/* Remote debugging interface for boot monitors, for GDB. Copyright (C) 1990-2014 Free Software Foundation, Inc. Contributed by Cygnus Support. Written by Rob Savoye for Cygnus. Resurrected from the ashes by Stu Grossman. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* This file was derived from various remote-* modules. It is a collection of generic support functions so GDB can talk directly to a ROM based monitor. This saves use from having to hack an exception based handler into existence, and makes for quick porting. This module talks to a debug monitor called 'MONITOR', which We communicate with MONITOR via either a direct serial line, or a TCP (or possibly TELNET) stream to a terminal multiplexor, which in turn talks to the target board. */ /* FIXME 32x64: This code assumes that registers and addresses are at most 32 bits long. If they can be larger, you will need to declare values as LONGEST and use %llx or some such to print values when building commands to send to the monitor. Since we don't know of any actual 64-bit targets with ROM monitors that use this code, it's not an issue right now. -sts 4/18/96 */ #include "defs.h" #include "gdbcore.h" #include "target.h" #include "exceptions.h" #include #include #include #include #include "command.h" #include "serial.h" #include "monitor.h" #include "gdbcmd.h" #include "inferior.h" #include "gdb_regex.h" #include "srec.h" #include "regcache.h" #include "gdbthread.h" #include "readline/readline.h" static char *dev_name; static struct target_ops *targ_ops; static void monitor_interrupt_query (void); static void monitor_interrupt_twice (int); static void monitor_stop (ptid_t); static void monitor_dump_regs (struct regcache *regcache); #if 0 static int from_hex (int a); #endif static struct monitor_ops *current_monitor; static int hashmark; /* flag set by "set hash". */ static int timeout = 30; static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait(). */ static void (*ofunc) (); /* Old SIGINT signal handler. */ static CORE_ADDR *breakaddr; /* Descriptor for I/O to remote machine. Initialize it to NULL so that monitor_open knows that we don't have a file open when the program starts. */ static struct serial *monitor_desc = NULL; /* Pointer to regexp pattern matching data. */ static struct re_pattern_buffer register_pattern; static char register_fastmap[256]; static struct re_pattern_buffer getmem_resp_delim_pattern; static char getmem_resp_delim_fastmap[256]; static struct re_pattern_buffer setmem_resp_delim_pattern; static char setmem_resp_delim_fastmap[256]; static struct re_pattern_buffer setreg_resp_delim_pattern; static char setreg_resp_delim_fastmap[256]; static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when monitor_wait wakes up. */ static int first_time = 0; /* Is this the first time we're executing after gaving created the child proccess? */ /* This is the ptid we use while we're connected to a monitor. Its value is arbitrary, as monitor targets don't have a notion of processes or threads, but we need something non-null to place in inferior_ptid. */ static ptid_t monitor_ptid; #define TARGET_BUF_SIZE 2048 /* Monitor specific debugging information. Typically only useful to the developer of a new monitor interface. */ static void monitor_debug (const char *fmt, ...) ATTRIBUTE_PRINTF (1, 2); static unsigned int monitor_debug_p = 0; /* NOTE: This file alternates between monitor_debug_p and remote_debug when determining if debug information is printed. Perhaps this could be simplified. */ static void monitor_debug (const char *fmt, ...) { if (monitor_debug_p) { va_list args; va_start (args, fmt); vfprintf_filtered (gdb_stdlog, fmt, args); va_end (args); } } /* Convert a string into a printable representation, Return # byte in the new string. When LEN is >0 it specifies the size of the string. Otherwize strlen(oldstr) is used. */ static void monitor_printable_string (char *newstr, char *oldstr, int len) { int ch; int i; if (len <= 0) len = strlen (oldstr); for (i = 0; i < len; i++) { ch = oldstr[i]; switch (ch) { default: if (isprint (ch)) *newstr++ = ch; else { sprintf (newstr, "\\x%02x", ch & 0xff); newstr += 4; } break; case '\\': *newstr++ = '\\'; *newstr++ = '\\'; break; case '\b': *newstr++ = '\\'; *newstr++ = 'b'; break; case '\f': *newstr++ = '\\'; *newstr++ = 't'; break; case '\n': *newstr++ = '\\'; *newstr++ = 'n'; break; case '\r': *newstr++ = '\\'; *newstr++ = 'r'; break; case '\t': *newstr++ = '\\'; *newstr++ = 't'; break; case '\v': *newstr++ = '\\'; *newstr++ = 'v'; break; } } *newstr++ = '\0'; } /* Print monitor errors with a string, converting the string to printable representation. */ static void monitor_error (char *function, char *message, CORE_ADDR memaddr, int len, char *string, int final_char) { int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len; char *safe_string = alloca ((real_len * 4) + 1); monitor_printable_string (safe_string, string, real_len); if (final_char) error (_("%s (%s): %s: %s%c"), function, paddress (target_gdbarch (), memaddr), message, safe_string, final_char); else error (_("%s (%s): %s: %s"), function, paddress (target_gdbarch (), memaddr), message, safe_string); } /* Convert hex digit A to a number. */ static int fromhex (int a) { if (a >= '0' && a <= '9') return a - '0'; else if (a >= 'a' && a <= 'f') return a - 'a' + 10; else if (a >= 'A' && a <= 'F') return a - 'A' + 10; else error (_("Invalid hex digit %d"), a); } /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses This function exists to get around the problem that many host platforms don't have a printf that can print 64-bit addresses. The %A format specification is recognized as a special case, and causes the argument to be printed as a 64-bit hexadecimal address. Only format specifiers of the form "[0-9]*[a-z]" are recognized. If it is a '%s' format, the argument is a string; otherwise the argument is assumed to be a long integer. %% is also turned into a single %. */ static void monitor_vsprintf (char *sndbuf, char *pattern, va_list args) { int addr_bit = gdbarch_addr_bit (target_gdbarch ()); char format[10]; char fmt; char *p; int i; long arg_int; CORE_ADDR arg_addr; char *arg_string; for (p = pattern; *p; p++) { if (*p == '%') { /* Copy the format specifier to a separate buffer. */ format[0] = *p++; for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2; i++, p++) format[i] = *p; format[i] = fmt = *p; format[i + 1] = '\0'; /* Fetch the next argument and print it. */ switch (fmt) { case '%': strcpy (sndbuf, "%"); break; case 'A': arg_addr = va_arg (args, CORE_ADDR); strcpy (sndbuf, phex_nz (arg_addr, addr_bit / 8)); break; case 's': arg_string = va_arg (args, char *); sprintf (sndbuf, format, arg_string); break; default: arg_int = va_arg (args, long); sprintf (sndbuf, format, arg_int); break; } sndbuf += strlen (sndbuf); } else *sndbuf++ = *p; } *sndbuf = '\0'; } /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo. Works just like printf. */ void