/* Print NS 32000 instructions for GDB, the GNU debugger. Copyright 1986, 1988, 1991, 1992, 1994, 1995, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "frame.h" #include "gdbcore.h" static int sign_extend (int value, int bits); static CORE_ADDR ns32k_get_enter_addr (CORE_ADDR); static int ns32k_localcount (CORE_ADDR enter_pc); static void flip_bytes (void *, int); char * ns32k_register_name_32082 (int regno) { static char *register_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "sp", "fp", "pc", "ps", "l0", "l1", "l2", "l3", "xx", }; if (regno < 0) return NULL; if (regno >= sizeof (register_names) / sizeof (*register_names)) return NULL; return (register_names[regno]); } char * ns32k_register_name_32382 (int regno) { static char *register_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "sp", "fp", "pc", "ps", "fsr", "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", "xx", }; if (regno < 0) return NULL; if (regno >= sizeof (register_names) / sizeof (*register_names)) return NULL; return (register_names[regno]); } int ns32k_register_byte_32082 (int regno) { if (regno >= LP0_REGNUM) return (LP0_REGNUM * 4) + ((regno - LP0_REGNUM) * 8); return (regno * 4); } int ns32k_register_byte_32382 (int regno) { /* This is a bit yuk. The even numbered double precision floating point long registers occupy the same space as the even:odd numbered single precision floating point registers, but the extra 32381 FPU registers are at the end. Doing it this way is compatible for both 32081 and 32381 equipped machines. */ return ((regno < LP0_REGNUM ? regno : (regno - LP0_REGNUM) & 1 ? regno - 1 : (regno - LP0_REGNUM + FP0_REGNUM)) * 4); } int ns32k_register_raw_size (int regno) { /* All registers are 4 bytes, except for the doubled floating registers. */ return ((regno >= LP0_REGNUM) ? 8 : 4); } int ns32k_register_virtual_size (int regno) { return ((regno >= LP0_REGNUM) ? 8 : 4); } struct type * ns32k_register_virtual_type (int regno) { if (regno < FP0_REGNUM) return (builtin_type_int); if (regno < FP0_REGNUM + 8) return (builtin_type_float); if (regno < LP0_REGNUM) return (builtin_type_int); return (builtin_type_double); } /* Immediately after a function call, return the saved PC. Can't always go through the frames for this because on some systems, the new frame is not set up until the new function executes some instructions. */ CORE_ADDR ns32k_saved_pc_after_call (struct frame_info *frame) { return (read_memory_integer (read_register (SP_REGNUM), 4)); } /* Advance PC across any function entry prologue instructions to reach some "real" code. */ CORE_ADDR umax_skip_prologue (CORE_ADDR pc) { register unsigned char op = read_memory_integer (pc, 1); if (op == 0x82) { op = read_memory_integer (pc + 2, 1); if ((op & 0x80) == 0) pc += 3; else if ((op & 0xc0) == 0x80) pc += 4; else pc += 6; } return pc; } const unsigned char * ns32k_breakpoint_from_pc (CORE_ADDR *pcp, int *lenp) { static const unsigned char breakpoint_insn[] = { 0xf2 }; *lenp = sizeof (breakpoint_insn); return breakpoint_insn; } /* Return number of args passed to a frame. Can return -1, meaning no way to tell. Encore's C compiler often reuses same area on stack for args, so this will often not work properly. If the arg names are known, it's likely most of them will be printed. */ int umax_frame_num_args (struct frame_info *fi) { int