/* Common target dependent for AArch64 systems.
Copyright (C) 2018-2019 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
#include
#include
#include "common/common-defs.h"
#include "elf/external.h"
#include "elf/common.h"
#include "aarch64-sve-linux-ptrace.h"
#include "arch/aarch64.h"
#include "common/common-regcache.h"
#include "common/byte-vector.h"
/* See nat/aarch64-sve-linux-ptrace.h. */
uint64_t
aarch64_sve_get_vq (int tid)
{
struct iovec iovec;
struct user_sve_header header;
iovec.iov_len = sizeof (header);
iovec.iov_base = &header;
/* Ptrace gives the vector length in bytes. Convert it to VQ, the number of
128bit chunks in a Z register. We use VQ because 128bits is the minimum
a Z register can increase in size. */
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_SVE, &iovec) < 0)
{
/* SVE is not supported. */
return 0;
}
uint64_t vq = sve_vq_from_vl (header.vl);
if (!sve_vl_valid (header.vl))
{
warning (_("Invalid SVE state from kernel; SVE disabled."));
return 0;
}
return vq;
}
/* See nat/aarch64-sve-linux-ptrace.h. */
bool
aarch64_sve_set_vq (int tid, uint64_t vq)
{
struct iovec iovec;
struct user_sve_header header;
iovec.iov_len = sizeof (header);
iovec.iov_base = &header;
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_SVE, &iovec) < 0)
{
/* SVE is not supported. */
return false;
}
header.vl = sve_vl_from_vq (vq);
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_SVE, &iovec) < 0)
{
/* Vector length change failed. */
return false;
}
return true;
}
/* See nat/aarch64-sve-linux-ptrace.h. */
bool
aarch64_sve_set_vq (int tid, struct reg_buffer_common *reg_buf)
{
if (reg_buf->get_register_status (AARCH64_SVE_VG_REGNUM) != REG_VALID)
return false;
uint64_t reg_vg = 0;
reg_buf->raw_collect (AARCH64_SVE_VG_REGNUM, ®_vg);
return aarch64_sve_set_vq (tid, sve_vq_from_vg (reg_vg));
}
/* See nat/aarch64-sve-linux-ptrace.h. */
std::unique_ptr
aarch64_sve_get_sveregs (int tid)
{
struct iovec iovec;
uint64_t vq = aarch64_sve_get_vq (tid);
if (vq == 0)
perror_with_name (_("Unable to fetch SVE register header"));
/* A ptrace call with NT_ARM_SVE will return a header followed by either a
dump of all the SVE and FP registers, or an fpsimd structure (identical to
the one returned by NT_FPREGSET) if the kernel has not yet executed any
SVE code. Make sure we allocate enough space for a full SVE dump. */
iovec.iov_len = SVE_PT_SIZE (vq, SVE_PT_REGS_SVE);
std::unique_ptr buf (new gdb_byte[iovec.iov_len]);
iovec.iov_base = buf.get ();
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_SVE, &iovec) < 0)
perror_with_name (_("Unable to fetch SVE registers"));
return buf;
}
/* See nat/aarch64-sve-linux-ptrace.h. */
void
aarch64_sve_regs_copy_to_reg_buf (struct reg_buffer_common *reg_buf,
const void *buf)
{
char *base = (char *) buf;
struct user_sve_header *header = (struct user_sve_header *) buf;
uint64_t vq = sve_vq_from_vl (header->vl);
uint64_t vg = sve_vg_from_vl (header->vl);
/* Sanity check the data in the header. */
if (!sve_vl_valid (header->vl)
|| SVE_PT_SIZE (vq, header->flags) != header->size)
error (_("Invalid SVE header from kernel."));
/* Update VG. Note, the registers in the regcache will already be of the
correct length. */
reg_buf->raw_supply (AARCH64_SVE_VG_REGNUM, &vg);
if (HAS_SVE_STATE (*header))
{
/* The register dump contains a set of SVE registers. */
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
reg_buf->raw_supply (AARCH64_SVE_Z0_REGNUM + i,
base + SVE_PT_SVE_ZREG_OFFSET (vq, i));
for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
reg_buf->raw_supply (AARCH64_SVE_P0_REGNUM + i,
base + SVE_PT_SVE_PREG_OFFSET (vq, i));
reg_buf->raw_supply (AARCH64_SVE_FFR_REGNUM,
base + SVE_PT_SVE_FFR_OFFSET (vq));
reg_buf->raw_supply (AARCH64_FPSR_REGNUM,
base + SVE_PT_SVE_FPSR_OFFSET (vq));
reg_buf->raw_supply (AARCH64_FPCR_REGNUM,
base + SVE_PT_SVE_FPCR_OFFSET (vq));
}
else
{
/* There is no SVE state yet - the register dump contains a fpsimd
structure instead. These registers still exist in the hardware, but
the kernel has not yet initialised them, and so they will be null. */
char *zero_reg = (char *) alloca (SVE_PT_SVE_ZREG_SIZE (vq));
struct user_fpsimd_state *fpsimd
= (struct user_fpsimd_state *)(base + SVE_PT_FPSIMD_OFFSET);
/* Copy across the V registers from fpsimd structure to the Z registers,
ensuring the non overlapping state is set to null. */
memset (zero_reg, 0, SVE_PT_SVE_ZREG_SIZE (vq));
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
{
memcpy (zero_reg, &fpsimd->vregs[i], sizeof (__int128_t));