monitor_printf_noecho (char *pattern,...) { va_list args; char sndbuf[2000]; int len; va_start (args, pattern); monitor_vsprintf (sndbuf, pattern, args); len = strlen (sndbuf); if (len + 1 > sizeof sndbuf) internal_error (__FILE__, __LINE__, _("failed internal consistency check")); if (monitor_debug_p) { char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1); monitor_printable_string (safe_string, sndbuf, 0); fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string); } monitor_write (sndbuf, len); } /* monitor_printf -- Send data to monitor and check the echo. Works just like printf. */ void monitor_printf (char *pattern,...) { va_list args; char sndbuf[2000]; int len; va_start (args, pattern); monitor_vsprintf (sndbuf, pattern, args); len = strlen (sndbuf); if (len + 1 > sizeof sndbuf) internal_error (__FILE__, __LINE__, _("failed internal consistency check")); if (monitor_debug_p) { char *safe_string = (char *) alloca ((len * 4) + 1); monitor_printable_string (safe_string, sndbuf, 0); fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string); } monitor_write (sndbuf, len); /* We used to expect that the next immediate output was the characters we just output, but sometimes some extra junk appeared before the characters we expected, like an extra prompt, or a portmaster sending telnet negotiations. So, just start searching for what we sent, and skip anything unknown. */ monitor_debug ("ExpectEcho\n"); monitor_expect (sndbuf, (char *) 0, 0); } /* Write characters to the remote system. */ void monitor_write (char *buf, int buflen) { if (serial_write (monitor_desc, buf, buflen)) fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n", safe_strerror (errno)); } /* Read a binary character from the remote system, doing all the fancy timeout stuff, but without interpreting the character in any way, and without printing remote debug information. */ int monitor_readchar (void) { int c; int looping; do { looping = 0; c = serial_readchar (monitor_desc, timeout); if (c >= 0) c &= 0xff; /* don't lose bit 7 */ } while (looping); if (c >= 0) return c; if (c == SERIAL_TIMEOUT) error (_("Timeout reading from remote system.")); perror_with_name (_("remote-monitor")); } /* Read a character from the remote system, doing all the fancy timeout stuff. */ static int readchar (int timeout) { int c; static enum { last_random, last_nl, last_cr, last_crnl } state = last_random; int looping; do { looping = 0; c = serial_readchar (monitor_desc, timeout); if (c >= 0) { c &= 0x7f; /* This seems to interfere with proper function of the input stream. */ if (monitor_debug_p || remote_debug) { char buf[2]; buf[0] = c; buf[1] = '\0'; puts_debug ("read -->", buf, "<--"); } } /* Canonicialize \n\r combinations into one \r. */ if ((current_monitor->flags & MO_HANDLE_NL) != 0) { if ((c == '\r' && state == last_nl) || (c == '\n' && state == last_cr)) { state = last_crnl; looping = 1; } else if (c == '\r') state = last_cr; else if (c != '\n') state = last_random; else { state = last_nl; c = '\r'; } } } while (looping); if (c >= 0) return c; if (c == SERIAL_TIMEOUT) #if 0 /* I fail to see how detaching here can be useful. */ if (in_monitor_wait) /* Watchdog went off. */ { target_mourn_inferior (); error (_("GDB serial timeout has expired. Target detached.")); } else #endif error (_("Timeout reading from remote system.")); perror_with_name (_("remote-monitor")); } /* Scan input from the remote system, until STRING is found. If BUF is non- zero, then collect input until we have collected either STRING or BUFLEN-1 chars. In either case we terminate BUF with a 0. If input overflows BUF because STRING can't be found, return -1, else return number of chars in BUF (minus the terminating NUL). Note that in the non-overflow case, STRING will be at the end of BUF. */ int monitor_expect (char *string, char *buf, int buflen) { char *p = string; int obuflen = buflen; int c; if (monitor_debug_p) { char *safe_string = (char *) alloca ((strlen (string) * 4) + 1); monitor_printable_string (safe_string, string, 0); fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string); } immediate_quit++; QUIT; while (1) { if (buf) { if (buflen < 2) { *buf = '\000'; immediate_quit--; return -1; } c = readchar (timeout); if (c == '\000') continue; *buf++ = c; buflen--; } else c = readchar (timeout); /* Don't expect any ^C sent to be echoed. */ if (*p == '\003' || c == *p) { p++; if (*p == '\0') { immediate_quit--; if (buf) { *buf++ = '\000'; return obuflen - buflen; } else return 0; } } else { /* We got a character that doesn't match the string. We need to back up p, but how far? If we're looking for "..howdy" and the monitor sends "...howdy"? There's certainly a match in there, but when we receive the third ".", we won't find it if we just restart the matching at the beginning of the string. This is a Boyer-Moore kind of situation. We want to reset P to the end of the longest prefix of STRING that is a suffix of what we've read so far. In the example above, that would be ".." --- the longest prefix of "..howdy" that is a suffix of "...". This longest prefix could be the empty string, if C is nowhere to be found in STRING. If this longest prefix is not the empty string, it must contain C, so let's search from the end of STRING for instances of C, and see if the portion of STRING before that is a suffix of what we read before C. Actually, we can search backwards from p, since we know no prefix can be longer than that. Note that we can use STRING itself, along with C, as a record of what we've received so far. :) */ int i; for (i = (p - string) - 1; i >= 0; i--) if (string[i] == c) { /* Is this prefix a suffix of what we've read so far? In other words, does string[0 .. i-1] == string[p - i, p - 1]? */ if (! memcmp (string, p - i, i)) { p = string + i + 1; break; } } if (i < 0) p = string; } } } /* Search for a regexp. */ static int monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen) { char *mybuf; char *p; monitor_debug ("MON Expecting regexp\n"); if (buf) mybuf = buf; else { mybuf = alloca (TARGET_BUF_SIZE); buflen = TARGET_BUF_SIZE; } p = mybuf; while (1) { int retval; if (p - mybuf >= buflen) { /* Buffer about to overflow. */ /* On overflow, we copy the upper half of the buffer to the lower half. Not great, but it usually works... */ memcpy (mybuf, mybuf + buflen / 2, buflen / 2); p = mybuf + buflen / 2; } *p++ = readchar (timeout); retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL); if (retval >= 0) return 1; } } /* Keep discarding input until we see the MONITOR prompt. The convention for dealing with the prompt is that you o give your command o *then* wait for the prompt. Thus the last thing that a procedure does with the serial line will be an monitor_expect_prompt(). Exception: monitor_resume does not wait for the prompt, because the terminal is being handed over to the inferior. However, the next thing which happens after that is a monitor_wait which does wait for the prompt. Note that this