/* YACC parser for Pascal expressions, for GDB. Copyright 2000 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* This file is derived from c-exp.y */ /* Parse a Pascal expression from text in a string, and return the result as a struct expression pointer. That structure contains arithmetic operations in reverse polish, with constants represented by operations that are followed by special data. See expression.h for the details of the format. What is important here is that it can be built up sequentially during the process of parsing; the lower levels of the tree always come first in the result. Note that malloc's and realloc's in this file are transformed to xmalloc and xrealloc respectively by the same sed command in the makefile that remaps any other malloc/realloc inserted by the parser generator. Doing this with #defines and trying to control the interaction with include files (<malloc.h> and <stdlib.h> for example) just became too messy, particularly when such includes can be inserted at random times by the parser generator. */ /* Known bugs or limitations: - pascal string operations are not supported at all. - there are some problems with boolean types. - Pascal type hexadecimal constants are not supported because they conflict with the internal variables format. Probably also lots of other problems, less well defined PM */ %{ #include "defs.h" #include "gdb_string.h" #include <ctype.h> #include "expression.h" #include "value.h" #include "parser-defs.h" #include "language.h" #include "p-lang.h" #include "bfd.h" /* Required by objfiles.h. */ #include "symfile.h" /* Required by objfiles.h. */ #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */ #include "block.h" /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc), as well as gratuitiously global symbol names, so we can have multiple yacc generated parsers in gdb. Note that these are only the variables produced by yacc. If other parser generators (bison, byacc, etc) produce additional global names that conflict at link time, then those parser generators need to be fixed instead of adding those names to this list. */ #define yymaxdepth pascal_maxdepth #define yyparse pascal_parse #define yylex pascal_lex #define yyerror pascal_error #define yylval pascal_lval #define yychar pascal_char #define yydebug pascal_debug #define yypact pascal_pact #define yyr1 pascal_r1 #define yyr2 pascal_r2 #define yydef pascal_def #define yychk pascal_chk #define yypgo pascal_pgo #define yyact pascal_act #define yyexca pascal_exca #define yyerrflag pascal_errflag #define yynerrs pascal_nerrs #define yyps pascal_ps #define yypv pascal_pv #define yys pascal_s #define yy_yys pascal_yys #define yystate pascal_state #define yytmp pascal_tmp #define yyv pascal_v #define yy_yyv pascal_yyv #define yyval pascal_val #define yylloc pascal_lloc #define yyreds pascal_reds /* With YYDEBUG defined */ #define yytoks pascal_toks /* With YYDEBUG defined */ #define yyname pascal_name /* With YYDEBUG defined */ #define yyrule pascal_rule /* With YYDEBUG defined */ #define yylhs pascal_yylhs #define yylen pascal_yylen #define yydefred pascal_yydefred #define yydgoto pascal_yydgoto #define yysindex pascal_yysindex #define yyrindex pascal_yyrindex #define yygindex pascal_yygindex #define yytable pascal_yytable #define yycheck pascal_yycheck #ifndef YYDEBUG #define YYDEBUG 1 /* Default to yydebug support */ #endif #define YYFPRINTF parser_fprintf int yyparse (void); static int yylex (void); void yyerror (char *); static char * uptok (char *, int); %} /* Although the yacc "value" of an expression is not used, since the result is stored in the structure being created, other node types do have values. */ %union { LONGEST lval; struct { LONGEST val; struct type *type; } typed_val_int; struct { DOUBLEST dval; struct type *type; } typed_val_float; struct symbol *sym; struct type *tval; struct stoken sval; struct ttype tsym; struct symtoken ssym; int voidval; struct block *bval; enum exp_opcode opcode; struct internalvar *ivar; struct type **tvec; int *ivec; } %{ /* YYSTYPE gets defined by %union */ static int parse_number (char *, int, int, YYSTYPE *); static struct type *current_type; static void push_current_type (void); static void pop_current_type (void); static int search_field; %} %type <voidval> exp exp1 type_exp start normal_start variable qualified_name %type <tval> type typebase /* %type <bval> block */ /* Fancy type parsing. */ %type <tval> ptype %token <typed_val_int> INT %token <typed_val_float> FLOAT /* Both NAME and TYPENAME tokens represent symbols in the input, and both convey their data as strings. But a TYPENAME is a