/shmain Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19. Breakpoint 2, main () at gdb.base/shmain.c:44 44 g = 1; Examine the PLT again. Note that the loading of the shared library has initialized the PLT to code which loads a constant (which I think is an index into the GOT) into r11 and then branchs a short distance to the code which actually does the resolving. (gdb) x/2i 0x100409d4 0x100409d4 : li r11,4 0x100409d8 : b 0x10040984 (gdb) c Continuing. Breakpoint 1, shr1 (x=1) at gdb.base/shr1.c:19 19 l = 1; Now we've hit the breakpoint at shr1. (The breakpoint was reset from the PLT entry to the actual shr1 function after the shared library was loaded.) Note that the PLT entry has been resolved to contain a branch that takes us directly to shr1. (The real one, not the PLT entry.) (gdb) x/2i 0x100409d4 0x100409d4 : b 0xffaf76c 0x100409d8 : b 0x10040984 The thing to note here is that the PLT entry for shr1 has been changed twice. Now the problem should be obvious. GDB places a breakpoint (a trap instruction) on the zero value of the PLT entry for shr1. Later on, after the shared library had been loaded and the PLT initialized, GDB gets a signal indicating this fact and attempts (as it always does when it stops) to remove all the breakpoints. The breakpoint removal was causing the former contents (a zero word) to be written back to the now initialized PLT entry thus destroying a portion of the initialization that had occurred only a short time ago. When execution continued, the zero word would be executed as an instruction an an illegal instruction trap was generated instead. (0 is not a legal instruction.) The fix for this problem was fairly straightforward. The function memory_remove_breakpoint from mem-break.c was copied to this file, modified slightly, and renamed to ppc_linux_memory_remove_breakpoint. In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new function. The differences between ppc_linux_memory_remove_breakpoint () and memory_remove_breakpoint () are minor. All that the former does that the latter does not is check to make sure that the breakpoint location actually contains a breakpoint (trap instruction) prior to attempting to write back the old contents. If it does contain a trap instruction, we allow the old contents to be written back. Otherwise, we silently do nothing. The big question is whether memory_remove_breakpoint () should be changed to have the same functionality. The downside is that more traffic is generated for remote targets since we'll have an extra fetch of a memory word each time a breakpoint is removed. For the time being, we'll leave this self-modifying-code-friendly version in ppc-linux-tdep.c, but it ought to be migrated somewhere else in the event that some other platform has similar needs with regard to removing breakpoints in some potentially self modifying code. */ int ppc_linux_memory_remove_breakpoint (struct bp_target_info *bp_tgt) { CORE_ADDR addr = bp_tgt->placed_address; const unsigned char *bp; int val; int bplen; gdb_byte old_contents[BREAKPOINT_MAX]; /* Determine appropriate breakpoint contents and size for this address. */ bp = gdbarch_breakpoint_from_pc (current_gdbarch, &addr, &bplen); if (bp == NULL) error (_("Software breakpoints not implemented for this target.")); val = target_read_memory (addr, old_contents, bplen); /* If our breakpoint is no longer at the address, this means that the program modified the code on us, so it is wrong to put back the old value */ if (val == 0 && memcmp (bp, old_contents, bplen) == 0) val = target_write_memory (addr, bp_tgt->shadow_contents, bplen); return val; } /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather than the 32 bit SYSV R4 ABI structure return convention - all structures, no matter their size, are put in memory. Vectors, which were added later, do get returned in a register though. */ static enum return_value_convention ppc_linux_return_value (struct gdbarch *gdbarch, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf) { if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT || TYPE_CODE (valtype) == TYPE_CODE_UNION) && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8) && TYPE_VECTOR (valtype))) return RETURN_VALUE_STRUCT_CONVENTION; else return ppc_sysv_abi_return_value (gdbarch, valtype, regcache, readbuf, writebuf); } /* Macros for matching instructions. Note that, since all the operands are masked off before