reg_buf->raw_supply (AARCH64_SVE_Z0_REGNUM + i, zero_reg);
}
reg_buf->raw_supply (AARCH64_FPSR_REGNUM, &fpsimd->fpsr);
reg_buf->raw_supply (AARCH64_FPCR_REGNUM, &fpsimd->fpcr);
/* Clear the SVE only registers. */
for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
reg_buf->raw_supply (AARCH64_SVE_P0_REGNUM + i, zero_reg);
reg_buf->raw_supply (AARCH64_SVE_FFR_REGNUM, zero_reg);
}
}
/* See nat/aarch64-sve-linux-ptrace.h. */
void
aarch64_sve_regs_copy_from_reg_buf (const struct reg_buffer_common *reg_buf,
void *buf)
{
struct user_sve_header *header = (struct user_sve_header *) buf;
char *base = (char *) buf;
uint64_t vq = sve_vq_from_vl (header->vl);
/* Sanity check the data in the header. */
if (!sve_vl_valid (header->vl)
|| SVE_PT_SIZE (vq, header->flags) != header->size)
error (_("Invalid SVE header from kernel."));
if (!HAS_SVE_STATE (*header))
{
/* There is no SVE state yet - the register dump contains a fpsimd
structure instead. Where possible we want to write the reg_buf data
back to the kernel using the fpsimd structure. However, if we cannot
then we'll need to reformat the fpsimd into a full SVE structure,
resulting in the initialization of SVE state written back to the
kernel, which is why we try to avoid it. */
bool has_sve_state = false;
char *zero_reg = (char *) alloca (SVE_PT_SVE_ZREG_SIZE (vq));
struct user_fpsimd_state *fpsimd
= (struct user_fpsimd_state *)(base + SVE_PT_FPSIMD_OFFSET);
memset (zero_reg, 0, SVE_PT_SVE_ZREG_SIZE (vq));
/* Check in the reg_buf if any of the Z registers are set after the
first 128 bits, or if any of the other SVE registers are set. */
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
{
has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i,
zero_reg, sizeof (__int128_t));
if (has_sve_state)
break;
}
if (!has_sve_state)
for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
{
has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_P0_REGNUM + i,
zero_reg, 0);
if (has_sve_state)
break;
}
if (!has_sve_state)
has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_FFR_REGNUM,
zero_reg, 0);
/* If no SVE state exists, then use the existing fpsimd structure to
write out state and return. */
if (!has_sve_state)
{
/* The collects of the Z registers will overflow the size of a vreg.
There is enough space in the structure to allow for this, but we
cannot overflow into the next register as we might not be
collecting every register. */
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
{
if (REG_VALID
== reg_buf->get_register_status (AARCH64_SVE_Z0_REGNUM + i))
{
reg_buf->raw_collect (AARCH64_SVE_Z0_REGNUM + i, zero_reg);
memcpy (&fpsimd->vregs[i], zero_reg, sizeof (__int128_t));
}
}
if (REG_VALID == reg_buf->get_register_status (AARCH64_FPSR_REGNUM))
reg_buf->raw_collect (AARCH64_FPSR_REGNUM, &fpsimd->fpsr);
if (REG_VALID == reg_buf->get_register_status (AARCH64_FPCR_REGNUM))
reg_buf->raw_collect (AARCH64_FPCR_REGNUM, &fpsimd->fpcr);
return;
}
/* Otherwise, reformat the fpsimd structure into a full SVE set, by
expanding the V registers (working backwards so we don't splat
registers before they are copied) and using null for everything else.
Note that enough space for a full SVE dump was originally allocated
for base. */
header->flags |= SVE_PT_REGS_SVE;
header->size = SVE_PT_SIZE (vq, SVE_PT_REGS_SVE);
memcpy (base + SVE_PT_SVE_FPSR_OFFSET (vq), &fpsimd->fpsr,
sizeof (uint32_t));
memcpy (base + SVE_PT_SVE_FPCR_OFFSET (vq), &fpsimd->fpcr,
sizeof (uint32_t));
for (int i = AARCH64_SVE_Z_REGS_NUM; i >= 0 ; i--)
{
memcpy (base + SVE_PT_SVE_ZREG_OFFSET (vq, i), &fpsimd->vregs[i],
sizeof (__int128_t));
}
}
/* Replace the kernel values with those from reg_buf. */
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
if (REG_VALID == reg_buf->get_register_status (AARCH64_SVE_Z0_REGNUM + i))
reg_buf->raw_collect (AARCH64_SVE_Z0_REGNUM + i,
base + SVE_PT_SVE_ZREG_OFFSET (vq, i));
for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
if (REG_VALID == reg_buf->get_register_status (AARCH64_SVE_P0_REGNUM + i))
reg_buf->raw_collect (AARCH64_SVE_P0_REGNUM + i,
base + SVE_PT_SVE_PREG_OFFSET (vq, i));
if (REG_VALID == reg_buf->get_register_status (AARCH64_SVE_FFR_REGNUM))
reg_buf->raw_collect (AARCH64_SVE_FFR_REGNUM,
base + SVE_PT_SVE_FFR_OFFSET (vq));
if (REG_VALID == reg_buf->get_register_status (AARCH64_FPSR_REGNUM))
reg_buf->raw_collect (AARCH64_FPSR_REGNUM,
base + SVE_PT_SVE_FPSR_OFFSET (vq));
if (REG_VALID == reg_buf->get_register_status (AARCH64_FPCR_REGNUM))
reg_buf->raw_collect (AARCH64_FPCR_REGNUM,
base + SVE_PT_SVE_FPCR_OFFSET (vq));
}