/* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger. Copyright 1996, 1997 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "frame.h" #include "inferior.h" #include "obstack.h" #include "target.h" #include "value.h" #include "bfd.h" #include "gdb_string.h" #include "gdbcore.h" #include "symfile.h" /* Info gleaned from scanning a function's prologue. */ struct pifsr /* Info about one saved reg */ { int framereg; /* Frame reg (SP or FP) */ int offset; /* Offset from framereg */ int reg; /* Saved register number */ }; struct prologue_info { int framereg; int frameoffset; int start_function; struct pifsr *pifsrs; }; static CORE_ADDR mn10300_scan_prologue PARAMS ((CORE_ADDR pc, struct prologue_info *fs)); /* Function: scan_prologue Scan the prologue of the function that contains PC, and record what we find in PI. PI->fsr must be zeroed by the called. Returns the pc after the prologue. Note that the addresses saved in pi->fsr are actually just frame relative (negative offsets from the frame pointer). This is because we don't know the actual value of the frame pointer yet. In some circumstances, the frame pointer can't be determined till after we have scanned the prologue. */ static CORE_ADDR mn10300_scan_prologue (pc, pi) CORE_ADDR pc; struct prologue_info *pi; { CORE_ADDR func_addr, prologue_end, current_pc; struct pifsr *pifsr; int fp_used; printf("mn10300_scan_prologue start\n"); /* First, figure out the bounds of the prologue so that we can limit the search to something reasonable. */ if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) { struct symtab_and_line sal; sal = find_pc_line (func_addr, 0); if (func_addr == entry_point_address ()) pi->start_function = 1; else pi->start_function = 0; #if 0 if (sal.line == 0) prologue_end = pc; else prologue_end = sal.end; #else prologue_end = pc; #endif } else { /* We're in the boondocks */ func_addr = pc - 100; prologue_end = pc; } prologue_end = min (prologue_end, pc); /* Now, search the prologue looking for instructions that setup fp, save rp, adjust sp and such. We also record the frame offset of any saved registers. */ pi->frameoffset = 0; pi->framereg = SP_REGNUM; fp_used = 0; pifsr = pi->pifsrs; for (current_pc = func_addr; current_pc < prologue_end; current_pc += 2) { int insn; insn = read_memory_unsigned_integer (current_pc, 2); if ((insn & 0x07c0) == 0x0780 /* jarl or jr */ || (insn & 0xffe0) == 0x0060 /* jmp */ || (insn & 0x0780) == 0x0580) /* branch */ break; /* Ran into end of prologue */ if ((insn & 0xffe0) == ((SP_REGNUM << 11) | 0x0240)) /* add ,sp */ pi->frameoffset = ((insn & 0x1f) ^ 0x10) - 0x10; else if (insn == ((SP_REGNUM << 11) | 0x0600 | SP_REGNUM)) /* addi ,sp,sp */ pi->frameoffset = read_memory_integer (current_pc + 2, 2); else if (insn == ((FP_REGNUM << 11) | 0x0000 | 12)) /* mov r12,fp */ { fp_used = 1; pi->framereg = FP_REGNUM; } else if ((insn & 0x07ff) == (0x0760 | SP_REGNUM) /* st.w ,[sp] */ || (fp_used && (insn & 0x07ff) == (0x0760 | FP_REGNUM))) /* st.w ,[fp] */ if (pifsr) { pifsr->framereg = insn & 0x1f; pifsr->reg = (insn >> 11) & 0x1f; /* Extract */ pifsr->offset = read_memory_integer (current_pc + 2, 2) & ~1; pifsr++; } if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */ current_pc += 2; } if (pifsr) pifsr->framereg = 0; /* Tie off last entry */ printf("mn10300_scan_prologue end \n"); return current_pc; } /* Function: init_extra_frame_info Setup the frame's frame pointer, pc, and frame addresses for saved registers. Most of the work is done in scan_prologue(). Note that when we are called for the last frame (currently active frame), that fi->pc and fi->frame will already be setup. However, fi->frame will be valid only if this routine uses FP. For previous frames, fi-frame will always be correct (since that is derived from mn10300_frame_chain ()). We can be