they're or-ed into the instruction, you can use -1 to make masks. */ #define insn_d(opcd, rts, ra, d) \ ((((opcd) & 0x3f) << 26) \ | (((rts) & 0x1f) << 21) \ | (((ra) & 0x1f) << 16) \ | ((d) & 0xffff)) #define insn_ds(opcd, rts, ra, d, xo) \ ((((opcd) & 0x3f) << 26) \ | (((rts) & 0x1f) << 21) \ | (((ra) & 0x1f) << 16) \ | ((d) & 0xfffc) \ | ((xo) & 0x3)) #define insn_xfx(opcd, rts, spr, xo) \ ((((opcd) & 0x3f) << 26) \ | (((rts) & 0x1f) << 21) \ | (((spr) & 0x1f) << 16) \ | (((spr) & 0x3e0) << 6) \ | (((xo) & 0x3ff) << 1)) /* Read a PPC instruction from memory. PPC instructions are always big-endian, no matter what endianness the program is running in, so we can't use read_memory_integer or one of its friends here. */ static unsigned int read_insn (CORE_ADDR pc) { unsigned char buf[4]; read_memory (pc, buf, 4); return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3]; } /* An instruction to match. */ struct insn_pattern { unsigned int mask; /* mask the insn with this... */ unsigned int data; /* ...and see if it matches this. */ int optional; /* If non-zero, this insn may be absent. */ }; /* Return non-zero if the instructions at PC match the series described in PATTERN, or zero otherwise. PATTERN is an array of 'struct insn_pattern' objects, terminated by an entry whose mask is zero. When the match is successful, fill INSN[i] with what PATTERN[i] matched. If PATTERN[i] is optional, and the instruction wasn't present, set INSN[i] to 0 (which is not a valid PPC instruction). INSN should have as many elements as PATTERN. Note that, if PATTERN contains optional instructions which aren't present in memory, then INSN will have holes, so INSN[i] isn't necessarily the i'th instruction in memory. */ static int insns_match_pattern (CORE_ADDR pc, struct insn_pattern *pattern, unsigned int *insn) { int i; for (i = 0; pattern[i].mask; i++) { insn[i] = read_insn (pc); if ((insn[i] & pattern[i].mask) == pattern[i].data) pc += 4; else if (pattern[i].optional) insn[i] = 0; else return 0; } return 1; } /* Return the 'd' field of the d-form instruction INSN, properly sign-extended. */ static CORE_ADDR insn_d_field (unsigned int insn) { return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000); } /* Return the 'ds' field of the ds-form instruction INSN, with the two zero bits concatenated at the right, and properly sign-extended. */ static CORE_ADDR insn_ds_field (unsigned int insn) { return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000); } /* If DESC is the address of a 64-bit PowerPC GNU/Linux function descriptor, return the descriptor's entry point. */ static CORE_ADDR ppc64_desc_entry_point (CORE_ADDR desc) { /* The first word of the descriptor is the entry point. */ return (CORE_ADDR) read_memory_unsigned_integer (desc, 8); } /* Pattern for the standard linkage function. These are built by build_plt_stub in elf64-ppc.c, whose GLINK argument is always zero. */ static struct insn_pattern ppc64_standard_linkage[] = { /* addis r12, r2, */ { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 }, /* std r2, 40(r1) */ { -1, insn_ds (62, 2, 1, 40, 0), 0 }, /* ld r11, (r12) */ { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 }, /* addis r12, r12, 1 */ { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 }, /* ld r2, (r12) */ { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 }, /* addis r12, r12, 1 */ { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 }, /* mtctr r11 */ { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 }, /* ld r11, (r12) */ { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 }, /* bctr */ { -1, 0x4e800420, 0 }, { 0, 0, 0 } }; #define PPC64_STANDARD_LINKAGE_LEN \ (sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0])) /* When the dynamic linker is doing lazy symbol resolution, the first call to a function in another object will go like this: - The user's function calls the linkage function: 100007c4: 4b ff fc d5 bl 10000498 100007c8: e8 41 00 28 ld r2,40(r1) - The linkage function loads the entry point (and other stuff) from the function descriptor in the PLT, and jumps to it: 10000498: 3d 82 00 00 addis r12,r2,0 1000049c: f8 41 00 28 std r2,40(r1) 100004a0: e9 6c 80 98 ld r11,-32616(r12) 100004a4: e8 4c 80 a0 ld r2,-32608(r12) 100004a8: 7d 69 03 a6 mtctr r11 100004ac: e9 6c 80 a8 ld r11,-32600(r12) 100004b0: 4e 80 04 20 bctr - But since this is the first time that PLT entry has been used, it sends