includes abnormal exit, e.g. error(). This is necessary to prevent getting into states from which we can't recover. */ int monitor_expect_prompt (char *buf, int buflen) { monitor_debug ("MON Expecting prompt\n"); return monitor_expect (current_monitor->prompt, buf, buflen); } /* Get N 32-bit words from remote, each preceded by a space, and put them in registers starting at REGNO. */ #if 0 static unsigned long get_hex_word (void) { unsigned long val; int i; int ch; do ch = readchar (timeout); while (isspace (ch)); val = from_hex (ch); for (i = 7; i >= 1; i--) { ch = readchar (timeout); if (!isxdigit (ch)) break; val = (val << 4) | from_hex (ch); } return val; } #endif static void compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern, char *fastmap) { int tmp; const char *val; compiled_pattern->fastmap = fastmap; tmp = re_set_syntax (RE_SYNTAX_EMACS); val = re_compile_pattern (pattern, strlen (pattern), compiled_pattern); re_set_syntax (tmp); if (val) error (_("compile_pattern: Can't compile pattern string `%s': %s!"), pattern, val); if (fastmap) re_compile_fastmap (compiled_pattern); } /* Open a connection to a remote debugger. NAME is the filename used for communication. */ void monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty) { char *name; char **p; struct inferior *inf; if (mon_ops->magic != MONITOR_OPS_MAGIC) error (_("Magic number of monitor_ops struct wrong.")); targ_ops = mon_ops->target; name = targ_ops->to_shortname; if (!args) error (_("Use `target %s DEVICE-NAME' to use a serial port, or\n\ `target %s HOST-NAME:PORT-NUMBER' to use a network connection."), name, name); target_preopen (from_tty); /* Setup pattern for register dump. */ if (mon_ops->register_pattern) compile_pattern (mon_ops->register_pattern, ®ister_pattern, register_fastmap); if (mon_ops->getmem.resp_delim) compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern, getmem_resp_delim_fastmap); if (mon_ops->setmem.resp_delim) compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern, setmem_resp_delim_fastmap); if (mon_ops->setreg.resp_delim) compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern, setreg_resp_delim_fastmap); unpush_target (targ_ops); if (dev_name) xfree (dev_name); dev_name = xstrdup (args); monitor_desc = serial_open (dev_name); if (!monitor_desc) perror_with_name (dev_name); if (baud_rate != -1) { if (serial_setbaudrate (monitor_desc, baud_rate)) { serial_close (monitor_desc); perror_with_name (dev_name); } } serial_raw (monitor_desc); serial_flush_input (monitor_desc); /* some systems only work with 2 stop bits. */ serial_setstopbits (monitor_desc, mon_ops->stopbits); current_monitor = mon_ops; /* See if we can wake up the monitor. First, try sending a stop sequence, then send the init strings. Last, remove all breakpoints. */ if (current_monitor->stop) { monitor_stop (inferior_ptid); if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0) { monitor_debug ("EXP Open echo\n"); monitor_expect_prompt (NULL, 0); } } /* wake up the monitor and see if it's alive. */ for (p = mon_ops->init; *p != NULL; p++) { /* Some of the characters we send may not be echoed, but we hope to get a prompt at the end of it all. */ if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0) monitor_printf (*p); else monitor_printf_noecho (*p); monitor_expect_prompt (NULL, 0); } serial_flush_input (monitor_desc); /* Alloc breakpoints */ if (mon_ops->set_break != NULL) { if (mon_ops->num_breakpoints == 0) mon_ops->num_breakpoints = 8; breakaddr = (CORE_ADDR *) xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR)); memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR)); } /* Remove all breakpoints. */ if (mon_ops->clr_all_break) { monitor_printf (mon_ops->clr_all_break); monitor_expect_prompt (NULL, 0); } if (from_tty) printf_unfiltered (_("Remote target %s connected to %s\n"), name, dev_name); push_target (targ_ops); /* Start afresh. */ init_thread_list (); /* Make run command think we are busy... */ inferior_ptid = monitor_ptid; inf = current_inferior (); inferior_appeared (inf, ptid_get_pid (inferior_ptid)); add_thread_silent (inferior_ptid); /* Give monitor_wait something to read. */ monitor_printf (current_monitor->line_term); init_wait_for_inferior (); start_remote (from_tty); } /* Close out all files and local state before this target loses control. */ void monitor_close (struct target_ops *self) { if (monitor_desc) serial_close (monitor_desc); /* Free breakpoint memory. */ if (breakaddr != NULL) { xfree (breakaddr); breakaddr = NULL; } monitor_desc = NULL; delete_thread_silent (monitor_ptid); delete_inferior_silent (ptid_get_pid (monitor_ptid)); } /* Terminate the open connection to the remote debugger. Use this when you want to detach and do something else with your gdb. */ static void monitor_detach (struct target_ops *ops, const char *args, int from_tty) { unpush_target (ops); /* calls monitor_close to do the real work. */ if (from_tty) printf_unfiltered (_("Ending remote %s debugging\n"), target_shortname); } /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */ char * monitor_supply_register (struct regcache *regcache, int regno, char *valstr) { struct gdbarch *gdbarch = get_regcache_arch (regcache); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); ULONGEST val; unsigned char regbuf[MAX_REGISTER_SIZE]; char *p; val = 0; p = valstr; while (p && *p != '\0') { if (*p == '\r' || *p == '\n') { while (*p != '\0') p++; break; } if (isspace (*p)) { p++; continue; } if (!isxdigit (*p) && *p != 'x') { break; } val <<= 4; val += fromhex (*p++); } monitor_debug ("Supplying Register %d %s\n", regno, valstr); if (val == 0 && valstr == p) error (_("monitor_supply_register (%d): bad value from monitor: %s."), regno, valstr); /* supply register stores in target byte order, so swap here. */ store_unsigned_integer (regbuf, register_size (gdbarch, regno), byte_order, val); regcache_raw_supply (regcache, regno, regbuf); return p; } /* Tell the remote machine to resume. */ static void monitor_resume (struct target_ops *ops, ptid_t ptid, int step, enum gdb_signal sig) { /* Some monitors require a different command when starting a program. */ monitor_debug ("MON resume\n"); if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1) { first_time = 0; monitor_printf ("run\r"); if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT) dump_reg_flag = 1; return; } if (step) monitor_printf (current_monitor->step); else { if (current_monitor->continue_hook) (*current_monitor->continue_hook) (); else monitor_printf (current_monitor->cont); if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT) dump_reg_flag = 1; } } /* Parse the output of a register dump command. A monitor specific regexp is used to extract individual register descriptions of the form REG=VAL. Each description is split up into a name and a value string which are passed down to monitor specific code. */ static void parse_register_dump (struct regcache *regcache, char *buf, int len) { monitor_debug ("MON Parsing register dump\n"); while (1) { int regnamelen, vallen; char *regname, *val; /* Element 0 points to start of register name, and element 1 points to the start of the register value. */ struct re_registers register_strings; memset (®ister_strings, 0, sizeof (struct re_registers)); if (re_search (®ister_pattern, buf, len, 0, len, ®ister_strings) == -1) break; regnamelen = register_strings.end[1] - register_strings.start[1]; regname = buf + register_strings.start[1]; vallen = register_strings.end[2] - register_strings.start[2]; val = buf + register_strings.start[2]; current_monitor->supply_register (regcache, regname, regnamelen, val, vallen); buf += register_strings.end[0]; len -= register_strings.end[0]; } } /* Send ^C to target to halt it. Target will respond, and send us a packet. */ static void monitor_interrupt (int signo) { /* If this doesn't work, try more severe steps. */ signal (signo, monitor_interrupt_twice); if (monitor_debug_p || remote_debug) fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n"); target_stop (inferior_ptid); } /* The user typed ^C twice. */ static void monitor_interrupt_twice (int signo) { signal (signo, ofunc); monitor_interrupt_query (); signal (signo, monitor_interrupt); } /* Ask the user what to do when an interrupt is received. */ static void monitor_interrupt_query (void) { target_terminal_ours (); if (query (_("Interrupted while waiting for the program.\n\ Give up (and stop debugging it)? "))) { target_mourn_inferior (); quit (); } target_terminal_inferior (); } static void monitor_wait_cleanup (void *old_timeout) { timeout = *(int *) old_timeout; signal (SIGINT, ofunc); in_monitor_wait = 0; } static void monitor_wait_filter (char *buf, int bufmax, int *ext_resp_len, struct target_waitstatus *status) { int resp_len; do { resp_len = monitor_expect_prompt (buf, bufmax); *ext_resp_len = resp_len; if (resp_len <= 0) fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive " "response from monitor: %s.", buf); } while (resp_len < 0); /* Print any output characters that were preceded by ^O. */ /* FIXME - This would be great as a user settabgle flag. */ if (monitor_debug_p || remote_debug || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT) { int i; for (i = 0; i < resp_len - 1; i++) if (buf[i] == 0x0f) putchar_unfiltered (buf[++i]); } } /* Wait until the remote machine stops, then return, storing status in status just as `wait' would. */ static ptid_t monitor_wait (struct target_ops *ops, ptid_t ptid, struct target_waitstatus *status, int options) { int old_timeout = timeout; char buf[TARGET_BUF_SIZE]; int resp_len; struct cleanup *old_chain; status->kind = TARGET_WAITKIND_EXITED; status->value.integer = 0; old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout); monitor_debug ("MON wait\n"); #if 0 /* This is somthing other than a maintenance command. */ in_monitor_wait = 1; timeout = watchdog > 0 ? watchdog : -1; #else timeout = -1; /* Don't time out -- user program is running. */ #endif ofunc = (void (*)()) signal (SIGINT, monitor_interrupt); if (current_monitor->wait_filter) (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status); else monitor_wait_filter (buf, sizeof (buf), &resp_len, status); #if 0 /* Transferred to monitor wait filter. */ do { resp_len = monitor_expect_prompt (buf, sizeof (buf)); if (resp_len <= 0) fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive " "response from monitor: %s.", buf); } while (resp_len < 0); /* Print any output characters that were preceded by ^O. */ /* FIXME - This would be great as a user settabgle flag. */ if (monitor_debug_p || remote_debug || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT) { int i; for (i = 0; i < resp_len - 1; i++) if (buf[i] == 0x0f) putchar_unfiltered (buf[++i]); } #endif signal (SIGINT, ofunc); timeout = old_timeout; #if 0 if (dump_reg_flag && current_monitor->dump_registers) { dump_reg_flag = 0; monitor_printf (current_monitor->dump_registers); resp_len = monitor_expect_prompt (buf, sizeof (buf)); } if (current_monitor->register_pattern) parse_register_dump (get_current_regcache (), buf, resp_len); #else monitor_debug ("Wait fetching registers after stop\n"); monitor_dump_regs (get_current_regcache ()); #endif status->kind = TARGET_WAITKIND_STOPPED; status->value.sig = GDB_SIGNAL_TRAP; discard_cleanups (old_chain); in_monitor_wait = 0; return inferior_ptid; } /* Fetch register REGNO, or all registers if REGNO is -1. Returns errno value. */ static void monitor_fetch_register (struct regcache *regcache, int regno) { const char *name; char *zerobuf; char *regbuf; int i; regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1); zerobuf = alloca (MAX_REGISTER_SIZE); memset (zerobuf, 0, MAX_REGISTER_SIZE); if (current_monitor->regname != NULL) name = current_monitor->regname (regno); else name = current_monitor->regnames[regno]; monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)"); if (!name || (*name == '\0')) { monitor_debug ("No register known for %d\n", regno); regcache_raw_supply (regcache, regno, zerobuf); return; } /* Send the register examine command. */ monitor_printf (current_monitor->getreg.cmd, name); /* If RESP_DELIM is specified, we search for that as a leading delimiter for the register value. Otherwise, we just start searching from the start of the buf. */ if (current_monitor->getreg.resp_delim) { monitor_debug ("EXP getreg.resp_delim\n"); monitor_expect (current_monitor->getreg.resp_delim, NULL, 0); /* Handle case of first 32 registers listed in pairs. */ if (current_monitor->flags & MO_32_REGS_PAIRED && (regno & 1) != 0 && regno < 32) { monitor_debug ("EXP getreg.resp_delim\n"); monitor_expect (current_monitor->getreg.resp_delim, NULL, 0); } } /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */ if (current_monitor->flags & MO_HEX_PREFIX) { int c; c = readchar (timeout); while (c == ' ') c = readchar (timeout); if ((c == '0') && ((c = readchar (timeout)) == 'x')) ; else error (_("Bad value returned from monitor " "while fetching register %x."), regno); } /* Read upto the maximum number of hex digits for this register, skipping spaces, but stop reading if something else is seen. Some monitors like to drop leading zeros. */ for (i = 0; i < register_size (get_regcache_arch (regcache), regno) * 2; i++) { int c; c = readchar (timeout); while (c == ' ') c = readchar (timeout); if (!isxdigit (c)) break; regbuf[i] = c; } regbuf[i] = '\000'; /* Terminate the number. */ monitor_debug ("REGVAL '%s'\n", regbuf); /* If TERM is present, we wait for that to show up. Also, (if TERM is present), we will send TERM_CMD if that is present. In any case, we collect all of the output into buf, and then wait for the normal prompt. */ if (current_monitor->getreg.term) { monitor_debug ("EXP getreg.term\n"); monitor_expect (current_monitor->getreg.term, NULL, 0); /* Get response. */ } if (current_monitor->getreg.term_cmd) { monitor_debug ("EMIT getreg.term.cmd\n"); monitor_printf (current_monitor->getreg.term_cmd); } if (!current_monitor->getreg.term || /* Already expected or */ current_monitor->getreg.term_cmd) /* ack expected. */ monitor_expect_prompt (NULL, 0); /* Get response. */ monitor_supply_register (regcache, regno, regbuf); } /* Sometimes, it takes several commands to dump the registers. */ /* This is a primitive for use by variations of monitor interfaces in case they need to compose the operation. */ int monitor_dump_reg_block (struct regcache *regcache, char *block_cmd) { char buf[TARGET_BUF_SIZE]; int resp_len; monitor_printf (block_cmd); resp_len = monitor_expect_prompt (buf, sizeof (buf)); parse_register_dump (regcache, buf, resp_len); return 1; } /* Read the remote registers into the block regs. */ /* Call the specific function if it has been provided. */ static void monitor_dump_regs (struct regcache *regcache) { char buf[TARGET_BUF_SIZE]; int resp_len; if (current_monitor->dumpregs) (*(current_monitor->dumpregs)) (regcache); /* Call supplied function. */ else if (current_monitor->dump_registers) /* Default version. */ { monitor_printf (current_monitor->dump_registers); resp_len = monitor_expect_prompt (buf, sizeof (buf)); parse_register_dump (regcache, buf, resp_len); } else /* Need some way to read registers. */ internal_error (__FILE__, __LINE__, _("failed internal consistency check")); } static void monitor_fetch_registers (struct target_ops *ops, struct regcache *regcache, int regno) { monitor_debug ("MON fetchregs\n"); if (current_monitor->getreg.cmd) { if (regno >= 0) { monitor_fetch_register (regcache, regno); return; } for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache)); regno++) monitor_fetch_register (regcache, regno); } else { monitor_dump_regs (regcache); } } /* Store register REGNO, or all if REGNO == 0. Return errno value. */ static void monitor_store_register (struct regcache *regcache, int regno) { int reg_size = register_size (get_regcache_arch (regcache), regno); const char *name; ULONGEST val; if (current_monitor->regname != NULL) name = current_monitor->regname (regno); else name = current_monitor->regnames[regno]; if (!name || (*name == '\0')) { monitor_debug ("MON Cannot store unknown register\n"); return; } regcache_cooked_read_unsigned (regcache, regno, &val); monitor_debug ("MON storeg %d %s\n", regno, phex (val, reg_size)); /* Send the register deposit command. */ if (current_monitor->flags & MO_REGISTER_VALUE_FIRST) monitor_printf (current_monitor->setreg.cmd, val, name); else if (current_monitor->flags & MO_SETREG_INTERACTIVE) monitor_printf (current_monitor->setreg.cmd, name); else monitor_printf (current_monitor->setreg.cmd, name, val); if (current_monitor->setreg.resp_delim) { monitor_debug ("EXP setreg.resp_delim\n"); monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0); if (current_monitor->flags & MO_SETREG_INTERACTIVE) monitor_printf ("%s\r", phex_nz (val, reg_size)); } if (current_monitor->setreg.term) { monitor_debug ("EXP setreg.term\n"); monitor_expect (current_monitor->setreg.term, NULL, 0); if (current_monitor->flags & MO_SETREG_INTERACTIVE) monitor_printf ("%s\r", phex_nz (val, reg_size)); monitor_expect_prompt (NULL, 0); } else monitor_expect_prompt (NULL, 0); if (current_monitor->setreg.term_cmd) /* Mode exit required. */ { monitor_debug ("EXP setreg_termcmd\n"); monitor_printf ("%s", current_monitor->setreg.term_cmd); monitor_expect_prompt (NULL, 0); } } /* monitor_store_register */ /* Store the remote registers. */ static void monitor_store_registers (struct target_ops *ops, struct regcache *regcache, int regno) { if (regno >= 0) { monitor_store_register (regcache, regno); return; } for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache)); regno++) monitor_store_register (regcache, regno); } /* Get ready to modify the registers array. On machines which store individual registers, this doesn't need to do anything. On machines which store all the registers in one fell swoop, this makes sure that registers contains all the registers from the program being debugged. */ static void monitor_prepare_to_store (struct target_ops *self, struct regcache *regcache) { /* Do nothing, since we can store individual regs. */ } static void monitor_files_info (struct target_ops *ops) { printf_unfiltered (_("\tAttached to %s at %d baud.\n"), dev_name, baud_rate); } static int monitor_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len) { enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); unsigned int val, hostval; char *cmd; int i; monitor_debug ("MON write %d %s\n", len, paddress (target_gdbarch (), memaddr)); if (current_monitor->flags & MO_ADDR_BITS_REMOVE) memaddr = gdbarch_addr_bits_remove (target_gdbarch (), memaddr); /* Use memory fill command for leading 0 bytes. */ if (current_monitor->fill) { for (i = 0; i < len; i++) if (myaddr[i] != 0) break; if (i > 4) /* More than 4 zeros is worth doing. */ { monitor_debug ("MON FILL %d\n", i); if (current_monitor->flags & MO_FILL_USES_ADDR) monitor_printf (current_monitor->fill, memaddr, (memaddr + i) - 1, 0); else monitor_printf (current_monitor->fill, memaddr, i, 0); monitor_expect_prompt (NULL, 0); return i; } } #if 0 /* Can't actually use long longs if VAL is an int (nice idea, though). */ if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll) { len = 8; cmd = current_monitor->setmem.cmdll; } else #endif if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl) { len = 4; cmd = current_monitor->setmem.cmdl; } else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw) { len = 2; cmd = current_monitor->setmem.cmdw; } else { len = 1; cmd = current_monitor->setmem.cmdb; } val = extract_unsigned_integer (myaddr, len, byte_order); if (len == 4) { hostval = *(unsigned int *) myaddr; monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val); } if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM) monitor_printf_noecho (cmd, memaddr, val); else if (current_monitor->flags & MO_SETMEM_INTERACTIVE) { monitor_printf_noecho (cmd, memaddr); if (current_monitor->setmem.resp_delim) { monitor_debug ("EXP setmem.resp_delim"); monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0); monitor_printf ("%x\r", val); } if (current_monitor->setmem.term) { monitor_debug ("EXP setmem.term"); monitor_expect (current_monitor->setmem.term, NULL, 0); monitor_printf ("%x\r", val); } if (current_monitor->setmem.term_cmd) { /* Emit this to get out of the memory editing state. */ monitor_printf ("%s", current_monitor->setmem.term_cmd); /* Drop through to expecting a prompt. */ } } else monitor_printf (cmd, memaddr, val); monitor_expect_prompt (NULL, 0); return len; } static int monitor_write_memory_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len) { unsigned char val; int written = 0; if (len == 0) return 0; /* Enter the sub mode. */ monitor_printf (current_monitor->setmem.cmdb, memaddr); monitor_expect_prompt (NULL, 0); while (len) { val = *myaddr; monitor_printf ("%x\r", val); myaddr++; memaddr++; written++; /* If we wanted to, here we could