/* Read a symbol table in MIPS' format (Third-Eye). Copyright 1986, 1987, 1989, 1990, 1991, 1992 Free Software Foundation, Inc. Contributed by Alessandro Forin (af@cs.cmu.edu) at CMU. Major work by Per Bothner and John Gilmore at Cygnus Support. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* This module provides three functions: mipscoff_symfile_init, which initializes to read a symbol file; mipscoff_new_init, which discards existing cached information when all symbols are being discarded; and mipscoff_symfile_read, which reads a symbol table from a file. mipscoff_symfile_read only does the minimum work necessary for letting the user "name" things symbolically; it does not read the entire symtab. Instead, it reads the external and static symbols and puts them in partial symbol tables. When more extensive information is requested of a file, the corresponding partial symbol table is mutated into a full fledged symbol table by going back and reading the symbols for real. mipscoff_psymtab_to_symtab() is called indirectly through a pointer in the psymtab to do this. ECOFF symbol tables are mostly written in the byte order of the target machine. However, one section of the table (the auxiliary symbol information) is written in the host byte order. There is a bit in the other symbol info which describes which host byte order was used. ECOFF thereby takes the trophy from Intel `b.out' for the most brain-dead adaptation of a file format to byte order. This module can read all four of the known byte-order combinations, on any type of host. However, it does make (and check) the assumption that the external form of a symbol table structure (on disk) occupies the same number of bytes as the internal form (in a struct). Fixing this is possible but requires larger structural changes. */ #define TM_FILE_OVERRIDE #include "defs.h" #include "tm-mips.h" #include "symtab.h" #include "gdbtypes.h" #include "gdbcore.h" #include "symfile.h" #include "obstack.h" #include "buildsym.h" #include #include #include #ifdef CMUCS #include #else /* not CMUCS */ #ifndef LANGUAGE_C #define LANGUAGE_C #endif #include "symconst.h" #include "sym.h" #endif /* not CMUCS */ #include "coff/mips.h" #include "libaout.h" /* FIXME Secret internal BFD stuff for a.out */ #include "aout/aout64.h" #include "aout/stab_gnu.h" /* We always use GNU stabs, not native, now */ #include "coff/ecoff-ext.h" struct coff_exec { struct external_filehdr f; struct external_aouthdr a; }; /* These must match the corresponding definition in gcc/config/xm-mips.h. At some point, these should probably go into a shared include file, but currently gcc and gdb do not share any directories. */ #define CODE_MASK 0x8F300 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK) #define MIPS_MARK_STAB(code) ((code)+CODE_MASK) #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK) #define STABS_SYMBOL "@stabs" /* Each partial symbol table entry contains a pointer to private data for the read_symtab() function to use when expanding a partial symbol table entry to a full symbol table entry. For mipsread this structure contains the index of the FDR that this psymtab represents and a pointer to the symbol table header HDRR from the symbol file that the psymtab was created from. */ #define PST_PRIVATE(p) ((struct symloc *)(p)->read_symtab_private) #define FDR_IDX(p) (PST_PRIVATE(p)->fdr_idx) #define CUR_HDR(p) (PST_PRIVATE(p)->cur_hdr) struct symloc { int fdr_idx; HDRR *cur_hdr; EXTR **extern_tab; /* Pointer to external symbols for this file. */ int extern_count; /* Size of extern_tab. */ }; /* Things we import explicitly from other modules */ extern int info_verbose; extern struct block *block_for_pc(); extern void sort_symtab_syms(); /* Various complaints about symbol reading that don't abort the process */ struct complaint bad_file_number_complaint = {"bad file number %d", 0, 0}; struct complaint unknown_ext_complaint = {"unknown external symbol %s", 0, 0}; struct complaint unknown_sym_complaint = {"unknown local symbol %s", 0, 0}; struct complaint unknown_st_complaint = {"with type %d", 0, 0}; struct complaint block_overflow_complaint = {"block containing %s overfilled", 0, 0}; struct complaint basic_type_complaint = {"cannot map MIPS basic type 0x%x", 0, 0}; struct complaint unknown_type_qual_complaint = {"unknown type qualifier 0x%x", 0, 0}; struct complaint array_bitsize_complaint = {"size of array target type not known, assuming %d bits", 0, 0}; struct complaint bad_tag_guess_complaint = {"guessed tag type incorrectly", 0, 0}; /* Macros and extra defs */ /* Already-parsed symbols are marked specially */ #define stParsed stType /* Puns: hard to find whether -g was used and how */ #define MIN_GLEVEL GLEVEL_0 #define compare_glevel(a,b) \ (((a) == GLEVEL_3) ? ((b) < GLEVEL_3) : \ ((b) == GLEVEL_3) ? -1 : (int)((b) - (a))) /* When looking at .o files, avoid tripping over bad addresses */ #define SAFE_TEXT_ADDR 0x400000 #define SAFE_DATA_ADDR 0x10000000 #define UNSAFE_DATA_ADDR(p) ((unsigned)p < SAFE_DATA_ADDR || (unsigned)p > 2*SAFE_DATA_ADDR) /* Things that really are local to this module */ /* GDB symtable for the current compilation unit */ static struct symtab *cur_stab; /* MIPS symtab header for the current file */ static HDRR *cur_hdr; /* Pointer to current file decriptor record, and its index */ static FDR *cur_fdr; static int cur_fd; /* Index of current symbol */ static int cur_sdx; /* Note how much "debuggable" this image is. We would like to see at least one FDR with full symbols */ static max_gdbinfo; static max_glevel; /* When examining .o files, report on undefined symbols */ static int n_undef_symbols, n_undef_labels, n_undef_vars, n_undef_procs; /* Pseudo symbol to use when putting stabs into the symbol table. */ static char stabs_symbol[] = STABS_SYMBOL; /* Extra builtin types */ struct type *builtin_type_complex; struct type *builtin_type_double_complex; struct type *builtin_type_fixed_dec; struct type *builtin_type_float_dec; struct type *builtin_type_string; /* Forward declarations */ static void fixup_symtab (); static void read_mips_symtab (); static int upgrade_type (); static void parse_partial_symbols(); static int cross_ref(); static void fixup_sigtramp(); static struct symbol *new_symbol(); static struct type *new_type(); static struct block *new_block(); static struct symtab *new_symtab(); static struct linetable *new_linetable(); static struct blockvector *new_bvect(); static struct type *parse_type(); static struct symbol *mylookup_symbol(); static struct block *shrink_block(); static void sort_blocks(); static int compare_symtabs(); static int compare_psymtabs(); static int compare_blocks(); static struct partial_symtab *new_psymtab(); static struct partial_symtab *parse_fdr(); static int compare_psymbols(); static void psymtab_to_symtab_1(); static void add_block(); static void add_symbol(); static int add_line(); static struct linetable *shrink_linetable(); static char* mips_next_symbol_text (); /* Things we export to other modules */ /* Address bounds for the signal trampoline in inferior, if any */ /* FIXME: Nothing really seems to use this. Why is it here? */ CORE_ADDR sigtramp_address, sigtramp_end; /* The entry point (starting address) of the file, if it is an executable. */ extern CORE_ADDR startup_file_start; /* From blockframe.c */ extern CORE_ADDR startup_file_end; /* From blockframe.c */ void mipscoff_new_init() { /* If we have a file symbol header lying around, blow it away. */ if (cur_hdr) free ((char *)cur_hdr); cur_hdr = 0; } void mipscoff_symfile_init (sf) struct sym_fns *sf; { sf->sym_private = NULL; } void mipscoff_symfile_read(sf, addr, mainline) struct sym_fns *sf; CORE_ADDR addr; int mainline; { struct coff_symfile_info *info = (struct coff_symfile_info *)sf->sym_private; bfd *abfd = sf->objfile->obfd; char *name = bfd_get_filename (abfd); int desc; register int val; int symtab_offset; int stringtab_offset; /* WARNING WILL ROBINSON! ACCESSING BFD-PRIVATE DATA HERE! FIXME! */ desc = fileno ((FILE *)(abfd->iostream)); /* Raw file descriptor */ /* End of warning */ /* Position to read the symbol table. */ val = lseek (desc, (long)symtab_offset, 0); if (val < 0) perror_with_name (name); init_minimal_symbol_collection (); make_cleanup (discard_minimal_symbols, 0); /* Now that the executable file is positioned at symbol table, process it and define symbols accordingly. */ read_mips_symtab(sf->objfile, desc); /* Install any minimal symbols that have been collected as the current minimal symbols for this objfile. */ install_minimal_symbols (sf -> objfile); } /* Allocate zeroed memory */ static char * xzalloc(size) { char *p = xmalloc(size); memset(p, 0, size); return p; } /* Exported procedure: Builds a symtab from the PST partial one. Restores the environment in effect when PST was created, delegates most of the work to an ancillary procedure, and sorts and reorders the symtab list at the end */ static void mipscoff_psymtab_to_symtab(pst) struct partial_symtab *pst; { struct symtab *ret; int i; if (!pst) return; if (info_verbose) { printf_filtered("Reading in symbols for %s...", pst->filename); fflush(stdout); } /* Restore the header and list of pending typedefs */ cur_hdr = CUR_HDR(pst); next_symbol_text_func = mips_next_symbol_text; psymtab_to_symtab_1(pst, pst->filename); /* Match with global symbols. This only needs to be done once, after all of the symtabs and dependencies have been read in. */ scan_file_globals (pst->objfile); if (info_verbose) printf_filtered("done.\n"); } /* Exported procedure: Is PC in the signal trampoline code */ int in_sigtramp(pc, name) CORE_ADDR pc; char *name; { if (sigtramp_address == 0) fixup_sigtramp(); return (pc >= sigtramp_address && pc < sigtramp_end); } /* File-level interface functions */ /* Read the symtab information from file FSYM into memory. Also, return address just past end of our text segment in *END_OF_TEXT_SEGP. */ static read_the_mips_symtab(abfd, fsym, end_of_text_segp) bfd *abfd; int fsym; CORE_ADDR *end_of_text_segp; { int stsize, st_hdrsize; unsigned st_filptr; struct hdr_ext hdr_ext; HDRR st_hdr; /* Header for executable/object file we read symbols from */ struct coff_exec filhdr; /* We get here with DESC pointing to the symtab header. But we need * other info from the initial headers */ lseek(fsym, 0L, 0); myread(fsym, (char *)&filhdr, sizeof filhdr); if (end_of_text_segp) *end_of_text_segp = bfd_h_get_32 (abfd, filhdr.a.text_start) + bfd_h_get_32 (abfd, filhdr.a.tsize); /* Find and read