called with the PC in the call dummy under two circumstances. First, during normal backtracing, second, while figuring out the frame pointer just prior to calling the target function (see run_stack_dummy). */ void mn10300_init_extra_frame_info (fi) struct frame_info *fi; { struct prologue_info pi; struct pifsr pifsrs[NUM_REGS + 1], *pifsr; int reg; printf("mn10300_init_extra_frame_info start\n"); if (fi->next) fi->pc = FRAME_SAVED_PC (fi->next); memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs); /* The call dummy doesn't save any registers on the stack, so we can return now. */ if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) return; pi.pifsrs = pifsrs; mn10300_scan_prologue (fi->pc, &pi); if (!fi->next && pi.framereg == SP_REGNUM) fi->frame = read_register (pi.framereg) - pi.frameoffset; for (pifsr = pifsrs; pifsr->framereg; pifsr++) { fi->fsr.regs[pifsr->reg] = pifsr->offset + fi->frame; if (pifsr->framereg == SP_REGNUM) fi->fsr.regs[pifsr->reg] += pi.frameoffset; } printf("mn10300_init_extra_frame_info end\n"); } /* Function: frame_chain Figure out the frame prior to FI. Unfortunately, this involves scanning the prologue of the caller, which will also be done shortly by mn10300_init_extra_frame_info. For the dummy frame, we just return the stack pointer that was in use at the time the function call was made. */ CORE_ADDR mn10300_frame_chain (fi) struct frame_info *fi; { struct prologue_info pi; CORE_ADDR callers_pc, fp; printf("mn10300_frame_chain start\n"); /* First, find out who called us */ callers_pc = FRAME_SAVED_PC (fi); /* If caller is a call-dummy, then our FP bears no relation to his FP! */ fp = mn10300_find_callers_reg (fi, FP_REGNUM); if (PC_IN_CALL_DUMMY(callers_pc, fp, fp)) return fp; /* caller is call-dummy: return oldest value of FP */ /* Caller is NOT a call-dummy, so everything else should just work. Even if THIS frame is a call-dummy! */ pi.pifsrs = NULL; mn10300_scan_prologue (callers_pc, &pi); printf("mn10300_frame_chain end\n"); if (pi.start_function) return 0; /* Don't chain beyond the start function */ if (pi.framereg == FP_REGNUM) return mn10300_find_callers_reg (fi, pi.framereg); return fi->frame - pi.frameoffset; } /* Function: find_callers_reg Find REGNUM on the stack. Otherwise, it's in an active register. One thing we might want to do here is to check REGNUM against the clobber mask, and somehow flag it as invalid if it isn't saved on the stack somewhere. This would provide a graceful failure mode when trying to get the value of caller-saves registers for an inner frame. */ CORE_ADDR mn10300_find_callers_reg (fi, regnum) struct frame_info *fi; int regnum; { printf("mn10300_find_callers_reg\n"); for (; fi; fi = fi->next) if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) return generic_read_register_dummy (fi->pc, fi->frame, regnum); else if (fi->fsr.regs[regnum] != 0) return read_memory_unsigned_integer (fi->fsr.regs[regnum], REGISTER_RAW_SIZE(regnum)); return read_register (regnum); } /* Function: skip_prologue Return the address of the first code past the prologue of the function. */ CORE_ADDR mn10300_skip_prologue (pc) CORE_ADDR pc; { CORE_ADDR func_addr, func_end; printf("mn10300_skip_prologue\n"); /* See what the symbol table says */ if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) { struct symtab_and_line sal; sal = find_pc_line (func_addr, 0); if (sal.line != 0 && sal.end < func_end) return sal.end; else /* Either there's no line info, or the line after the prologue is after the end of the function. In this case, there probably isn't a prologue. */ return pc; } /* We can't find the start of this function, so there's nothing we can do. */ return pc; } /* Function: pop_frame This routine gets called when either the user uses the `return' command, or the call dummy breakpoint gets hit. */ void