validate the address. */ monitor_expect_prompt (NULL, 0); len--; } /* Now exit the sub mode. */ monitor_printf (current_monitor->getreg.term_cmd); monitor_expect_prompt (NULL, 0); return written; } static void longlongendswap (unsigned char *a) { int i, j; unsigned char x; i = 0; j = 7; while (i < 4) { x = *(a + i); *(a + i) = *(a + j); *(a + j) = x; i++, j--; } } /* Format 32 chars of long long value, advance the pointer. */ static char *hexlate = "0123456789abcdef"; static char * longlong_hexchars (unsigned long long value, char *outbuff) { if (value == 0) { *outbuff++ = '0'; return outbuff; } else { static unsigned char disbuf[8]; /* disassembly buffer */ unsigned char *scan, *limit; /* loop controls */ unsigned char c, nib; int leadzero = 1; scan = disbuf; limit = scan + 8; { unsigned long long *dp; dp = (unsigned long long *) scan; *dp = value; } longlongendswap (disbuf); /* FIXME: ONly on big endian hosts. */ while (scan < limit) { c = *scan++; /* A byte of our long long value. */ if (leadzero) { if (c == 0) continue; else leadzero = 0; /* Henceforth we print even zeroes. */ } nib = c >> 4; /* high nibble bits */ *outbuff++ = hexlate[nib]; nib = c & 0x0f; /* low nibble bits */ *outbuff++ = hexlate[nib]; } return outbuff; } } /* longlong_hexchars */ /* I am only going to call this when writing virtual byte streams. Which possably entails endian conversions. */ static int monitor_write_memory_longlongs (CORE_ADDR memaddr, const gdb_byte *myaddr, int len) { static char hexstage[20]; /* At least 16 digits required, plus null. */ char *endstring; long long *llptr; long long value; int written = 0; llptr = (long long *) myaddr; if (len == 0) return 0; monitor_printf (current_monitor->setmem.cmdll, memaddr); monitor_expect_prompt (NULL, 0); while (len >= 8) { value = *llptr; endstring = longlong_hexchars (*llptr, hexstage); *endstring = '\0'; /* NUll terminate for printf. */ monitor_printf ("%s\r", hexstage); llptr++; memaddr += 8; written += 8; /* If we wanted to, here we could validate the address. */ monitor_expect_prompt (NULL, 0); len -= 8; } /* Now exit the sub mode. */ monitor_printf (current_monitor->getreg.term_cmd); monitor_expect_prompt (NULL, 0); return written; } /* */ /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */ /* This is for the large blocks of memory which may occur in downloading. And for monitors which use interactive entry, And for monitors which do not have other downloading methods. Without this, we will end up calling monitor_write_memory many times and do the entry and exit of the sub mode many times This currently assumes... MO_SETMEM_INTERACTIVE ! MO_NO_ECHO_ON_SETMEM To use this, the you have to patch the monitor_cmds block with this function. Otherwise, its not tuned up for use by all monitor variations. */ static int monitor_write_memory_block (CORE_ADDR memaddr, const gdb_byte *myaddr, int len) { int written; written = 0; /* FIXME: This would be a good place to put the zero test. */ #if 1 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll) { return monitor_write_memory_longlongs (memaddr, myaddr, len); } #endif written = monitor_write_memory_bytes (memaddr, myaddr, len); return written; } /* This is an alternate form of monitor_read_memory which is used for monitors which can only read a single byte/word/etc. at a time. */ static int monitor_read_memory_single (CORE_ADDR memaddr, gdb_byte *myaddr, int len) { enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); unsigned int val; char membuf[sizeof (int) * 2 + 1]; char *p; char *cmd; monitor_debug ("MON read single\n"); #if 0 /* Can't actually use long longs (nice idea, though). In fact, the call to strtoul below will fail if it tries to convert a value that's too big to fit in a long. */ if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll) { len = 8; cmd = current_monitor->getmem.cmdll; } else #endif if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl) { len = 4; cmd = current_monitor->getmem.cmdl; } else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw) { len = 2; cmd = current_monitor->getmem.cmdw; } else { len = 1; cmd = current_monitor->getmem.cmdb; } /* Send the examine command. */ monitor_printf (cmd, memaddr); /* If RESP_DELIM is specified, we search for that as a leading delimiter for the memory value. Otherwise, we just start searching from the start of the buf. */ if (current_monitor->getmem.resp_delim) { monitor_debug ("EXP getmem.resp_delim\n"); monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0); } /* Now, read the appropriate number of hex digits for this loc, skipping spaces. */ /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */ if (current_monitor->flags & MO_HEX_PREFIX) { int c; c = readchar (timeout); while (c == ' ') c = readchar (timeout); if ((c == '0') && ((c = readchar (timeout)) == 'x')) ; else monitor_error ("monitor_read_memory_single", "bad response from monitor", memaddr, 0, NULL, 0); } { int i; for (i = 0; i < len * 2; i++) { int c; while (1) { c = readchar (timeout); if (isxdigit (c)) break; if (c == ' ') continue; monitor_error ("monitor_read_memory_single", "bad response from monitor", memaddr, i, membuf, 0); } membuf[i] = c; } membuf[i] = '\000'; /* Terminate the number. */ } /* If TERM is present, we wait for that to show up. Also, (if TERM is present), we will send TERM_CMD if that is present. In any case, we collect all of the output into buf, and then wait for the normal prompt. */ if (current_monitor->getmem.term) { monitor_expect (current_monitor->getmem.term, NULL, 0); /* Get response. */ if (current_monitor->getmem.term_cmd) { monitor_printf (current_monitor->getmem.term_cmd); monitor_expect_prompt (NULL, 0); } } else monitor_expect_prompt (NULL, 0); /* Get response. */ p = membuf; val = strtoul (membuf, &p, 16); if (val == 0 && membuf == p) monitor_error ("monitor_read_memory_single", "bad value from monitor", memaddr, 0, membuf, 0); /* supply register stores in target byte order, so swap here. */ store_unsigned_integer (myaddr, len, byte_order, val); return len; } /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's memory at MEMADDR. Returns length moved. Currently, we do no more than 16 bytes at a time. */ static int monitor_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len) { unsigned int val; char buf[512]; char *p, *p1; int resp_len; int i; CORE_ADDR dumpaddr; if (len <= 0) { monitor_debug ("Zero length call to monitor_read_memory\n"); return 0; } monitor_debug ("MON read block ta(%s) ha(%s) %d\n", paddress (target_gdbarch (), memaddr), host_address_to_string (myaddr), len); if (current_monitor->flags & MO_ADDR_BITS_REMOVE) memaddr = gdbarch_addr_bits_remove (target_gdbarch (), memaddr); if (current_monitor->flags & MO_GETMEM_READ_SINGLE) return monitor_read_memory_single (memaddr, myaddr, len); len = min (len, 16); /* Some dumpers align the first data with the preceding 16 byte boundary. Some print blanks and start at the requested boundary. EXACT_DUMPADDR */ dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR) ? memaddr : memaddr & ~0x0f; /* See if xfer would cross a 16 byte boundary. If so, clip it. */ if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0) len = ((memaddr + len) & ~0xf) - memaddr; /* Send the memory examine command. */ if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE) monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len); else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY) monitor_printf (current_monitor->getmem.cmdb, dumpaddr); else monitor_printf (current_monitor->getmem.cmdb, memaddr, len); /* If TERM is present, we wait for that to show up. Also, (if TERM is present), we will send TERM_CMD if that is present. In any case, we collect all of the output into buf, and then wait for the normal prompt. */ if (current_monitor->getmem.term) { resp_len = monitor_expect (current_monitor->getmem.term, buf, sizeof buf); /* Get response. */ if (resp_len <= 0) monitor_error ("monitor_read_memory", "excessive response from monitor", memaddr, resp_len, buf, 0); if (current_monitor->getmem.term_cmd) { serial_write (monitor_desc, current_monitor->getmem.term_cmd, strlen (current_monitor->getmem.term_cmd)); monitor_expect_prompt (NULL, 0); } } else resp_len = monitor_expect_prompt (buf, sizeof buf); /* Get response. */ p = buf; /* If RESP_DELIM is specified, we search for that as a leading delimiter for the values. Otherwise, we just start searching from the start of the buf. */ if (current_monitor->getmem.resp_delim) { int retval, tmp; struct re_registers resp_strings; monitor_debug ("MON getmem.resp_delim %s\n", current_monitor->getmem.resp_delim); memset (&resp_strings, 0, sizeof (struct re_registers)); tmp = strlen (p); retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp, &resp_strings); if (retval < 0) monitor_error ("monitor_read_memory", "bad response from monitor", memaddr, resp_len, buf, 0); p += resp_strings.end[0]; #if 0 p = strstr (p, current_monitor->getmem.resp_delim); if (!p) monitor_error ("monitor_read_memory", "bad response from monitor", memaddr, resp_len, buf, 0); p += strlen (current_monitor->getmem.resp_delim); #endif } monitor_debug ("MON scanning %d ,%s '%s'\n", len, host_address_to_string (p), p); if (current_monitor->flags & MO_GETMEM_16_BOUNDARY) { char c; int fetched = 0; i = len; c = *p; while (!(c == '\000' || c == '\n' || c == '\r') && i > 0) { if (isxdigit (c)) { if ((dumpaddr >= memaddr) && (i > 0)) { val = fromhex (c) * 16 + fromhex (*(p + 1)); *myaddr++ = val; if (monitor_debug_p || remote_debug) fprintf_unfiltered (gdb_stdlog, "[%02x]", val); --i; fetched++; } ++dumpaddr; ++p; } ++p; /* Skip a blank or other non hex char. */ c = *p; } if (fetched == 0) error (_("Failed to read via monitor")); if (monitor_debug_p || remote_debug) fprintf_unfiltered (gdb_stdlog, "\n"); return fetched; /* Return the number of bytes actually read. */ } monitor_debug ("MON scanning bytes\n"); for (i = len; i > 0; i--) { /* Skip non-hex chars, but bomb on end of string and newlines. */ while (1) { if (isxdigit (*p)) break; if (*p == '\000' || *p == '\n' || *p == '\r') monitor_error ("monitor_read_memory", "badly terminated response from monitor", memaddr, resp_len, buf, 0); p++; } val = strtoul (p, &p1, 16); if (val == 0 && p == p1) monitor_error ("monitor_read_memory", "bad value from monitor", memaddr, resp_len, buf, 0); *myaddr++ = val; if (i == 1) break; p = p1; } return len; } /* Helper for monitor_xfer_partial that handles memory transfers. Arguments are like target_xfer_partial. */ static enum target_xfer_status monitor_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len) { int res; if (writebuf != NULL) { if (current_monitor->flags & MO_HAS_BLOCKWRITES) res = monitor_write_memory_block (memaddr, writebuf, len); else res = monitor_write_memory (memaddr, writebuf, len); } else { res = monitor_read_memory (memaddr, readbuf, len); } if (res <= 0) return TARGET_XFER_E_IO; else { *xfered_len = (ULONGEST) res; return TARGET_XFER_OK; } } /* Target to_xfer_partial implementation. */ static enum target_xfer_status monitor_xfer_partial (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) { switch (object) { case TARGET_OBJECT_MEMORY: return monitor_xfer_memory (readbuf, writebuf, offset, len, xfered_len); default: return TARGET_XFER_E_IO; } } static void monitor_kill (struct target_ops *ops) { return; /* Ignore attempts to kill target system. */ } /* All we actually do is set the PC to the start address of exec_bfd. */ static void monitor_create_inferior (struct target_ops *ops, char *exec_file, char *args, char **env, int from_tty) { if (args && (*args != '\000')) error (_("Args are not supported by the monitor.")); first_time = 1; clear_proceed_status (); regcache_write_pc (get_current_regcache (), bfd_get_start_address (exec_bfd)); } /* Clean up when a program exits. The program actually lives on in the remote processor's RAM, and may be run again without a download. Don't leave it full of breakpoint instructions. */ static void monitor_mourn_inferior (struct target_ops *ops) { unpush_target (targ_ops); generic_mourn_inferior (); /* Do all the proper things now. */ delete_thread_silent (monitor_ptid); } /* Tell the monitor to add a breakpoint. */ static int monitor_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch, struct bp_target_info *bp_tgt) { CORE_ADDR addr = bp_tgt->placed_address; int i; int bplen; monitor_debug ("MON inst bkpt %s\n", paddress (gdbarch, addr)); if (current_monitor->set_break == NULL) error (_("No set_break defined for this monitor")); if (current_monitor->flags & MO_ADDR_BITS_REMOVE) addr = gdbarch_addr_bits_remove (gdbarch, addr); /* Determine appropriate breakpoint size for this address. */ gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen); bp_tgt->placed_address = addr; bp_tgt->placed_size = bplen; for (i = 0; i < current_monitor->num_breakpoints; i++) { if (breakaddr[i] == 0) { breakaddr[i] = addr; monitor_printf (current_monitor->set_break, addr); monitor_expect_prompt (NULL, 0); return 0; } } error (_("Too many breakpoints (> %d) for monitor."), current_monitor->num_breakpoints); } /* Tell the monitor to remove a breakpoint. */ static int monitor_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch, struct bp_target_info *bp_tgt) { CORE_ADDR addr = bp_tgt->placed_address; int i; monitor_debug ("MON rmbkpt %s\n", paddress (gdbarch, addr)); if (current_monitor->clr_break == NULL) error (_("No clr_break defined for this monitor")); for (i = 0; i < current_monitor->num_breakpoints; i++) { if (breakaddr[i] == addr) { breakaddr[i] = 0; /* Some monitors remove breakpoints based on the address. */ if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR) monitor_printf (current_monitor->clr_break, addr); else if (current_monitor->flags & MO_CLR_BREAK_1_BASED) monitor_printf (current_monitor->clr_break, i + 1); else monitor_printf (current_monitor->clr_break, i); monitor_expect_prompt (NULL, 0); return 