the symbol table header */ st_hdrsize = bfd_h_get_32 (abfd, filhdr.f.f_nsyms); st_filptr = bfd_h_get_32 (abfd, filhdr.f.f_symptr); if (st_filptr == 0) return 0; lseek(fsym, st_filptr, L_SET); if (st_hdrsize != sizeof (hdr_ext)) { /* Profanity check */ error ("Wrong header size: %d, not %d", st_hdrsize, sizeof (hdr_ext)); } if (read(fsym, &hdr_ext, st_hdrsize) != st_hdrsize) goto readerr; ecoff_swap_hdr_in (abfd, &hdr_ext, &st_hdr); /* Find out how large the symbol table is */ stsize = (st_hdr.cbExtOffset - (st_filptr + st_hdrsize)) + st_hdr.iextMax * cbEXTR; /* Allocate space for the symbol table. Read it in. */ cur_hdr = (HDRR *) xmalloc(stsize + st_hdrsize); memcpy(cur_hdr, &hdr_ext, st_hdrsize); if (read(fsym, (char *) cur_hdr + st_hdrsize, stsize) != stsize) goto readerr; /* Fixup file_pointers in it */ fixup_symtab(cur_hdr, (char *) cur_hdr + st_hdrsize, st_filptr + st_hdrsize, abfd); return; readerr: error("Short read on %s", bfd_get_filename (abfd)); } /* Turn all file-relative pointers in the symtab described by HDR into memory pointers, given that the symtab itself is located at DATA in memory and F_PTR in the file. Byte-swap all the data structures, in place, while we are at it -- except AUX entries, which we leave in their original byte order. They will be swapped as they are used instead. (FIXME: we ought to do all the data structures that way.) */ static void fixup_symtab (hdr, data, f_ptr, abfd) HDRR *hdr; char *data; int f_ptr; bfd *abfd; { int f_idx, s_idx; FDR *fh; SYMR *sh; PDR *pr; EXTR *esh; /* This function depends on the external and internal forms of the MIPS symbol table taking identical space. Check this assumption at compile-time. */ static check_hdr1[1 + sizeof (struct hdr_ext) - sizeof (HDRR)] = {0}; static check_hdr2[1 + sizeof (HDRR) - sizeof (struct hdr_ext)] = {0}; static check_fdr1[1 + sizeof (struct fdr_ext) - sizeof (FDR)] = {0}; static check_fdr2[1 + sizeof (FDR) - sizeof (struct fdr_ext)] = {0}; static check_pdr1[1 + sizeof (struct pdr_ext) - sizeof (PDR)] = {0}; static check_pdr2[1 + sizeof (PDR) - sizeof (struct pdr_ext)] = {0}; static check_sym1[1 + sizeof (struct sym_ext) - sizeof (SYMR)] = {0}; static check_sym2[1 + sizeof (SYMR) - sizeof (struct sym_ext)] = {0}; static check_ext1[1 + sizeof (struct ext_ext) - sizeof (EXTR)] = {0}; static check_ext2[1 + sizeof (EXTR) - sizeof (struct ext_ext)] = {0}; /* Swap in the header record. */ ecoff_swap_hdr_in (abfd, hdr, hdr); /* * These fields are useless (and empty) by now: * hdr->cbDnOffset, hdr->cbOptOffset * We use them for other internal purposes. */ hdr->cbDnOffset = 0; hdr->cbOptOffset = 0; #define FIX(off) \ if (hdr->off) hdr->off = (unsigned int)data + (hdr->off - f_ptr); FIX(cbLineOffset); FIX(cbPdOffset); FIX(cbSymOffset); FIX(cbOptOffset); FIX(cbAuxOffset); FIX(cbSsOffset); FIX(cbSsExtOffset); FIX(cbFdOffset); FIX(cbRfdOffset); FIX(cbExtOffset); #undef FIX /* Fix all string pointers inside the symtab, and the FDR records. Also fix other miscellany. */ for (f_idx = 0; f_idx < hdr->ifdMax; f_idx++) { register unsigned code_offset; /* Header itself, and strings */ fh = (FDR *) (hdr->cbFdOffset) + f_idx; /* Swap in the FDR */ ecoff_swap_fdr_in (abfd, fh, fh); fh->issBase += hdr->cbSsOffset; if (fh->rss != -1) fh->rss = (long)fh->rss + fh->issBase; /* Local symbols */ fh->isymBase = (int)((SYMR*)(hdr->cbSymOffset)+fh->isymBase); /* FIXME! Probably don't want to do this here! */ for (s_idx = 0; s_idx < fh->csym; s_idx++) { sh = (SYMR*)fh->isymBase + s_idx; ecoff_swap_sym_in (abfd, sh, sh); sh->iss = (long) sh->iss + fh->issBase; sh->reserved = 0; } cur_fd = f_idx; /* cannot fix fh->ipdFirst because it is a short */ #define IPDFIRST(h,fh) \ ((long)h->cbPdOffset + fh->ipdFirst * sizeof(PDR)) /* Optional symbols (actually used for partial_symtabs) */ fh->ioptBase = 0; fh->copt = 0; /* Aux symbols */ if (fh->caux) fh->iauxBase = hdr->cbAuxOffset + fh->iauxBase * sizeof(union aux_ext); /* Relative file descriptor table */ fh->rfdBase = hdr->cbRfdOffset + fh->rfdBase * sizeof(RFDT); /* Line numbers */ if (fh->cbLine) fh->cbLineOffset += hdr->cbLineOffset; /* Procedure symbols. (XXX This should be done later) */ code_offset = fh->adr; for (s_idx = 0; s_idx < fh->cpd; s_idx++) { unsigned name, only_ext; pr = (PDR*)(IPDFIRST(hdr,fh)) + s_idx; ecoff_swap_pdr_in (abfd, pr, pr); /* Simple rule to find files linked "-x" */ only_ext = fh->rss == -1; if (only_ext) { if (pr->isym == -1) { /* static function */ sh = (SYMR*)-1; } else { /* external */ name = hdr->cbExtOffset + pr->isym * sizeof(EXTR); sh = &((EXTR*)name)->asym; } } else { /* Full symbols */ sh = (SYMR*)fh->isymBase + pr->isym; /* Included code ? */ if (s_idx == 0 && pr->adr != 0) code_offset -= pr->adr; } /* Turn index into a pointer */ pr->isym = (long)sh; /* Fix line numbers */ pr->cbLineOffset += fh->cbLineOffset; /* Relocate address */ if (!only_ext) pr->adr += code_offset; } } /* External symbols: swap in, and fix string */ for (s_idx = 0; s_idx < hdr->iextMax; s_idx++) { esh = (EXTR*)(hdr->cbExtOffset) + s_idx; ecoff_swap_ext_in (abfd, esh, esh); esh->asym.iss = esh->asym.iss + hdr->cbSsExtOffset; } } /* Find a file descriptor given its index RF relative to a file CF */ static FDR * get_rfd (cf, rf) int cf, rf; { register