numargs; CORE_ADDR pc; CORE_ADDR enter_addr; unsigned int insn; unsigned int addr_mode; int width; numargs = -1; enter_addr = ns32k_get_enter_addr ((fi)->pc); if (enter_addr > 0) { pc = ((enter_addr == 1) ? SAVED_PC_AFTER_CALL (fi) : FRAME_SAVED_PC (fi)); insn = read_memory_integer (pc, 2); addr_mode = (insn >> 11) & 0x1f; insn = insn & 0x7ff; if ((insn & 0x7fc) == 0x57c && addr_mode == 0x14) /* immediate */ { if (insn == 0x57c) /* adjspb */ width = 1; else if (insn == 0x57d) /* adjspw */ width = 2; else if (insn == 0x57f) /* adjspd */ width = 4; else internal_error (__FILE__, __LINE__, "bad else"); numargs = read_memory_integer (pc + 2, width); if (width > 1) flip_bytes (&numargs, width); numargs = -sign_extend (numargs, width * 8) / 4; } } return numargs; } static int sign_extend (int value, int bits) { value = value & ((1 << bits) - 1); return (value & (1 << (bits - 1)) ? value | (~((1 << bits) - 1)) : value); } static void flip_bytes (void *p, int count) { char tmp; char *ptr = 0; while (count > 0) { tmp = *ptr; ptr[0] = ptr[count - 1]; ptr[count - 1] = tmp; ptr++; count -= 2; } } /* Return the number of locals in the current frame given a pc pointing to the enter instruction. This is used by ns32k_frame_init_saved_regs. */ static int ns32k_localcount (CORE_ADDR enter_pc) { unsigned char localtype; int localcount; localtype = read_memory_integer (enter_pc + 2, 1); if ((localtype & 0x80) == 0) localcount = localtype; else if ((localtype & 0xc0) == 0x80) localcount = (((localtype & 0x3f) << 8) | (read_memory_integer (enter_pc + 3, 1) & 0xff)); else localcount = (((localtype & 0x3f) << 24) | ((read_memory_integer (enter_pc + 3, 1) & 0xff) << 16) | ((read_memory_integer (enter_pc + 4, 1) & 0xff) << 8) | (read_memory_integer (enter_pc + 5, 1) & 0xff)); return localcount; } /* Nonzero if instruction at PC is a return instruction. */ static int ns32k_about_to_return (CORE_ADDR pc) { return (read_memory_integer (pc, 1) == 0x12); } /* Get the address of the enter opcode for this function, if it is active. Returns positive address > 1 if pc is between enter/exit, 1 if pc before enter or after exit, 0 otherwise. */ static CORE_ADDR ns32k_get_enter_addr (CORE_ADDR pc) { CORE_ADDR enter_addr; unsigned char op; if (pc == 0) return 0; if (ns32k_about_to_return (pc)) return 1; /* after exit */ enter_addr = get_pc_function_start (pc); if (pc == enter_addr) return 1; /* before enter */ op = read_memory_integer (enter_addr, 1); if (op != 0x82) return 0; /* function has no enter/exit */ return enter_addr; /* pc is between enter and exit */ } CORE_ADDR ns32k_frame_chain (struct frame_info *frame) { /* In the case of the NS32000 series, the frame's nominal address is the FP value, and that address is saved at the previous FP value as a 4-byte word. */ if (inside_entry_file (frame->pc)) return 0; return (read_memory_integer (frame->frame, 4)); } CORE_ADDR ns32k_frame_saved_pc (struct frame_info *frame) { if (frame->signal_handler_caller) return (sigtramp_saved_pc (frame)); /* XXXJRT */ return (read_memory_integer (frame->frame + 4, 4)); } CORE_ADDR ns32k_frame_args_address (struct frame_info *frame) { if (ns32k_get_enter_addr (frame->pc) > 1) return (frame->frame); return (read_register (SP_REGNUM) - 4); } CORE_ADDR ns32k_frame_locals_address (struct frame_info *frame) { return (frame->frame); } /* Code to initialize