string that happens to be defined as a typedef or builtin type name (such as int or char) and a NAME is any other symbol. Contexts where this distinction is not important can use the nonterminal "name", which matches either NAME or TYPENAME. */ %token <sval> STRING %token <sval> FIELDNAME %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */ %token <tsym> TYPENAME %type <sval> name %type <ssym> name_not_typename /* A NAME_OR_INT is a symbol which is not known in the symbol table, but which would parse as a valid number in the current input radix. E.g. "c" when input_radix==16. Depending on the parse, it will be turned into a name or into a number. */ %token <ssym> NAME_OR_INT %token STRUCT CLASS SIZEOF COLONCOLON %token ERROR /* Special type cases, put in to allow the parser to distinguish different legal basetypes. */ %token <voidval> VARIABLE /* Object pascal */ %token THIS %token <lval> TRUEKEYWORD FALSEKEYWORD %left ',' %left ABOVE_COMMA %right ASSIGN %left NOT %left OR %left XOR %left ANDAND %left '=' NOTEQUAL %left '<' '>' LEQ GEQ %left LSH RSH DIV MOD %left '@' %left '+' '-' %left '*' '/' %right UNARY INCREMENT DECREMENT %right ARROW '.' '[' '(' %left '^' %token <ssym> BLOCKNAME %type <bval> block %left COLONCOLON %% start : { current_type = NULL; search_field = 0; } normal_start {} ; normal_start : exp1 | type_exp ; type_exp: type { write_exp_elt_opcode(OP_TYPE); write_exp_elt_type($1); write_exp_elt_opcode(OP_TYPE); current_type = $1; } ; /* Expressions, including the comma operator. */ exp1 : exp | exp1 ',' exp { write_exp_elt_opcode (BINOP_COMMA); } ; /* Expressions, not including the comma operator. */ exp : exp '^' %prec UNARY { write_exp_elt_opcode (UNOP_IND); if (current_type) current_type = TYPE_TARGET_TYPE (current_type); } ; exp : '@' exp %prec UNARY { write_exp_elt_opcode (UNOP_ADDR); if (current_type) current_type = TYPE_POINTER_TYPE (current_type); } ; exp : '-' exp %prec UNARY { write_exp_elt_opcode (UNOP_NEG); } ; exp : NOT exp %prec UNARY { write_exp_elt_opcode (UNOP_LOGICAL_NOT); } ; exp : INCREMENT '(' exp ')' %prec UNARY { write_exp_elt_opcode (UNOP_PREINCREMENT); } ; exp : DECREMENT '(' exp ')' %prec UNARY { write_exp_elt_opcode (UNOP_PREDECREMENT); } ; exp : exp '.' { search_field = 1; } FIELDNAME /* name */ { write_exp_elt_opcode (STRUCTOP_STRUCT); write_exp_string ($4); write_exp_elt_opcode (STRUCTOP_STRUCT); search_field = 0; if (current_type) { while (TYPE_CODE (current_type) == TYPE_CODE_PTR) current_type = TYPE_TARGET_TYPE (current_type); current_type = lookup_struct_elt_type ( current_type, $4.ptr, 0); }; } ; exp : exp '[' /* We need to save the current_type value */ { char *arrayname; int arrayfieldindex; arrayfieldindex = is_pascal_string_type ( current_type, NULL, NULL, NULL, NULL, &arrayname); if (arrayfieldindex) { struct stoken stringsval; stringsval.ptr = alloca (strlen (arrayname) + 1); stringsval.length = strlen (arrayname); strcpy (stringsval.ptr, arrayname); current_type = TYPE_FIELD_TYPE (current_type, arrayfieldindex - 1); write_exp_elt_opcode (STRUCTOP_STRUCT); write_exp_string (stringsval); write_exp_elt_opcode (STRUCTOP_STRUCT); } push_current_type (); } exp1 ']' { pop_current_type (); write_exp_elt_opcode (BINOP_SUBSCRIPT); if (current_type) current_type = TYPE_TARGET_TYPE (current_type); } ; exp : exp '(' /* This is to save the value of arglist_len being accumulated by an outer function call. */ { push_current_type (); start_arglist (); } arglist ')' %prec ARROW { write_exp_elt_opcode (OP_FUNCALL); write_exp_elt_longcst ((LONGEST) end_arglist ()); write_exp_elt_opcode (OP_FUNCALL); pop_current_type (); } ; arglist : | exp { arglist_len = 1; } | arglist ',' exp %prec ABOVE_COMMA { arglist_len++; } ; exp : type '(' exp ')' %prec UNARY { if (current_type) { /* Allow automatic dereference of classes. */ if ((TYPE_CODE (current_type) == TYPE_CODE_PTR) && (TYPE_CODE (TYPE_TARGET_TYPE (current_type)) == TYPE_CODE_CLASS) && (TYPE_CODE ($1) == TYPE_CODE_CLASS)) write_exp_elt_opcode (UNOP_IND); } write_exp_elt_opcode (UNOP_CAST); write_exp_elt_type ($1); write_exp_elt_opcode (UNOP_CAST); current_type = $1; } ; exp : '(' exp1 ')' { } ; /* Binary operators in order of decreasing precedence. */ exp : exp '*' exp { write_exp_elt_opcode (BINOP_MUL); } ; exp : exp '/' exp { write_exp_elt_opcode (BINOP_DIV); } ; exp : exp DIV exp { write_exp_elt_opcode (BINOP_INTDIV); } ; exp : exp MOD exp { write_exp_elt_opcode (BINOP_REM); } ; exp : exp '+' exp { write_exp_elt_opcode (BINOP_ADD); } ; exp : exp '-' exp { write_exp_elt_opcode (BINOP_SUB); } ; exp : exp LSH exp { write_exp_elt_opcode (BINOP_LSH); } ; exp : exp RSH