FDR *f; f = (FDR *) (cur_hdr->cbFdOffset) + cf; /* Object files do not have the RFD table, all refs are absolute */ if (f->rfdBase == 0) return (FDR *) (cur_hdr->cbFdOffset) + rf; cf = *((pRFDT) f->rfdBase + rf); return (FDR *) (cur_hdr->cbFdOffset) + cf; } /* Return a safer print NAME for a file descriptor */ static char * fdr_name(name) char *name; { if (name == (char *) -1) return ""; if (UNSAFE_DATA_ADDR(name)) return ""; return name; } /* Read in and parse the symtab of the file DESC. INCREMENTAL says whether we are adding to the general symtab or not. FIXME: INCREMENTAL is currently always zero, though it should not be. */ static void read_mips_symtab (objfile, desc) struct objfile *objfile; int desc; { CORE_ADDR end_of_text_seg; read_the_mips_symtab(objfile->obfd, desc, &end_of_text_seg); parse_partial_symbols(end_of_text_seg, objfile); #if 0 /* * Check to make sure file was compiled with -g. * If not, warn the user of this limitation. */ if (compare_glevel(max_glevel, GLEVEL_2) < 0) { if (max_gdbinfo == 0) printf ( "\n%s not compiled with -g, debugging support is limited.\n", objfile->name); printf( "You should compile with -g2 or -g3 for best debugging support.\n"); fflush(stdout); } #endif } /* Local utilities */ /* Map of FDR indexes to partial symtabs */ struct pst_map { struct partial_symtab *pst; /* the psymtab proper */ int n_globals; /* exported globals (external symbols) */ int globals_offset; /* cumulative */ }; /* Utility stack, used to nest procedures and blocks properly. It is a doubly linked list, to avoid too many alloc/free. Since we might need it quite a few times it is NOT deallocated after use. */ static struct parse_stack { struct parse_stack *next, *prev; struct symtab *cur_st; /* Current symtab. */ struct block *cur_block; /* Block in it. */ int blocktype; /* What are we parsing. */ int maxsyms; /* Max symbols in this block. */ struct type *cur_type; /* Type we parse fields for. */ int cur_field; /* Field number in cur_type. */ int procadr; /* Start addres of this procedure */ int numargs; /* Its argument count */ } *top_stack; /* Top stack ptr */ /* Enter a new lexical context */ static push_parse_stack() { struct parse_stack *new; /* Reuse frames if possible */ if (top_stack && top_stack->prev) new = top_stack->prev; else new = (struct parse_stack *) xzalloc(sizeof(struct parse_stack)); /* Initialize new frame with previous content */ if (top_stack) { register struct parse_stack *prev = new->prev; *new = *top_stack; top_stack->prev = new; new->prev = prev; new->next = top_stack; } top_stack = new; } /* Exit a lexical context */ static pop_parse_stack() { if (!top_stack) return; if (top_stack->next) top_stack = top_stack->next; } /* Cross-references might be to things we haven't looked at yet, e.g. type references. To avoid too many type duplications we keep a quick fixup table, an array of lists of references indexed by file descriptor */ static struct mips_pending { struct mips_pending *next; /* link */ SYMR *s; /* the symbol */ struct type *t; /* its partial type descriptor */ } **pending_list; /* Check whether we already saw symbol SH in file FH as undefined */ static struct mips_pending *is_pending_symbol(fh, sh) FDR *fh; SYMR *sh; { int f_idx = fh - (FDR *) cur_hdr->cbFdOffset; register struct mips_pending *p; /* Linear search is ok, list is typically no more than 10 deep */ for (p = pending_list[f_idx]; p; p = p->next) if (p->s == sh) break; return p; } /* Check whether we already saw type T in file FH as undefined */ static struct mips_pending *is_pending_type(fh, t) FDR *fh; struct type *t; { int f_idx = fh - (FDR *) cur_hdr->cbFdOffset; register struct mips_pending *p; for (p = pending_list[f_idx]; p; p = p->next) if (p->t == t) break; return p; } /* Add a new undef symbol SH of type T */ static add_pending(fh, sh, t) FDR *fh; SYMR *sh; struct type *t; { int f_idx = fh - (FDR *) cur_hdr->cbFdOffset; struct mips_pending *p = is_pending_symbol(fh, sh); /* Make sure we do not make duplicates */ if (!p) { p = (struct mips_pending *) xmalloc(sizeof(*p)); p->s = sh; p->t = t; p->next = pending_list[f_idx]; pending_list[f_idx] = p; } sh->reserved = 1; /* for quick check */ } /* Throw away undef entries when done with file index F_IDX */ static free_pending(f_idx) { register struct mips_pending *p, *q; for (p = pending_list[f_idx]; p; p = q) { q = p->next; free(p); } pending_list[f_idx] = 0; } /* The number of args to a procedure is not explicit in the symtab, this is the list of all those we know of. This makes parsing more reasonable and avoids extra passes */ static struct numarg { struct numarg *next; /* link */ unsigned adr; /* procedure's start address */ unsigned num; /* arg count */ } *numargs_list; /* Record that the procedure at ADR takes NUM arguments. */ static got_numargs(adr,num) { struct numarg *n = (struct numarg *) xmalloc(sizeof(struct numarg)); n->adr = adr; n->num = num; n->next = numargs_list; numargs_list = n; } /* See if we know how many arguments the procedure at ADR takes */ static lookup_numargs(adr) { struct numarg *n = numargs_list; while (n && n->adr != adr) n = n->next; return (n) ? n->num : -1; } /* Release storage when done with this file */ static void free_numargs() { struct numarg *n = numargs_list, *m; while (n) { m = n->next; free(n); n = m; } numargs_list = 0; } char* prepend_tag_kind(tag_name, type_code) char *tag_name; int type_code; { char *prefix; char *result; switch (type_code) { case TYPE_CODE_ENUM: prefix = "enum "; break; case TYPE_CODE_STRUCT: prefix = "struct "; break; case TYPE_CODE_UNION: prefix = "union "; break; default: prefix = ""; } result = (char*)obstack_alloc (¤t_objfile->symbol_obstack, strlen(prefix) + strlen(tag_name) + 1); sprintf(result, "%s%s", prefix, tag_name); return result; } /* Parsing Routines proper. */ /* Parse a single symbol. Mostly just make up a GDB symbol for it. For blocks, procedures and types we open a new lexical context. This is basically just a big switch on the symbol's type. Argument AX is the base pointer of aux symbols for this file (fh->iauxBase). BIGEND says whether aux symbols are big-endian or little-endian. Return count of SYMR's handled (normally one). */ static int parse_symbol(sh, ax, bigend) SYMR *sh; union aux_ext *ax; int bigend; { char *name; struct symbol *s; struct block *b; struct type *t; struct field *f; int count = 1; /* When a symbol is cross-referenced from other files/symbols we mark it explicitly */ int pend = (sh->reserved == 1); enum address_class class; TIR tir; switch (sh->st) { case stNil: break; case stGlobal: /* external symbol, goes into global block */ class = LOC_STATIC; b = BLOCKVECTOR_BLOCK(BLOCKVECTOR(top_stack->cur_st), GLOBAL_BLOCK); s = new_symbol(sh->iss); SYMBOL_VALUE_ADDRESS(s) = (CORE_ADDR)sh->value; goto data; case stStatic: /* static data, goes into current block. */ class = LOC_STATIC; b = top_stack->cur_block; s = new_symbol(sh->iss); SYMBOL_VALUE_ADDRESS(s) = (CORE_ADDR)sh->value; goto data; case stLocal: /* local variable, goes into current block */ if (sh->sc == scRegister) { class = LOC_REGISTER; if (sh->value > 31) sh->value += FP0_REGNUM-32; } else class = LOC_LOCAL; b = top_stack->cur_block; s = new_symbol(sh->iss); SYMBOL_VALUE(s) = sh->value; data: /* Common code for symbols describing data */ SYMBOL_NAMESPACE(s) = VAR_NAMESPACE; SYMBOL_CLASS(s) = class; add_symbol(s, b); /* Type could be missing in a number of cases */ if (sh->sc == scUndefined || sh->sc == scNil || sh->index == 0xfffff) SYMBOL_TYPE(s) = builtin_type_int; /* undefined? */ else SYMBOL_TYPE(s) = parse_type(ax + sh->index, 0, bigend); /* Value of a data symbol is its memory address */ break; case stParam: /* arg to procedure, goes into current block */ max_gdbinfo++; top_stack->numargs++; name = (char*)sh->iss; /* Special GNU C++ name. */ if (name[0] == CPLUS_MARKER && name[1] == 't' && name[2] == 0) name = "this"; s = new_symbol(name); SYMBOL_NAMESPACE(s) = VAR_NAMESPACE; if (sh->sc == scRegister) { SYMBOL_CLASS(s) = LOC_REGPARM; if (sh->value > 31) sh->value += FP0_REGNUM-32; } else SYMBOL_CLASS(s) = LOC_ARG; SYMBOL_VALUE(s) = sh->value; SYMBOL_TYPE(s) = parse_type(ax + sh->index, 0, bigend); add_symbol(s, top_stack->cur_block); #if 0 /* FIXME: This has not been tested. See dbxread.c */ /* Add the type of this parameter to the function/procedure type of this block. */ add_param_to_type(&top_stack->cur_block->function->type,s); #endif break; case stLabel: /* label, goes into current block */ s = new_symbol(sh->iss); SYMBOL_NAMESPACE(s) = VAR_NAMESPACE; /* so that it can be used */ SYMBOL_CLASS(s) = LOC_LABEL; /* but not misused */ SYMBOL_VALUE_ADDRESS(s) = (CORE_ADDR)sh->value; SYMBOL_TYPE(s) = builtin_type_int; add_symbol(s, top_stack->cur_block); break; case stProc: /* Procedure, usually goes into global block */ case stStaticProc: /* Static procedure, goes into current block */ s = new_symbol(sh->iss); SYMBOL_NAMESPACE(s) = VAR_NAMESPACE; SYMBOL_CLASS(s) = LOC_BLOCK; /* Type of the return value */ if (sh->sc == scUndefined || sh->sc == scNil) t = builtin_type_int; else t = parse_type(ax + sh->index + 1, 0, bigend); b = top_stack->cur_block; if (sh->st == stProc) { struct blockvector *bv = BLOCKVECTOR(top_stack->cur_st); /* The next test should normally be true, but provides a hook for nested functions (which we don't want to make global). */ if (b == BLOCKVECTOR_BLOCK(bv, STATIC_BLOCK)) b = BLOCKVECTOR_BLOCK(bv, GLOBAL_BLOCK); } add_symbol(s, b); /* Make a type for the procedure itself */ #if 0 /* FIXME: This has not been tested yet! See dbxread.c */ /* Generate a template for the type of this function. The types of the arguments will be added as we read the symbol table. */ bcopy(SYMBOL_TYPE(s),lookup_function_type(t),sizeof(struct type)); #else SYMBOL_TYPE(s) = lookup_function_type (t); #endif /* Create and enter a new lexical context */ b = new_block(top_stack->maxsyms); SYMBOL_BLOCK_VALUE(s) = b; BLOCK_FUNCTION(b) = s; BLOCK_START(b) = BLOCK_END(b) = sh->value; BLOCK_SUPERBLOCK(b) = top_stack->cur_block; add_block(b, top_stack->cur_st); /* Not if we only have partial info */ if (sh->sc == scUndefined || sh->sc == scNil) break; push_parse_stack(); top_stack->cur_block = b; top_stack->blocktype = sh->st; top_stack->cur_type = SYMBOL_TYPE(s); top_stack->cur_field = -1; top_stack->procadr = sh->value; top_stack->numargs = 0; sh->value = (long) SYMBOL_TYPE(s); break; #ifndef btVoid /* btVoid was added late. */ #define btVoid 26 #endif /* These new symbol types have been