the addresses of the saved registers of frame described by FRAME_INFO. This includes special registers such as pc and fp saved in special ways in the stack frame. sp is even more special: the address we return for it IS the sp for the next frame. */ void ns32k_frame_init_saved_regs (struct frame_info *frame) { int regmask, regnum; int localcount; CORE_ADDR enter_addr, next_addr; if (frame->saved_regs) return; frame_saved_regs_zalloc (frame); enter_addr = ns32k_get_enter_addr (frame->pc); if (enter_addr > 1) { regmask = read_memory_integer (enter_addr + 1, 1) & 0xff; localcount = ns32k_localcount (enter_addr); next_addr = frame->frame + localcount; for (regnum = 0; regnum < 8; regnum++) { if (regmask & (1 << regnum)) frame->saved_regs[regnum] = next_addr -= 4; } frame->saved_regs[SP_REGNUM] = frame->frame + 4; frame->saved_regs[PC_REGNUM] = frame->frame + 4; frame->saved_regs[FP_REGNUM] = read_memory_integer (frame->frame, 4); } else if (enter_addr == 1) { CORE_ADDR sp = read_register (SP_REGNUM); frame->saved_regs[PC_REGNUM] = sp; frame->saved_regs[SP_REGNUM] = sp + 4; } } void ns32k_push_dummy_frame (void) { CORE_ADDR sp = read_register (SP_REGNUM); int regnum; sp = push_word (sp, read_register (PC_REGNUM)); sp = push_word (sp, read_register (FP_REGNUM)); write_register (FP_REGNUM, sp); for (regnum = 0; regnum < 8; regnum++) sp = push_word (sp, read_register (regnum)); write_register (SP_REGNUM, sp); } void ns32k_pop_frame (void) { struct frame_info *frame = get_current_frame (); CORE_ADDR fp; int regnum; fp = frame->frame; FRAME_INIT_SAVED_REGS (frame); for (regnum = 0; regnum < 8; regnum++) if (frame->saved_regs[regnum]) write_register (regnum, read_memory_integer (frame->saved_regs[regnum], 4)); write_register (FP_REGNUM, read_memory_integer (fp, 4)); write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); write_register (SP_REGNUM, fp + 8); flush_cached_frames (); } /* The NS32000 call dummy sequence: enter 0xff,0 82 ff 00 jsr @0x00010203 7f ae c0 01 02 03 adjspd 0x69696969 7f a5 01 02 03 04 bpt f2 It is 16 bytes long. */ LONGEST ns32k_call_dummy_words[] = { 0x7f00ff82, 0x0201c0ae, 0x01a57f03, 0xf2040302 }; int sizeof_ns32k_call_dummy_words = sizeof (ns32k_call_dummy_words); #define NS32K_CALL_DUMMY_ADDR 5 #define NS32K_CALL_DUMMY_NARGS 11 void ns32k_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p) { int flipped; flipped = fun | 0xc0000000; flip_bytes (&flipped, 4); store_unsigned_integer (dummy + NS32K_CALL_DUMMY_ADDR, 4, flipped); flipped = - nargs * 4; flip_bytes (&flipped, 4); store_unsigned_integer (dummy + NS32K_CALL_DUMMY_NARGS, 4, flipped); } void ns32k_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) { /* On this machine, this is a no-op (Encore Umax didn't use GCC). */ } void ns32k_extract_return_value (struct type *valtype, char *regbuf, char *valbuf) { memcpy (valbuf, regbuf + REGISTER_BYTE (TYPE_CODE (valtype) == TYPE_CODE_FLT ? FP0_REGNUM : 0), TYPE_LENGTH (valtype)); } void ns32k_store_return_value (struct type *valtype, char *valbuf) { write_register_bytes (TYPE_CODE (valtype) == TYPE_CODE_FLT ? FP0_REGNUM : 0, valbuf, TYPE_LENGTH (valtype)); } CORE_ADDR ns32k_extract_struct_value_address (char *regbuf) { return (extract_address (regbuf + REGISTER_BYTE (0), REGISTER_RAW_SIZE (0))); } void _initialize_ns32k_tdep (void) { tm_print_insn = print_insn_ns32k; }