control to its glink entry. That loads the number of the PLT entry and jumps to the common glink0 code: 10000c98: 38 00 00 00 li r0,0 10000c9c: 4b ff ff dc b 10000c78 - The common glink0 code then transfers control to the dynamic linker's fixup code: 10000c78: e8 41 00 28 ld r2,40(r1) 10000c7c: 3d 82 00 00 addis r12,r2,0 10000c80: e9 6c 80 80 ld r11,-32640(r12) 10000c84: e8 4c 80 88 ld r2,-32632(r12) 10000c88: 7d 69 03 a6 mtctr r11 10000c8c: e9 6c 80 90 ld r11,-32624(r12) 10000c90: 4e 80 04 20 bctr Eventually, this code will figure out how to skip all of this, including the dynamic linker. At the moment, we just get through the linkage function. */ /* If the current thread is about to execute a series of instructions at PC matching the ppc64_standard_linkage pattern, and INSN is the result from that pattern match, return the code address to which the standard linkage function will send them. (This doesn't deal with dynamic linker lazy symbol resolution stubs.) */ static CORE_ADDR ppc64_standard_linkage_target (CORE_ADDR pc, unsigned int *insn) { struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); /* The address of the function descriptor this linkage function references. */ CORE_ADDR desc = ((CORE_ADDR) read_register (tdep->ppc_gp0_regnum + 2) + (insn_d_field (insn[0]) << 16) + insn_ds_field (insn[2])); /* The first word of the descriptor is the entry point. Return that. */ return ppc64_desc_entry_point (desc); } /* Given that we've begun executing a call trampoline at PC, return the entry point of the function the trampoline will go to. */ static CORE_ADDR ppc64_skip_trampoline_code (CORE_ADDR pc) { unsigned int ppc64_standard_linkage_insn[PPC64_STANDARD_LINKAGE_LEN]; if (insns_match_pattern (pc, ppc64_standard_linkage, ppc64_standard_linkage_insn)) return ppc64_standard_linkage_target (pc, ppc64_standard_linkage_insn); else return 0; } /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG) on PPC64 GNU/Linux. Usually a function pointer's representation is simply the address of the function. On GNU/Linux on the 64-bit PowerPC however, a function pointer is represented by a pointer to a TOC entry. This TOC entry contains three words, the first word is the address of the function, the second word is the TOC pointer (r2), and the third word is the static chain value. Throughout GDB it is currently assumed that a function pointer contains the address of the function, which is not easy to fix. In addition, the conversion of a function address to a function pointer would require allocation of a TOC entry in the inferior's memory space, with all its drawbacks. To be able to call C++ virtual methods in the inferior (which are called via function pointers), find_function_addr uses this function to get the function address from a function pointer. */ /* If ADDR points at what is clearly a function descriptor, transform it into the address of the corresponding function. Be conservative, otherwize GDB will do the transformation on any random addresses such as occures when there is no symbol table. */ static CORE_ADDR ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, struct target_ops *targ) { struct section_table *s = target_section_by_addr (targ, addr); /* Check if ADDR points to a function descriptor. */ if (s && strcmp (s->the_bfd_section->name, ".opd") == 0) return get_target_memory_unsigned (targ, addr, 8); return addr; } static void right_supply_register (struct regcache *regcache, int wordsize, int regnum, const bfd_byte *buf) { regcache_raw_supply (regcache, regnum, (buf + wordsize - register_size (current_gdbarch, regnum))); } /* Extract the register values found in the WORDSIZED ABI GREGSET, storing their values in REGCACHE. Note that some are left-aligned, while others are right aligned. */ void ppc_linux_supply_gregset (struct regcache *regcache, int regnum, const void *gregs, size_t size, int wordsize) { int regi; struct gdbarch *regcache_arch = get_regcache_arch (regcache); struct gdbarch_tdep *regcache_tdep = gdbarch_tdep (regcache_arch); const bfd_byte *buf = gregs; for (regi = 0; regi < ppc_num_gprs; regi++) right_supply_register (regcache, wordsize, regcache_tdep->ppc_gp0_regnum + regi, buf + wordsize * regi); right_supply_register (regcache, wordsize, gdbarch_pc_regnum (regcache_arch), buf + wordsize * PPC_LINUX_PT_NIP); right_supply_register (regcache, wordsize, regcache_tdep->ppc_lr_regnum, buf + wordsize * PPC_LINUX_PT_LNK); regcache_raw_supply (regcache, regcache_tdep->ppc_cr_regnum, buf + wordsize * PPC_LINUX_PT_CCR); regcache_raw_supply (regcache, regcache_tdep->ppc_xer_regnum, buf + wordsize * PPC_LINUX_PT_XER); regcache_raw_supply (regcache, regcache_tdep->ppc_ctr_regnum, buf + wordsize * PPC_LINUX_PT_CTR); if (regcache_tdep->ppc_mq_regnum != -1) right_supply_register (regcache, wordsize, regcache_tdep->ppc_mq_regnum, buf + wordsize * PPC_LINUX_PT_MQ); right_supply_register (regcache, wordsize, regcache_tdep->ppc_ps_regnum, buf + wordsize * PPC_LINUX_PT_MSR); } static void ppc32_linux_supply_gregset (const struct regset *regset, struct regcache *regcache, int regnum, const void *gregs, size_t size) { ppc_linux_supply_gregset (regcache, regnum, gregs, size, 4); } static struct regset ppc32_linux_gregset = { NULL, ppc32_linux_supply_gregset }; static void ppc64_linux_supply_gregset (const struct regset *regset, struct regcache * regcache, int regnum, const void *gregs, size_t size) { ppc_linux_supply_gregset (regcache, regnum, gregs, size, 8); } static struct regset ppc64_linux_gregset = { NULL, ppc64_linux_supply_gregset }; void ppc_linux_supply_fpregset (const struct regset *regset, struct regcache * regcache, int regnum, const void *fpset, size_t size) { int regi; struct gdbarch *regcache_arch = get_regcache_arch (regcache); struct gdbarch_tdep *regcache_tdep = gdbarch_tdep (regcache_arch); const bfd_byte *buf = fpset; if (! ppc_floating_point_unit_p (regcache_arch)) return; for (regi = 0; regi < ppc_num_fprs; regi++) regcache_raw_supply (regcache, regcache_tdep->ppc_fp0_regnum + regi, buf + 8 * regi); /* The FPSCR is stored in the low order word of the last doubleword in the fpregset. */ regcache_raw_supply (regcache, regcache_tdep->ppc_fpscr_regnum, buf + 8 * 32 + 4); } static struct regset ppc_linux_fpregset = { NULL, ppc_linux_supply_fpregset }; static const struct regset * ppc_linux_regset_from_core_section (struct gdbarch *core_arch, const char *sect_name, size_t sect_size) { struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch); if (strcmp (sect_name, ".reg") == 0) { if (tdep->wordsize == 4) return &ppc32_linux_gregset; else return &ppc64_linux_gregset; } if (strcmp (sect_name, ".reg2") == 0) return &ppc_linux_fpregset; return NULL; } static void ppc_linux_sigtramp_cache (struct frame_info *next_frame, struct trad_frame_cache *this_cache, CORE_ADDR func, LONGEST offset, int bias) { CORE_ADDR base; CORE_ADDR regs; CORE_ADDR gpregs; CORE_ADDR fpregs; int i; struct gdbarch *gdbarch = get_frame_arch (next_frame); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); base = frame_unwind_register_unsigned (next_frame, SP_REGNUM); if (bias > 0 && frame_pc_unwind (next_frame) != func) /* See below, some signal trampolines increment the stack as their first instruction, need to compensate for that. */ base -= bias; /* Find the address of the register buffer pointer. */ regs = base + offset; /* Use that to find the address of the corresponding register buffers. */ gpregs = read_memory_unsigned_integer (regs, tdep->wordsize); fpregs = gpregs + 48 * tdep->wordsize; /* General purpose. */ for (i = 0; i < 32; i++) { int regnum = i + tdep->ppc_gp0_regnum; trad_frame_set_reg_addr (this_cache, regnum, gpregs + i * tdep->wordsize); } trad_frame_set_reg_addr (this_cache, PC_REGNUM, gpregs + 32 * tdep->wordsize); trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum, gpregs + 35 * tdep->wordsize); trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum, gpregs + 36 * tdep->wordsize); trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum, gpregs + 37 * tdep->wordsize); trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum, gpregs + 38 * tdep->wordsize); if (ppc_floating_point_unit_p (gdbarch)) { /* Floating point registers. */ for (i = 0; i < 32; i++) { int regnum = i + FP0_REGNUM; trad_frame_set_reg_addr (this_cache, regnum, fpregs + i * tdep->wordsize); } trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum, fpregs + 32 * tdep->wordsize); } trad_frame_set_id (this_cache, frame_id_build (base, func)); } static void ppc32_linux_sigaction_cache_init (const struct tramp_frame *self, struct frame_info *next_frame, struct trad_frame_cache *this_cache, CORE_ADDR func) { ppc_linux_sigtramp_cache (next_frame, this_cache, func, 0xd0 /* Offset to ucontext_t. */ + 0x30 /* Offset to .reg. */, 0); } static void ppc64_linux_sigaction_cache_init (const struct tramp_frame *self, struct frame_info *next_frame, struct trad_frame_cache *this_cache, CORE_ADDR func) { ppc_linux_sigtramp_cache (next_frame, this_cache, func, 0x80 /* Offset to ucontext_t. */ + 0xe0 /* Offset to .reg. */, 128); } static void ppc32_linux_sighandler_cache_init (const struct tramp_frame *self, struct frame_info *next_frame, struct trad_frame_cache *this_cache, CORE_ADDR func) { ppc_linux_sigtramp_cache (next_frame, this_cache, func, 0x40 /* Offset to ucontext_t. */ + 0x1c /* Offset to .reg. */, 0); } static void ppc64_linux_sighandler_cache_init (const struct tramp_frame *self, struct frame_info *next_frame, struct trad_frame_cache *this_cache, CORE_ADDR func) { ppc_linux_sigtramp_cache (next_frame, this_cache, func, 0x80 /* Offset to struct sigcontext. */ + 0x38 /* Offset to .reg. */, 128); } static struct tramp_frame ppc32_linux_sigaction_tramp_frame = { SIGTRAMP_FRAME, 4, { { 0x380000ac, -1 }, /* li r0, 172 */ { 0x44000002, -1 }, /* sc */ { TRAMP_SENTINEL_INSN }, }, ppc32_linux_sigaction_cache_init }; static struct tramp_frame ppc64_linux_sigaction_tramp_frame = { SIGTRAMP_FRAME, 4, { { 0x38210080, -1 }, /* addi r1,r1,128 */ { 0x380000ac, -1 }, /* li r0, 172 */ { 0x44000002, -1 }, /* sc */ { TRAMP_SENTINEL_INSN }, }, ppc64_linux_sigaction_cache_init }; static struct tramp_frame ppc32_linux_sighandler_tramp_frame = { SIGTRAMP_FRAME, 4, { { 0x38000077, -1 }, /* li r0,119 */ { 0x44000002, -1 }, /* sc */ { TRAMP_SENTINEL_INSN }, }, ppc32_linux_sighandler_cache_init }; static struct tramp_frame ppc64_linux_sighandler_tramp_frame = { SIGTRAMP_FRAME, 4, { { 0x38210080, -1 }, /* addi r1,r1,128 */ { 0x38000077, -1 }, /* li r0,119 */ { 0x44000002, -1 }, /* sc */ { TRAMP_SENTINEL_INSN }, }, ppc64_linux_sighandler_cache_init }; static void ppc_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); /* NOTE: jimb/2004-03-26: The System V ABI PowerPC Processor Supplement says that long doubles are sixteen bytes long. However, as one of the known warts of its ABI, PPC GNU/Linux uses eight-byte long doubles. GCC only recently got 128-bit long double support on PPC, so it may be changing soon. The Linux[sic] Standards Base says that programs that use 'long double' on PPC GNU/Linux are non-conformant. */ /* NOTE: cagney/2005-01-25: True for both 32- and 64-bit. */ set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); if (tdep->wordsize == 4) { /* Until November 2001, gcc did not comply with the 32 bit SysV R4 ABI requirement that structures less than or equal to 8 bytes should be returned in registers. Instead GCC was using the the AIX/PowerOpen ABI - everything returned in memory (well ignoring vectors that is). When this was corrected, it wasn't fixed for GNU/Linux native platform. Use the PowerOpen struct convention. */ set_gdbarch_return_value (gdbarch, ppc_linux_return_value); set_gdbarch_memory_remove_breakpoint (gdbarch, ppc_linux_memory_remove_breakpoint); /* Shared library handling. */ set_gdbarch_skip_trampoline_code (gdbarch, ppc_linux_skip_trampoline_code); set_solib_svr4_fetch_link_map_offsets (gdbarch, svr4_ilp32_fetch_link_map_offsets); /* Trampolines. */ tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sigaction_tramp_frame); tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sighandler_tramp_frame); } if (tdep->wordsize == 8) { /* Handle PPC64 GNU/Linux function pointers (which are really function descriptors). */ set_gdbarch_convert_from_func_ptr_addr (gdbarch, ppc64_linux_convert_from_func_ptr_addr); set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code); /* Shared library handling. */ set_solib_svr4_fetch_link_map_offsets (gdbarch, svr4_lp64_fetch_link_map_offsets); /* Trampolines. */ tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sigaction_tramp_frame); tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sighandler_tramp_frame); } set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section); /* Enable TLS support. */ set_gdbarch_fetch_tls_load_module_address (gdbarch, svr4_fetch_objfile_link_map); } void _initialize_ppc_linux_tdep (void) { /* Register for all sub-familes of the POWER/PowerPC: 32-bit and 64-bit PowerPC, and the older rs6k. */ gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX, ppc_linux_init_abi); gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX, ppc_linux_init_abi); gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX, ppc_linux_init_abi); }