exp { write_exp_elt_opcode (BINOP_RSH); } ; exp : exp '=' exp { write_exp_elt_opcode (BINOP_EQUAL); } ; exp : exp NOTEQUAL exp { write_exp_elt_opcode (BINOP_NOTEQUAL); } ; exp : exp LEQ exp { write_exp_elt_opcode (BINOP_LEQ); } ; exp : exp GEQ exp { write_exp_elt_opcode (BINOP_GEQ); } ; exp : exp '<' exp { write_exp_elt_opcode (BINOP_LESS); } ; exp : exp '>' exp { write_exp_elt_opcode (BINOP_GTR); } ; exp : exp ANDAND exp { write_exp_elt_opcode (BINOP_BITWISE_AND); } ; exp : exp XOR exp { write_exp_elt_opcode (BINOP_BITWISE_XOR); } ; exp : exp OR exp { write_exp_elt_opcode (BINOP_BITWISE_IOR); } ; exp : exp ASSIGN exp { write_exp_elt_opcode (BINOP_ASSIGN); } ; exp : TRUEKEYWORD { write_exp_elt_opcode (OP_BOOL); write_exp_elt_longcst ((LONGEST) $1); write_exp_elt_opcode (OP_BOOL); } ; exp : FALSEKEYWORD { write_exp_elt_opcode (OP_BOOL); write_exp_elt_longcst ((LONGEST) $1); write_exp_elt_opcode (OP_BOOL); } ; exp : INT { write_exp_elt_opcode (OP_LONG); write_exp_elt_type ($1.type); write_exp_elt_longcst ((LONGEST)($1.val)); write_exp_elt_opcode (OP_LONG); } ; exp : NAME_OR_INT { YYSTYPE val; parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val); write_exp_elt_opcode (OP_LONG); write_exp_elt_type (val.typed_val_int.type); write_exp_elt_longcst ((LONGEST)val.typed_val_int.val); write_exp_elt_opcode (OP_LONG); } ; exp : FLOAT { write_exp_elt_opcode (OP_DOUBLE); write_exp_elt_type ($1.type); write_exp_elt_dblcst ($1.dval); write_exp_elt_opcode (OP_DOUBLE); } ; exp : variable ; exp : VARIABLE /* Already written by write_dollar_variable. */ ; exp : SIZEOF '(' type ')' %prec UNARY { write_exp_elt_opcode (OP_LONG); write_exp_elt_type (builtin_type_int); CHECK_TYPEDEF ($3); write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3)); write_exp_elt_opcode (OP_LONG); } ; exp : STRING { /* C strings are converted into array constants with an explicit null byte added at the end. Thus the array upper bound is the string length. There is no such thing in C as a completely empty string. */ char *sp = $1.ptr; int count = $1.length; while (count-- > 0) { write_exp_elt_opcode (OP_LONG); write_exp_elt_type (builtin_type_char); write_exp_elt_longcst ((LONGEST)(*sp++)); write_exp_elt_opcode (OP_LONG); } write_exp_elt_opcode (OP_LONG); write_exp_elt_type (builtin_type_char); write_exp_elt_longcst ((LONGEST)'\0'); write_exp_elt_opcode (OP_LONG); write_exp_elt_opcode (OP_ARRAY); write_exp_elt_longcst ((LONGEST) 0); write_exp_elt_longcst ((LONGEST) ($1.length)); write_exp_elt_opcode (OP_ARRAY); } ; /* Object pascal */ exp : THIS { struct value * this_val; struct type * this_type; write_exp_elt_opcode (OP_THIS); write_exp_elt_opcode (OP_THIS); /* we need type of this */ this_val = value_of_this (0); if (this_val) this_type = this_val->type; else this_type = NULL; if (this_type) { if (TYPE_CODE (this_type) == TYPE_CODE_PTR) { this_type = TYPE_TARGET_TYPE (this_type); write_exp_elt_opcode (UNOP_IND); } } current_type = this_type; } ; /* end of object pascal. */ block : BLOCKNAME { if ($1.sym != 0) $$ = SYMBOL_BLOCK_VALUE ($1.sym); else { struct symtab *tem = lookup_symtab (copy_name ($1.stoken)); if (tem) $$ = BLOCKVECTOR_BLOCK (BLOCKVECTOR (tem), STATIC_BLOCK); else error ("No file or function \"%s\".", copy_name ($1.stoken)); } } ; block : block COLONCOLON name { struct symbol *tem = lookup_symbol (copy_name ($3), $1, VAR_DOMAIN, (int *) NULL, (struct symtab **) NULL); if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK) error ("No function \"%s\" in specified context.", copy_name ($3)); $$ = SYMBOL_BLOCK_VALUE (tem); } ; variable: block COLONCOLON name { struct symbol *sym; sym = lookup_symbol (copy_name ($3), $1, VAR_DOMAIN, (int *) NULL, (struct symtab **) NULL); if (sym == 0) error ("No symbol \"%s\" in specified context.", copy_name ($3)); write_exp_elt_opcode (OP_VAR_VALUE); /* block_found is set by lookup_symbol. */ write_exp_elt_block (block_found); write_exp_elt_sym (sym); write_exp_elt_opcode (OP_VAR_VALUE); } ; qualified_name: typebase COLONCOLON name { struct type *type = $1; if (TYPE_CODE (type) != TYPE_CODE_STRUCT && TYPE_CODE (type) != TYPE_CODE_UNION) error ("`%s' is not defined as an aggregate type.", TYPE_NAME (type)); write_exp_elt_opcode (OP_SCOPE); write_exp_elt_type (type); write_exp_string ($3); write_exp_elt_opcode (OP_SCOPE); } ; variable: qualified_name | COLONCOLON name { char *name = copy_name ($2); struct symbol *sym; struct minimal_symbol *msymbol; sym = lookup_symbol (name, (const struct block *) NULL, VAR_DOMAIN, (int *) NULL, (struct symtab **) NULL); if (sym) { write_exp_elt_opcode (OP_VAR_VALUE); write_exp_elt_block (NULL); write_exp_elt_sym (sym); write_exp_elt_opcode (OP_VAR_VALUE); break; } msymbol = lookup_minimal_symbol (name, NULL, NULL); if (msymbol != NULL) { write_exp_msymbol (msymbol, lookup_function_type (builtin_type_int), builtin_type_int); } else if (!have_full_symbols () && !have_partial_symbols ()) error ("No symbol table is loaded. Use the \"file\" command."); else error ("No symbol \"%s\" in current context.", name); } ; variable: name_not_typename { struct symbol *sym = $1.sym; if (sym) { if (symbol_read_needs_frame (sym)) { if (innermost_block == 0 || contained_in (block_found, innermost_block)) innermost_block = block_found; } write_exp_elt_opcode (OP_VAR_VALUE); /* We want to use the selected frame, not another more inner frame which happens to be in the same block. */ write_exp_elt_block (NULL); write_exp_elt_sym (sym); write_exp_elt_opcode (OP_VAR_VALUE); current_type = sym->type; } else if ($1.is_a_field_of_this) { struct value * this_val; struct type * this_type; /* Object pascal: it hangs off of `this'. Must not inadvertently convert from a method call to data ref. */ if (innermost_block == 0 || contained_in (block_found, innermost_block)) innermost_block = block_found; write_exp_elt_opcode (OP_THIS); write_exp_elt_opcode (OP_THIS); write_exp_elt_opcode (STRUCTOP_PTR); write_exp_string ($1.stoken); write_exp_elt_opcode (STRUCTOP_PTR); /* we need type of this */ this_val = value_of_this (0); if (this_val) this_type = this_val->type; else this_type = NULL; if (this_type) current_type = lookup_struct_elt_type ( this_type, copy_name ($1.stoken), 0); else current_type = NULL; } else { struct minimal_symbol *msymbol; char *arg = copy_name ($1.stoken); msymbol = lookup_minimal_symbol (arg, NULL, NULL); if (msymbol != NULL) { write_exp_msymbol (msymbol, lookup_function_type (builtin_type_int), builtin_type_int); } else if (!have_full_symbols () && !have_partial_symbols ()) error ("No symbol table is loaded. Use the \"file\" command."); else error ("No symbol \"%s\" in current context.", copy_name ($1.stoken)); } } ; ptype : typebase ; /* We used to try to recognize more pointer to member types here, but that didn't work (shift/reduce conflicts meant that these rules never got executed). The problem is that int (foo::bar::baz::bizzle) is a function type but int (foo::bar::baz::bizzle::*) is a pointer to member type. Stroustrup loses again! */ type : ptype | typebase COLONCOLON '*' { $$ = lookup_member_type (builtin_type_int, $1); } ; typebase /* Implements (approximately): (type-qualifier)* type-specifier */ : '^' typebase { $$ = lookup_pointer_type ($2); } | TYPENAME { $$ = $1.type; } | STRUCT name { $$ = lookup_struct (copy_name ($2), expression_context_block); } | CLASS name { $$ = lookup_struct (copy_name ($2), expression_context_block); } /* "const" and "volatile" are curently ignored. A type qualifier after the type is handled in the ptype rule. I think these could be too. */ ; name : NAME { $$ = $1.stoken; } | BLOCKNAME { $$ = $1.stoken; } | TYPENAME { $$ = $1.stoken; } | NAME_OR_INT { $$ = $1.stoken; } ; name_not_typename : NAME | BLOCKNAME /* These would be useful if name_not_typename was useful, but it is just a fake for "variable", so these cause reduce/reduce conflicts because the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable, =exp) or just an exp. If name_not_typename was ever used in an lvalue context where only a name could occur, this might be useful. | NAME_OR_INT */ ; %% /* Take care of parsing a number (anything that starts with a digit). Set yylval and return the token type; update lexptr. LEN is the number of characters in it. */ /*** Needs some error checking for the float case ***/ static int parse_number (p, len, parsed_float, putithere) char *p; int len; int parsed_float; YYSTYPE *putithere; { /* FIXME: Shouldn't these be unsigned? We don't deal with negative values here, and we do kind of silly things like cast to unsigned. */ LONGEST n = 0; LONGEST prevn = 0; ULONGEST un; int i = 0; int c; int base = input_radix; int unsigned_p = 0; /* Number of "L" suffixes encountered. */ int long_p = 0; /* We have found a "L" or "U" suffix. */ int found_suffix = 0; ULONGEST high_bit; struct type *signed_type; struct type *unsigned_type; if (parsed_float) { /* It's a float since it contains a point or an exponent. */ char c; int num = 0; /* number of tokens scanned by scanf */ char saved_char = p[len]; p[len] = 0; /* null-terminate the token */ if (sizeof (putithere->typed_val_float.dval) <= sizeof (float)) num = sscanf (p, "%g%c", (float *) &putithere->typed_val_float.dval,&c); else if (sizeof (putithere->typed_val_float.dval) <= sizeof (double)) num = sscanf (p, "%lg%c", (double *) &putithere->typed_val_float.dval,&c); else { #ifdef SCANF_HAS_LONG_DOUBLE num = sscanf (p, "%Lg%c", &putithere->typed_val_float.dval,&c); #else /* Scan it into a double, then assign it to the long double. This at least wins with values representable in the range of doubles. */ double temp; num = sscanf (p, "%lg%c", &temp,&c); putithere->typed_val_float.dval = temp; #endif } p[len] = saved_char; /* restore the input stream */ if (num != 1) /* check scanf found ONLY a float ... */ return ERROR; /* See if it has `f' or `l' suffix (float or long double). */ c = tolower (p[len - 1]); if (c == 'f') putithere->typed_val_float.type = builtin_type_float; else if (c == 'l') putithere->typed_val_float.type = builtin_type_long_double; else if (isdigit (c) || c == '.') putithere->typed_val_float.type = builtin_type_double; else return ERROR; return FLOAT; } /* Handle base-switching prefixes 0x, 0t, 0d, 0 */ if (p[0] == '0') switch (p[1]) { case 'x': case 'X': if (len >= 3) { p += 2; base = 16; len -= 2; } break; case 't': case 'T': case 'd': case 'D': if (len >= 3) { p += 2; base = 10; len -= 2; } break; default: base = 8; break; } while (len-- > 0) { c = *p++; if (c >= 'A' && c <= 'Z') c += 'a' - 'A'; if (c != 'l' && c != 'u') n *= base; if (c >= '0' && c <= '9') { if (found_suffix) return ERROR; n += i = c - '0'; } else { if (base > 10 && c >= 'a' && c <= 'f') { if (found_suffix) return ERROR; n += i = c - 'a' + 10; } else if (c == 'l') { ++long_p; found_suffix = 1; } else if (c == 'u') { unsigned_p = 1; found_suffix = 1; } else return ERROR; /* Char not a digit */ } if (i >= base) return ERROR; /* Invalid digit in this base */ /* Portably test for overflow (only works for nonzero values, so make a second check for zero). FIXME: Can't we just make n and prevn unsigned and avoid this? */ if (c != 'l' && c != 'u' && (prevn >= n) && n != 0) unsigned_p = 1; /* Try something unsigned */ /* Portably test for unsigned overflow. FIXME: This check is wrong; for example it doesn't find overflow on 0x123456789 when LONGEST is 32 bits. */ if (c != 'l' && c != 'u' && n != 0) { if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n)) error ("Numeric constant too large."); } prevn = n; } /* An integer constant is an int, a long, or a long long. An L suffix forces it to be long; an LL suffix forces it to be long long. If not forced to a larger size, it gets the first type of the above that it fits in. To figure out whether it fits, we shift it right and see whether anything remains. Note that we can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one operation, because many compilers will warn about such a shift (which always produces a zero result). Sometimes TARGET_INT_BIT or TARGET_LONG_BIT will be that big, sometimes not. To deal with the case where it is we just always shift the value more than once, with fewer bits each time. */ un = (ULONGEST)n >> 2; if (long_p == 0 && (un >> (TARGET_INT_BIT - 2)) == 0) { high_bit = ((ULONGEST)1) << (TARGET_INT_BIT-1); /* A large decimal (not hex or octal) constant (between INT_MAX and UINT_MAX) is a long or unsigned long, according to ANSI, never an unsigned int, but this code treats it as unsigned int. This probably should be fixed. GCC gives a warning on such constants. */ unsigned_type = builtin_type_unsigned_int; signed_type = builtin_type_int; } else if (long_p <= 1 && (un >> (TARGET_LONG_BIT - 2)) == 0) { high_bit = ((ULONGEST)1) << (TARGET_LONG_BIT-1); unsigned_type = builtin_type_unsigned_long; signed_type = builtin_type_long; } else { int shift; if (sizeof (ULONGEST) * HOST_CHAR_BIT < TARGET_LONG_LONG_BIT) /* A long long does not fit in a LONGEST. */ shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1); else shift = (TARGET_LONG_LONG_BIT - 1); high_bit = (ULONGEST) 1 << shift; unsigned_type = builtin_type_unsigned_long_long; signed_type = builtin_type_long_long; } putithere->typed_val_int.val = n; /* If the high bit of the worked out type is set then this number has to be unsigned. */ if (unsigned_p || (n & high_bit)) { putithere->typed_val_int.type = unsigned_type; } else { putithere->typed_val_int.type = signed_type; } return INT; } struct type_push { struct type *stored; struct type_push *next; }; static struct type_push *tp_top = NULL; static void push_current_type (void) { struct type_push *tpnew; tpnew = (struct type_push *) malloc (sizeof (struct type_push)); tpnew->next = tp_top; tpnew->stored = current_type; current_type = NULL; tp_top = tpnew; } static void pop_current_type (void) { struct type_push *tp = tp_top; if (tp) { current_type = tp->stored; tp_top = tp->next; xfree (tp); } } struct token { char *operator; int token; enum exp_opcode opcode; }; static const struct token tokentab3[] = { {"shr", RSH, BINOP_END}, {"shl", LSH, BINOP_END}, {"and", ANDAND, BINOP_END}, {"div", DIV, BINOP_END}, {"not", NOT, BINOP_END}, {"mod", MOD, BINOP_END}, {"inc", INCREMENT, BINOP_END}, {"dec", DECREMENT, BINOP_END}, {"xor", XOR, BINOP_END} }; static const struct token tokentab2[] = { {"or", OR, BINOP_END}, {"<>", NOTEQUAL, BINOP_END}, {"<=", LEQ, BINOP_END}, {">=", GEQ, BINOP_END}, {":=", ASSIGN, BINOP_END}, {"::", COLONCOLON, BINOP_END} }; /* Allocate uppercased var */ /* make an uppercased copy of tokstart */ static char * uptok (tokstart, namelen) char *tokstart; int namelen; { int i; char *uptokstart = (char *)malloc(namelen+1); for (i = 0;i <= namelen;i++) { if ((tokstart[i]>='a' && tokstart[i]<='z')) uptokstart[i] = tokstart[i]-('a'-'A'); else uptokstart[i] = tokstart[i]; } uptokstart[namelen]='\0'; return uptokstart; } /* Read one token, getting characters through lexptr. */ static int yylex () { int c; int namelen; unsigned int i; char *tokstart; char *uptokstart; char *tokptr; char *p; int explen, tempbufindex; static char *tempbuf; static int tempbufsize; retry: prev_lexptr = lexptr; tokstart = lexptr; explen = strlen (lexptr); /* See if it is a special token of length 3. */ if (explen > 2) for (i = 0; i < sizeof (tokentab3) / sizeof (tokentab3[0]); i++) if (strncasecmp (tokstart, tokentab3[i].operator, 3) == 0 && (!isalpha (tokentab3[i].operator[0]) || explen == 3 || (!isalpha (tokstart[3]) && !isdigit (tokstart[3]) && tokstart[3] != '_'))) { lexptr += 3; yylval.opcode = tokentab3[i].opcode; return tokentab3[i].token; } /* See if it is a special token of length 2. */ if (explen > 1) for (i = 0; i < sizeof (tokentab2) / sizeof (tokentab2[0]); i++) if (strncasecmp (tokstart, tokentab2[i].operator, 2) == 0 && (!isalpha (tokentab2[i].operator[0]) || explen == 2 || (!isalpha (tokstart[2]) && !isdigit (tokstart[2]) && tokstart[2] != '_'))) { lexptr += 2; yylval.opcode = tokentab2[i].opcode; return tokentab2[i].token; } switch (c = *tokstart) { case 0: return 0; case ' ': case '\t': case '\n': lexptr++; goto retry; case '\'': /* We either have a character constant ('0' or '\177' for example) or we have a quoted symbol reference ('foo(int,int)' in object pascal for example). */ lexptr++; c = *lexptr++; if (c == '\\') c = parse_escape (&lexptr); else if (c == '\'') error ("Empty character constant."); yylval.typed_val_int.val = c; yylval.typed_val_int.type = builtin_type_char; c = *lexptr++; if (c != '\'') { namelen = skip_quoted (tokstart) - tokstart; if (namelen > 2) { lexptr = tokstart + namelen; if (lexptr[-1] != '\'') error ("Unmatched single quote."); namelen -= 2; tokstart++; uptokstart = uptok(tokstart,namelen); goto tryname; } error ("Invalid character constant."); } return INT; case '(': paren_depth++; lexptr++; return c; case ')': if (paren_depth == 0) return 0; paren_depth--; lexptr++; return c; case ',': if (comma_terminates && paren_depth == 0) return 0; lexptr++; return c; case '.': /* Might be a floating point number. */ if (lexptr[1] < '0' || lexptr[1] > '9') goto symbol; /* Nope, must be a symbol. */ /* FALL THRU into number case. */ case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { /* It's a number. */ int got_dot = 0, got_e = 0, toktype; char *p = tokstart; int hex = input_radix > 10; if (c == '0' && (p[1] == 'x' || p[1] == 'X')) { p += 2; hex = 1; } else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D')) { p += 2; hex = 0; } for (;; ++p) { /* This test includes !hex because 'e' is a valid hex digit and thus does not indicate a floating point number when the radix is hex. */ if (!hex && !got_e && (*p == 'e' || *p == 'E')) got_dot = got_e = 1; /* This test does not include !hex, because a '.' always indicates a decimal floating point number regardless of the radix. */ else if (!got_dot && *p == '.') got_dot = 1; else if (got_e && (p[-1] == 'e' || p[-1] == 'E') && (*p == '-' || *p == '+')) /* This is the sign of the exponent, not the end of the number. */ continue; /* We will take any letters or digits. parse_number will complain if past the radix, or if L or U are not final. */ else if ((*p < '0' || *p > '9') && ((*p < 'a' || *p > 'z') && (*p < 'A' || *p > 'Z'))) break; } toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval); if (toktype == ERROR) { char *err_copy = (char *) alloca (p - tokstart + 1); memcpy (err_copy, tokstart, p - tokstart); err_copy[p - tokstart] = 0; error ("Invalid number \"%s\".", err_copy); } lexptr = p; return toktype; } case '+': case '-': case '*': case '/': case '|': case '&': case '^': case '~': case '!': case '@': case '<': case '>': case '[': case ']': case '?': case ':': case '=': case '{': case '}': symbol: lexptr++; return c; case '"': /* Build the gdb internal form of the input string in tempbuf, translating any standard C escape forms seen. Note that the buffer is null byte terminated *only* for the convenience of debugging gdb itself and printing the buffer contents when the buffer contains no embedded nulls. Gdb does not depend upon the buffer being null byte terminated, it uses the length string instead. This allows gdb to handle C strings (as well as strings in other languages) with embedded null bytes */ tokptr = ++tokstart; tempbufindex = 0; do { /* Grow the static temp buffer if necessary, including allocating the first one on demand. */ if (tempbufindex + 1 >= tempbufsize) { tempbuf = (char *) realloc (tempbuf, tempbufsize += 64); } switch (*tokptr) { case '\0': case '"': /* Do nothing, loop will terminate. */ break; case '\\': tokptr++; c = parse_escape (&tokptr); if (c == -1) { continue; } tempbuf[tempbufindex++] = c; break; default: tempbuf[tempbufindex++] = *tokptr++; break; } } while ((*tokptr != '"') && (*tokptr != '\0')); if (*tokptr++ != '"') { error ("Unterminated string in expression."); } tempbuf[tempbufindex] = '\0'; /* See note above */ yylval.sval.ptr = tempbuf; yylval.sval.length = tempbufindex; lexptr = tokptr; return (STRING); } if (!(c == '_' || c == '$' || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'))) /* We must have come across a bad character (e.g. ';'). */ error ("Invalid character '%c' in expression.", c); /* It's a name. See how long it is. */ namelen = 0; for (c = tokstart[namelen]; (c == '_' || c == '$' || (c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');) { /* Template parameter lists are part of the name. FIXME: This mishandles `print $a<4&&$a>3'. */ if (c == '<') { int i = namelen; int nesting_level = 1; while (tokstart[++i]) { if (tokstart[i] == '<') nesting_level++; else if (tokstart[i] == '>') { if (--nesting_level == 0) break; } } if (tokstart[i] == '>') namelen = i; else break; } /* do NOT uppercase internals because of registers !!! */ c = tokstart[++namelen]; } uptokstart = uptok(tokstart,namelen); /* The token "if" terminates the expression and is NOT removed from the input stream. */ if (namelen == 2 && uptokstart[0] == 'I' && uptokstart[1] == 'F') { return 0; } lexptr += namelen; tryname: /* Catch specific keywords. Should be done with a data structure. */ switch (namelen) { case 6: if (DEPRECATED_STREQ (uptokstart, "OBJECT")) return CLASS; if (DEPRECATED_STREQ (uptokstart, "RECORD")) return STRUCT; if (DEPRECATED_STREQ (uptokstart, "SIZEOF")) return SIZEOF; break; case 5: if (DEPRECATED_STREQ (uptokstart, "CLASS")) return CLASS; if (DEPRECATED_STREQ (uptokstart, "FALSE")) { yylval.lval = 0; return FALSEKEYWORD; } break; case 4: if (DEPRECATED_STREQ (uptokstart, "TRUE")) { yylval.lval = 1; return TRUEKEYWORD; } if (DEPRECATED_STREQ (uptokstart, "SELF")) { /* here we search for 'this' like inserted in FPC stabs debug info */ static const char this_name[] = "this"; if (lookup_symbol (this_name, expression_context_block, VAR_DOMAIN, (int *) NULL, (struct symtab **) NULL)) return THIS; } break; default: break; } yylval.sval.ptr = tokstart; yylval.sval.length = namelen; if (*tokstart == '$') { /* $ is the normal prefix for pascal hexadecimal values but this conflicts with the GDB use for debugger variables so in expression to enter hexadecimal values we still need to use C syntax with 0xff */ write_dollar_variable (yylval.sval); return VARIABLE; } /* Use token-type BLOCKNAME for symbols that happen to be defined as functions or symtabs. If this is not so, then ... Use token-type TYPENAME for symbols that happen to be defined currently as names of types; NAME for other symbols. The caller is not constrained to care about the distinction. */ { char *tmp = copy_name (yylval.sval); struct symbol *sym; int is_a_field_of_this = 0; int is_a_field = 0; int hextype; if (search_field && current_type) is_a_field = (lookup_struct_elt_type (current_type, tmp, 1) != NULL); if (is_a_field) sym = NULL; else sym = lookup_symbol (tmp, expression_context_block, VAR_DOMAIN, &is_a_field_of_this, (struct symtab **) NULL); /* second chance uppercased (as Free Pascal does). */ if (!sym && !is_a_field_of_this && !is_a_field) { for (i = 0; i <= namelen; i++) { if ((tmp[i] >= 'a' && tmp[i] <= 'z')) tmp[i] -= ('a'-'A'); } if (search_field && current_type) is_a_field = (lookup_struct_elt_type (current_type, tmp, 1) != NULL); if (is_a_field) sym = NULL; else sym = lookup_symbol (tmp, expression_context_block, VAR_DOMAIN, &is_a_field_of_this, (struct symtab **) NULL); if (sym || is_a_field_of_this || is_a_field) for (i = 0; i <= namelen; i++) { if ((tokstart[i] >= 'a' && tokstart[i] <= 'z')) tokstart[i] -= ('a'-'A'); } } /* Third chance Capitalized (as GPC does). */ if (!sym && !is_a_field_of_this && !is_a_field) { for (i = 0; i <= namelen; i++) { if (i == 0) { if ((tmp[i] >= 'a' && tmp[i] <= 'z')) tmp[i] -= ('a'-'A'); } else if ((tmp[i] >= 'A' && tmp[i] <= 'Z')) tmp[i] -= ('A'-'a'); } if (search_field && current_type) is_a_field = (lookup_struct_elt_type (current_type, tmp, 1) != NULL); if (is_a_field) sym = NULL; else sym = lookup_symbol (tmp, expression_context_block, VAR_DOMAIN, &is_a_field_of_this, (struct symtab **) NULL); if (sym || is_a_field_of_this || is_a_field) for (i = 0; i <= namelen; i++) { if (i == 0) { if ((tokstart[i] >= 'a' && tokstart[i] <= 'z')) tokstart[i] -= ('a'-'A'); } else if ((tokstart[i] >= 'A' && tokstart[i] <= 'Z')) tokstart[i] -= ('A'-'a'); } } if (is_a_field) { tempbuf = (char *) realloc (tempbuf, namelen + 1); strncpy (tempbuf, tokstart, namelen); tempbuf [namelen] = 0; yylval.sval.ptr = tempbuf; yylval.sval.length = namelen; return FIELDNAME; } /* Call lookup_symtab, not lookup_partial_symtab, in case there are no psymtabs (coff, xcoff, or some future change to blow away the psymtabs once once symbols are read). */ if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) || lookup_symtab (tmp)) { yylval.ssym.sym = sym; yylval.ssym.is_a_field_of_this = is_a_field_of_this; return BLOCKNAME; } if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF) { #if 1 /* Despite the following flaw, we need to keep this code enabled. Because we can get called from check_stub_method, if we don't handle nested types then it screws many operations in any program which uses nested types. */ /* In "A::x", if x is a member function of A and there happens to be a type (nested or not, since the stabs don't make that distinction) named x, then this code incorrectly thinks we are dealing with nested types rather than a member function. */ char *p; char *namestart; struct symbol *best_sym; /* Look ahead to detect nested types. This probably should be done in the grammar, but trying seemed to introduce a lot of shift/reduce and reduce/reduce conflicts. It's possible that it could be done, though. Or perhaps a non-grammar, but less ad hoc, approach would work well. */ /* Since we do not currently have any way of distinguishing a nested type from a non-nested one (the stabs don't tell us whether a type is nested), we just ignore the containing type. */ p = lexptr; best_sym = sym; while (1) { /* Skip whitespace. */ while (*p == ' ' || *p == '\t' || *p == '\n') ++p; if (*p == ':' && p[1] == ':') { /* Skip the `::'. */ p += 2; /* Skip whitespace. */ while (*p == ' ' || *p == '\t' || *p == '\n') ++p; namestart = p; while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9') || (*p >= 'a' && *p <= 'z') || (*p >= 'A' && *p <= 'Z')) ++p; if (p != namestart) { struct symbol *cur_sym; /* As big as the whole rest of the expression, which is at least big enough. */ char *ncopy = alloca (strlen (tmp)+strlen (namestart)+3); char *tmp1; tmp1 = ncopy; memcpy (tmp1, tmp, strlen (tmp)); tmp1 += strlen (tmp); memcpy (tmp1, "::", 2); tmp1 += 2; memcpy (tmp1, namestart, p - namestart); tmp1[p - namestart] = '\0'; cur_sym = lookup_symbol (ncopy, expression_context_block, VAR_DOMAIN, (int *) NULL, (struct symtab **) NULL); if (cur_sym) { if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF) { best_sym = cur_sym; lexptr = p; } else break; } else break; } else break; } else break; } yylval.tsym.type = SYMBOL_TYPE (best_sym); #else /* not 0 */ yylval.tsym.type = SYMBOL_TYPE (sym); #endif /* not 0 */ return TYPENAME; } if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0) return TYPENAME; /* Input names that aren't symbols but ARE valid hex numbers, when the input radix permits them, can be names or numbers depending on the parse. Note we support radixes > 16 here. */ if (!sym && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10))) { YYSTYPE newlval; /* Its value is ignored. */ hextype = parse_number (tokstart, namelen, 0, &newlval); if (hextype == INT) { yylval.ssym.sym = sym; yylval.ssym.is_a_field_of_this = is_a_field_of_this; return NAME_OR_INT; } } free(uptokstart); /* Any other kind of symbol */ yylval.ssym.sym = sym; yylval.ssym.is_a_field_of_this = is_a_field_of_this; return NAME; } } void yyerror (msg) char *msg; { if (prev_lexptr) lexptr = prev_lexptr; error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr); }