0; } } fprintf_unfiltered (gdb_stderr, "Can't find breakpoint associated with %s\n", paddress (gdbarch, addr)); return 1; } /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for an S-record. Return non-zero if the ACK is received properly. */ static int monitor_wait_srec_ack (void) { int ch; if (current_monitor->flags & MO_SREC_ACK_PLUS) { return (readchar (timeout) == '+'); } else if (current_monitor->flags & MO_SREC_ACK_ROTATE) { /* Eat two backspaces, a "rotating" char (|/-\), and a space. */ if ((ch = readchar (1)) < 0) return 0; if ((ch = readchar (1)) < 0) return 0; if ((ch = readchar (1)) < 0) return 0; if ((ch = readchar (1)) < 0) return 0; } return 1; } /* monitor_load -- download a file. */ static void monitor_load (struct target_ops *self, char *args, int from_tty) { CORE_ADDR load_offset = 0; char **argv; struct cleanup *old_cleanups; char *filename; monitor_debug ("MON load\n"); if (args == NULL) error_no_arg (_("file to load")); argv = gdb_buildargv (args); old_cleanups = make_cleanup_freeargv (argv); filename = tilde_expand (argv[0]); make_cleanup (xfree, filename); /* Enable user to specify address for downloading as 2nd arg to load. */ if (argv[1] != NULL) { const char *endptr; load_offset = strtoulst (argv[1], &endptr, 0); /* If the last word was not a valid number then treat it as a file name with spaces in. */ if (argv[1] == endptr) error (_("Invalid download offset:%s."), argv[1]); if (argv[2] != NULL) error (_("Too many parameters.")); } monitor_printf (current_monitor->load); if (current_monitor->loadresp) monitor_expect (current_monitor->loadresp, NULL, 0); load_srec (monitor_desc, filename, load_offset, 32, SREC_ALL, hashmark, current_monitor->flags & MO_SREC_ACK ? monitor_wait_srec_ack : NULL); monitor_expect_prompt (NULL, 0); do_cleanups (old_cleanups); /* Finally, make the PC point at the start address. */ if (exec_bfd) regcache_write_pc (get_current_regcache (), bfd_get_start_address (exec_bfd)); /* There used to be code here which would clear inferior_ptid and call clear_symtab_users. None of that should be necessary: monitor targets should behave like remote protocol targets, and since generic_load does none of those things, this function shouldn't either. Furthermore, clearing inferior_ptid is *incorrect*. After doing a load, we still have a valid connection to the monitor, with a live processor state to fiddle with. The user can type `continue' or `jump *start' and make the program run. If they do these things, however, GDB will be talking to a running program while inferior_ptid is null_ptid; this makes things like reinit_frame_cache very confused. */ } static void monitor_stop (ptid_t ptid) { monitor_debug ("MON stop\n"); if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0) serial_send_break (monitor_desc); if (current_monitor->stop) monitor_printf_noecho (current_monitor->stop); } /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed in OUTPUT until the prompt is seen. FIXME: We read the characters ourseleves here cause of a nasty echo. */ static void monitor_rcmd (char *command, struct ui_file *outbuf) { char *p; int resp_len; char buf[1000]; if (monitor_desc == NULL) error (_("monitor target not open.")); p = current_monitor->prompt; /* Send the command. Note that if no args were supplied, then we're just sending the monitor a newline, which is sometimes useful. */ monitor_printf ("%s\r", (command ? command : "")); resp_len = monitor_expect_prompt (buf, sizeof buf); fputs_unfiltered (buf, outbuf); /* Output the response. */ } /* Convert hex digit A to a number. */ #if 0 static int from_hex (int a) { if (a >= '0' && a <= '9') return a - '0'; if (a >= 'a' && a <= 'f') return a - 'a' + 10; if (a >= 'A' && a <= 'F') return a - 'A' + 10; error (_("Reply contains invalid hex digit 0x%x"), a); } #endif char * monitor_get_dev_name (void) { return dev_name; } /* Check to see if a thread is still alive. */ static int monitor_thread_alive (struct target_ops *ops, ptid_t ptid) { if (ptid_equal (ptid, monitor_ptid)) /* The monitor's task is always alive. */ return 1; return 0; } /* Convert a thread ID to a string. Returns the string in a static buffer. */ static char * monitor_pid_to_str (struct target_ops *ops, ptid_t ptid) { static char buf[64]; if (ptid_equal (monitor_ptid, ptid)) { xsnprintf (buf, sizeof buf, "Thread
"); return buf; } return normal_pid_to_str (ptid); } static struct target_ops monitor_ops; static void init_base_monitor_ops (void) { monitor_ops.to_close = monitor_close; monitor_ops.to_detach = monitor_detach; monitor_ops.to_resume = monitor_resume; monitor_ops.to_wait = monitor_wait; monitor_ops.to_fetch_registers = monitor_fetch_registers; monitor_ops.to_store_registers = monitor_store_registers; monitor_ops.to_prepare_to_store = monitor_prepare_to_store; monitor_ops.to_xfer_partial = monitor_xfer_partial; monitor_ops.to_files_info = monitor_files_info; monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint; monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint; monitor_ops.to_kill = monitor_kill; monitor_ops.to_load = monitor_load; monitor_ops.to_create_inferior = monitor_create_inferior; monitor_ops.to_mourn_inferior = monitor_mourn_inferior; monitor_ops.to_stop = monitor_stop; monitor_ops.to_rcmd = monitor_rcmd; monitor_ops.to_log_command = serial_log_command; monitor_ops.to_thread_alive = monitor_thread_alive; monitor_ops.to_pid_to_str = monitor_pid_to_str; monitor_ops.to_stratum = process_stratum; monitor_ops.to_has_all_memory = default_child_has_all_memory; monitor_ops.to_has_memory = default_child_has_memory; monitor_ops.to_has_stack = default_child_has_stack; monitor_ops.to_has_registers = default_child_has_registers; monitor_ops.to_has_execution = default_child_has_execution; monitor_ops.to_magic = OPS_MAGIC; } /* init_base_monitor_ops */ /* Init the target_ops structure pointed at by OPS. */ void init_monitor_ops (struct target_ops *ops) { if (monitor_ops.to_magic != OPS_MAGIC) init_base_monitor_ops (); memcpy (ops, &monitor_ops, sizeof monitor_ops); } /* Define additional commands that are usually only used by monitors. */ /* -Wmissing-prototypes */ extern initialize_file_ftype _initialize_remote_monitors; void _initialize_remote_monitors (void) { init_base_monitor_ops (); add_setshow_boolean_cmd ("hash", no_class, &hashmark, _("\ Set display of activity while downloading a file."), _("\ Show display of activity while downloading a file."), _("\ When enabled, a hashmark \'#\' is displayed."), NULL, NULL, /* FIXME: i18n: */ &setlist, &showlist); add_setshow_zuinteger_cmd ("monitor", no_class, &monitor_debug_p, _("\ Set debugging of remote monitor communication."), _("\ Show debugging of remote monitor communication."), _("\ When enabled, communication between GDB and the remote monitor\n\ is displayed."), NULL, NULL, /* FIXME: i18n: */ &setdebuglist, &showdebuglist); /* Yes, 42000 is arbitrary. The only sense out of it, is that it isn't 0. */ monitor_ptid = ptid_build (42000, 0, 42000); }