mn10300_pop_frame (frame) struct frame_info *frame; { int regnum; printf("mn10300_pop_frame start\n"); if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame)) generic_pop_dummy_frame (); else { write_register (PC_REGNUM, FRAME_SAVED_PC (frame)); for (regnum = 0; regnum < NUM_REGS; regnum++) if (frame->fsr.regs[regnum] != 0) write_register (regnum, read_memory_unsigned_integer (frame->fsr.regs[regnum], REGISTER_RAW_SIZE(regnum))); write_register (SP_REGNUM, FRAME_FP (frame)); } flush_cached_frames (); printf("mn10300_pop_frame end\n"); } /* Function: push_arguments Setup arguments for a call to the target. Arguments go in order on the stack. */ CORE_ADDR mn10300_push_arguments (nargs, args, sp, struct_return, struct_addr) int nargs; value_ptr *args; CORE_ADDR sp; unsigned char struct_return; CORE_ADDR struct_addr; { int argnum = 0; int len = 0; int stack_offset = 0; /* copy args to this offset onto stack */ printf("mn10300_push_arguments start\n"); /* First, just for safety, make sure stack is aligned */ sp &= ~3; /* Now make space on the stack for the args. */ for (argnum = 0; argnum < nargs; argnum++) len += ((TYPE_LENGTH(VALUE_TYPE(args[argnum])) + 3) & ~3); sp -= len; /* Push all arguments onto the stack. */ for (argnum = 0; argnum < nargs; argnum++) { int len; char *val; if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT && TYPE_LENGTH (VALUE_TYPE (*args)) > 8) { /* for now, pretend structs aren't special */ len = TYPE_LENGTH (VALUE_TYPE (*args)); val = (char *)VALUE_CONTENTS (*args); } else { len = TYPE_LENGTH (VALUE_TYPE (*args)); val = (char *)VALUE_CONTENTS (*args); } while (len > 0) { write_memory (sp + stack_offset, val, 4); len -= 4; val += 4; stack_offset += 4; } args++; } printf("mn10300_push_arguments end\n"); return sp; } /* Function: push_return_address (pc) Set up the return address for the inferior function call. Needed for targets where we don't actually execute a JSR/BSR instruction */ CORE_ADDR mn10300_push_return_address (pc, sp) CORE_ADDR pc; CORE_ADDR sp; { printf("mn10300_push_return_address\n"); /* write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ()); */ return sp; } /* Function: frame_saved_pc Find the caller of this frame. We do this by seeing if RP_REGNUM is saved in the stack anywhere, otherwise we get it from the registers. If the inner frame is a dummy frame, return its PC instead of RP, because that's where "caller" of the dummy-frame will be found. */ CORE_ADDR mn10300_frame_saved_pc (fi) struct frame_info *fi; { printf("mn10300_frame_saved_pc\n"); /* if (PC_IN_CALL_DUMMY(fi->pc, fi->frame, fi->frame)) */ return generic_read_register_dummy(fi->pc, fi->frame, PC_REGNUM); /* else return mn10300_find_callers_reg (fi, RP_REGNUM); */ } void get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) char *raw_buffer; int *optimized; CORE_ADDR *addrp; struct frame_info *frame; int regnum; enum lval_type *lval; { printf("get_saved_register\n"); generic_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval); } /* Function: fix_call_dummy Pokes the callee function's address into the CALL_DUMMY assembly stub. Assumes that the CALL_DUMMY looks like this: jarl , r31 trap */ int mn10300_fix_call_dummy (dummy, sp, fun, nargs, args, type, gcc_p) char *dummy; CORE_ADDR sp; CORE_ADDR fun; int nargs; value_ptr *args; struct type *type; int gcc_p; { long offset24; printf("mn10300_fix_call_dummy start\n"); offset24 = (long) fun - (long) entry_point_address (); offset24 &= 0x3fffff; offset24 |= 0xff800000; /* jarl , r31 */ store_unsigned_integer ((unsigned int *)&dummy[2], 2, offset24 & 0xffff); store_unsigned_integer ((unsigned int *)&dummy[0], 2, offset24 >> 16); printf("mn10300_fix_call_dummy end\n"); return 0; } void _initialize_mn10300_tdep () { printf("_initialize_mn10300_tdep\n"); tm_print_insn = print_insn_mn10300; }