recently added to SGI machines. */ #ifndef stStruct #define stStruct 26 #endif #ifndef stUnion #define stUnion 27 #endif #ifndef stEnum #define stEnum 28 #endif case stStruct: case stUnion: case stEnum: case stBlock: /* Either a lexical block, or some type */ push_parse_stack(); top_stack->blocktype = stBlock; if (sh->sc == scInfo) { /* structure/union/enum def */ int type_code = sh->st == stStruct ? TYPE_CODE_STRUCT : sh->st == stUnion ? TYPE_CODE_UNION : sh->st == stEnum ? TYPE_CODE_ENUM : TYPE_CODE_UNDEF; int nfields = 0; SYMR *tsym; long max_value = 0; struct field *f; s = new_symbol(sh->iss); SYMBOL_NAMESPACE(s) = STRUCT_NAMESPACE; SYMBOL_CLASS(s) = LOC_TYPEDEF; SYMBOL_VALUE(s) = 0; add_symbol(s, top_stack->cur_block); /* First count the number of fields. */ for (tsym = sh+1; tsym->st != stEnd; tsym++) if (tsym->st == stMember) { if (nfields == 0 && type_code == TYPE_CODE_UNDEF) /* If the type of the member is Nil (or Void) assume the tag is an enumeration. */ if (tsym->index == indexNil) type_code = TYPE_CODE_ENUM; else { ecoff_swap_tir_in (bigend, &ax[tsym->index].a_ti, &tir); if (tir.bt == btNil || tir.bt == btVoid) type_code = TYPE_CODE_ENUM; } nfields++; if (tsym->value > max_value) max_value = tsym->value; } else if (tsym->st == stBlock || tsym->st == stParsed) { if (tsym->sc == scVariant) ; /*UNIMPLEMENTED*/ if (tsym->index != 0) tsym = ((SYMR*)cur_fdr->isymBase) + tsym->index-1; } /* There is no guaranteed way to distinguish struct, unions, and enums at this point. This is a bug in the original design (that has been fixed with the recent addition of the stStruct, stUnion, and stEnum symbol types.) The way you can tell is if/when you see a variable or field of that type: In that case the variable's type (in the AUX table) says if the type is struct, union, or enum, and points back to the stBlock here. So you can patch the tag kind up later - but only if there actually is a variable or field of that type. So until we know for sure, we will guess at this point. The heuristic is: If the first member has index==indexNil or a void type, assume we have an enumeration. Otherwise, if there is more than one member, and all the members have offset 0, assume we have a union. Otherwise, assume we have a struct. The heuristic could guess wrong in the case of of an enumeration with no members or a union with one (or zero) members, or when all except the last field of a struct have width zero. These are uncommon and/or illegal situations, and in any case guessing wrong probably doesn't matter much. But if we later do find out we were wrong, we fixup the tag kind. Members of an enumeration must be handled differently from struct/union fields, and that is harder to patch up, but luckily we shouldn't need to. (If there are any enumeration members, we can tell for sure it's an enum here.) */ if (type_code == TYPE_CODE_UNDEF) if (nfields > 1 && max_value == 0) type_code = TYPE_CODE_UNION; else type_code = TYPE_CODE_STRUCT; /* If this type was expected, use its partial definition */ if (pend) t = is_pending_symbol(cur_fdr, sh)->t; else t = new_type(prepend_tag_kind(sh->iss, type_code)); TYPE_CODE(t) = type_code; TYPE_LENGTH(t) = sh->value; TYPE_NFIELDS(t) = nfields; TYPE_FIELDS(t) = f = (struct field*) obstack_alloc (¤t_objfile -> type_obstack, nfields * sizeof (struct field)); if (type_code == TYPE_CODE_ENUM) { /* This is a non-empty enum. */ for (tsym = sh + 1; tsym->st == stMember; tsym++) { struct symbol *enum_sym; f->bitpos = tsym->value; f->type = t; f->name = (char*)tsym->iss; f->bitsize = 0; enum_sym = (struct symbol *) obstack_alloc (¤t_objfile->symbol_obstack, sizeof (struct symbol)); memset (enum_sym, 0, sizeof (struct symbol)); SYMBOL_NAME (enum_sym) = f->name; SYMBOL_CLASS (enum_sym) = LOC_CONST; SYMBOL_TYPE (enum_sym) = t; SYMBOL_NAMESPACE (enum_sym) = VAR_NAMESPACE; SYMBOL_VALUE (enum_sym) = tsym->value; add_symbol(enum_sym, top_stack->cur_block); /* Skip the stMembers that we've handled. */ count++; f++; } } SYMBOL_TYPE(s) = t; /* make this the current type */ top_stack->cur_type = t; top_stack->cur_field = 0; /* Mark that symbol has a type, and say which one */ sh->value = (long) t; } else { /* beginnning of (code) block. Value of symbol is the displacement from procedure start */ b = new_block(top_stack->maxsyms); BLOCK_START(b) = sh->value + top_stack->procadr; BLOCK_SUPERBLOCK(b) = top_stack->cur_block; top_stack->cur_block = b; add_block(b, top_stack->cur_st); } break; case stEnd: /* end (of anything) */ if (sh->sc == scInfo) { /* Finished with type */ top_stack->cur_type = 0; } else if (sh->sc == scText && (top_stack->blocktype == stProc || top_stack->blocktype == stStaticProc)) { /* Finished with procedure */ struct blockvector *bv = BLOCKVECTOR(top_stack->cur_st); struct block *b; int i; BLOCK_END(top_stack->cur_block) += sh->value; /* size */ got_numargs(top_stack->procadr, top_stack->numargs); /* Reallocate symbols, saving memory */ b = shrink_block(top_stack->cur_block, top_stack->cur_st); /* f77 emits proc-level with address bounds==[0,0], So look for such child blocks, and patch them. */ for (i = 0; i < BLOCKVECTOR_NBLOCKS(bv); i++) { struct block *b_bad = BLOCKVECTOR_BLOCK(bv,i); if (BLOCK_SUPERBLOCK(b_bad) == b && BLOCK_START(b_bad) == top_stack->procadr && BLOCK_END(b_bad) == top_stack->procadr) { BLOCK_START(b_bad) = BLOCK_START(b); BLOCK_END(b_bad) = BLOCK_END(b); } } } else if (sh->sc == scText && top_stack->blocktype == stBlock) { /* End of (code) block. The value of the symbol is the displacement from the procedure`s start address of the end of this block. */ BLOCK_END(top_stack->cur_block) = sh->value + top_stack->procadr; (void) shrink_block(top_stack->cur_block, top_stack->cur_st); } pop_parse_stack(); /* restore previous lexical context */ break; case stMember: /* member of struct or union */ f = &TYPE_FIELDS(top_stack->cur_type)[top_stack->cur_field++]; f->name = (char*)sh->iss; f->bitpos = sh->value; f->bitsize = 0; f->type = parse_type(ax + sh->index, &f->bitsize, bigend); break; case stTypedef: /* type definition */ s = new_symbol(sh->iss); SYMBOL_NAMESPACE(s) = VAR_NAMESPACE; SYMBOL_CLASS(s) = LOC_TYPEDEF; SYMBOL_BLOCK_VALUE(s) = top_stack->cur_block; add_symbol(s, top_stack->cur_block); SYMBOL_TYPE(s) = parse_type(ax + sh->index, 0, bigend); sh->value = (long) SYMBOL_TYPE(s); break; case stFile: /* file name */ push_parse_stack(); top_stack->blocktype = sh->st; break; /* I`ve never seen these for C */ case stRegReloc: break; /* register relocation */ case stForward: break; /* forwarding address */ case stConstant: break; /* constant */ default: error("Unknown symbol type %x.", sh->st); } sh->st = stParsed; return count; } /* Parse the type information provided in the raw AX entries for the symbol SH. Return the bitfield size in BS, in case. We must byte-swap the AX entries before we use them; BIGEND says whether they are big-endian or little-endian (from fh->fBigendian). */ static struct type *parse_type(ax, bs, bigend) union aux_ext *ax; int *bs; int bigend; { /* Null entries in this map are treated specially */ static struct type **map_bt[] = { &builtin_type_void, /* btNil */ 0, /* btAdr */ &builtin_type_char, /* btChar */ &builtin_type_unsigned_char, /* btUChar */ &builtin_type_short, /* btShort */ &builtin_type_unsigned_short, /* btUShort */ &builtin_type_int, /* btInt */ &builtin_type_unsigned_int, /* btUInt */ &builtin_type_long, /* btLong */ &builtin_type_unsigned_long, /* btULong */ &builtin_type_float, /* btFloat */ &builtin_type_double, /* btDouble */ 0, /* btStruct */ 0, /* btUnion */ 0, /* btEnum */ 0, /* btTypedef */ 0, /* btRange */ 0, /* btSet */ &builtin_type_complex, /* btComplex */ &builtin_type_double_complex, /* btDComplex */ 0, /* btIndirect */ &builtin_type_fixed_dec, /* btFixedDec */ &builtin_type_float_dec, /* btFloatDec */ &builtin_type_string, /* btString */ 0, /* btBit */ 0, /* btPicture */ &builtin_type_void, /* btVoid */ }; TIR t[1]; struct type *tp = 0; char *fmt; int i; union aux_ext *tax; int type_code; /* Use aux as a type information record, map its basic type. */ tax = ax; ecoff_swap_tir_in (bigend, &tax->a_ti, t); if (t->bt > (sizeof (map_bt)/sizeof (*map_bt))) { complain (&basic_type_complaint, t->bt); return builtin_type_int; } if (map_bt[t->bt]) { tp = *map_bt[t->bt]; fmt = "%s"; } else { tp = NULL; /* Cannot use builtin types -- build our own */ switch (t->bt) { case btAdr: tp = lookup_pointer_type (builtin_type_void); fmt = "%s"; break; case btStruct: type_code = TYPE_CODE_STRUCT; fmt = "struct %s"; break; case btUnion: type_code = TYPE_CODE_UNION; fmt = "union %s"; break; case btEnum: type_code = TYPE_CODE_ENUM; fmt = "enum %s"; break; case btRange: type_code = TYPE_CODE_RANGE; fmt = "%s"; break; case btSet: type_code = TYPE_CODE_SET; fmt = "set %s"; break; case btTypedef: default: complain (&basic_type_complaint, t->bt); return builtin_type_int; } } /* Skip over any further type qualifiers (FIXME). */ if (t->continued) { /* This is the way it would work if the compiler worked */ TIR t1[1]; do { ax++; ecoff_swap_tir_in (bigend, ax, t1); } while (t1->continued); } /* Move on to next aux */ ax++; if (t->fBitfield) { *bs = AUX_GET_WIDTH (bigend, ax); ax++; } /* All these types really point to some (common) MIPS type definition, and only the type-qualifiers fully identify them. We'll make the same effort at sharing. */ if (t->bt == btIndirect || t->bt == btStruct || t->bt == btUnion || t->bt == btEnum || t->bt == btTypedef || t->bt == btRange || t->bt == btSet) { char name[256], *pn; /* Try to cross reference this type */ ax += cross_ref(ax, &tp, type_code, &pn, bigend); /* reading .o file ? */ if (UNSAFE_DATA_ADDR(tp)) tp = init_type(type_code, 0, 0, 0, (struct objfile *) NULL); /* SOMEONE OUGHT TO FIX DBXREAD TO DROP "STRUCT" */ sprintf(name, fmt, pn); /* Usually, TYPE_CODE(tp) is already type_code. The main exception is if we guessed wrong re struct/union/enum. */ if (TYPE_CODE(tp) != type_code) { complain (&bad_tag_guess_complaint, 0); TYPE_CODE(tp) = type_code; } if (TYPE_NAME(tp) == NULL || strcmp(TYPE_NAME(tp), name) != 0) TYPE_NAME(tp) = obsavestring(name, strlen(name), ¤t_objfile -> type_obstack); } /* Deal with range types */ if (t->bt == btRange) { struct field *f; TYPE_NFIELDS (tp) = 2; TYPE_FIELDS (tp) = (struct field *) obstack_alloc (¤t_objfile -> type_obstack, 2 * sizeof (struct field)); TYPE_FIELD_NAME (tp, 0) = obsavestring ("Low", strlen ("Low"), ¤t_objfile -> type_obstack); TYPE_FIELD_BITPOS (tp, 0) = AUX_GET_DNLOW (bigend, ax); ax++; TYPE_FIELD_NAME (tp, 1) = obsavestring ("High", strlen ("High"), ¤t_objfile -> type_obstack); TYPE_FIELD_BITPOS (tp, 1) = AUX_GET_DNHIGH (bigend, ax); ax++; } /* Parse all the type qualifiers now. If there are more than 6 the game will continue in the next aux */ #define PARSE_TQ(tq) \ if (t->tq != tqNil) ax += upgrade_type(&tp, t->tq, ax, bigend); again: PARSE_TQ(tq0); PARSE_TQ(tq1); PARSE_TQ(tq2); PARSE_TQ(tq3); PARSE_TQ(tq4); PARSE_TQ(tq5); #undef PARSE_TQ if (t->continued) { tax++; ecoff_swap_tir_in (bigend, &tax->a_ti, t); goto again; } return tp; } /* Make up a complex type from a basic one. Type is passed by reference in TPP and side-effected as necessary. The type qualifier TQ says how to handle the aux symbols at AX for the symbol SX we are currently analyzing. BIGEND says whether aux symbols are big-endian or little-endian. Returns the number of aux symbols we parsed. */ static int upgrade_type(tpp, tq, ax, bigend) struct type **tpp; union aux_ext *ax; int bigend; { int off; struct type *t; /* Used in array processing */ int rf, id; FDR *fh; struct field *f; int lower, upper; RNDXR rndx; switch (tq) { case tqPtr: t = lookup_pointer_type (*tpp); *tpp = t; return 0; case tqProc: t = lookup_function_type (*tpp); *tpp = t; return 0; case tqArray: off = 0; t = init_type(TYPE_CODE_ARRAY, 0, 0, 0, (struct objfile *) NULL); TYPE_TARGET_TYPE(t) = *tpp; /* Determine and record the domain type (type of index) */ ecoff_swap_rndx_in (bigend, ax, &rndx); id = rndx.index; rf = rndx.rfd; if (rf == 0xfff) { ax++; rf = AUX_GET_ISYM (bigend, ax); off++; } fh = get_rfd(cur_fd, rf); /* Fields are kept in an array */ /* FIXME - Memory leak! */ if (TYPE_NFIELDS(t)) TYPE_FIELDS(t) = (struct field*) xrealloc((char *) TYPE_FIELDS(t), (TYPE_NFIELDS(t)+1) * sizeof(struct field)); else TYPE_FIELDS(t) = (struct field*) xzalloc(sizeof(struct field)); f = &(TYPE_FIELD(t,TYPE_NFIELDS(t))); TYPE_NFIELDS(t)++; memset(f, 0, sizeof(struct field)); /* XXX */ f->type = parse_type(fh->iauxBase + id * sizeof(union aux_ext), &f->bitsize, bigend); ax++; lower = AUX_GET_DNLOW (bigend, ax); ax++; upper = AUX_GET_DNHIGH (bigend, ax); ax++; rf = AUX_GET_WIDTH (bigend, ax); /* bit size of array element */ /* Check whether supplied array element bit size matches the known size of the element type. If this complaint ends up not happening, we can remove this code. It's here because we aren't sure we understand this *&%&$ symbol format. */ id = TYPE_LENGTH(TYPE_TARGET_TYPE(t)) << 3; /* bitsize */ if (id == 0) { /* Most likely an undefined type */ id = rf; TYPE_LENGTH(TYPE_TARGET_TYPE(t)) = id >> 3; } if (id != rf) complain (&array_bitsize_complaint, rf); TYPE_LENGTH(t) = (upper < 0) ? 0 : (upper - lower + 1) * (rf >> 3); *tpp = t; return 4 + off; case tqVol: /* Volatile -- currently ignored */ return 0; default: complain (&unknown_type_qual_complaint, tq); return 0; } } /* Parse a procedure descriptor record PR. Note that the procedure is parsed _after_ the local symbols, now we just make up the extra information we need into a special symbol that we insert in the procedure's main block. Note also that images that have been partially stripped (ld -x) have been deprived of local symbols, and we have to cope with them here. The procedure's code ends at BOUND */ static parse_procedure(pr, bound) PDR *pr; { struct symbol *s, *i; SYMR *sh = (SYMR*)pr->isym; struct block *b; struct mips_extra_func_info *e; char name[100]; char *sh_name; /* Reuse the MIPS record */ e = (struct mips_extra_func_info *) pr; e->numargs = lookup_numargs(pr->adr); /* Make up our special symbol */ i = new_symbol(".gdbinfo."); SYMBOL_VALUE(i) = (int)e; SYMBOL_NAMESPACE(i) = LABEL_NAMESPACE; SYMBOL_CLASS(i) = LOC_CONST; SYMBOL_TYPE(i) = builtin_type_void; /* Make up a name for static procedures. Sigh. */ if (sh == (SYMR*)-1) { sprintf(name,".static_procedure@%x",pr->adr); sh_name = savestring(name, strlen(name)); s = NULL; } else { sh_name = (char*)sh->iss; s = mylookup_symbol(sh_name, top_stack->cur_block, VAR_NAMESPACE, LOC_BLOCK); } if (s != 0) { b = SYMBOL_BLOCK_VALUE(s); } else { s = new_symbol(sh_name); SYMBOL_NAMESPACE(s) = VAR_NAMESPACE; SYMBOL_CLASS(s) = LOC_BLOCK; /* Donno its type, hope int is ok */ SYMBOL_TYPE(s) = lookup_function_type (builtin_type_int); add_symbol(s, top_stack->cur_block); /* Wont have symbols for this one */ b = new_block(2); SYMBOL_BLOCK_VALUE(s) = b; BLOCK_FUNCTION(b) = s; BLOCK_START(b) = pr->adr; BLOCK_END(b) = bound; BLOCK_SUPERBLOCK(b) = top_stack->cur_block; add_block(b, top_stack->cur_st); } e->isym = (long)s; add_symbol(i,b); } /* Parse the external symbol ES. Just call parse_symbol() after making sure we know where the aux are for it. For procedures, parsing of the PDRs has already provided all the needed information, we only parse them if SKIP_PROCEDURES is false, and only if this causes no symbol duplication. BIGEND says whether aux entries are big-endian or little-endian. This routine clobbers top_stack->cur_block and ->cur_st. */ static parse_external(es, skip_procedures, bigend) EXTR *es; int skip_procedures; int bigend; { union aux_ext *ax; if (es->ifd != ifdNil) { cur_fd = es->ifd; cur_fdr = (FDR*)(cur_hdr->cbFdOffset) + cur_fd; ax = (union aux_ext *)cur_fdr->iauxBase; } else { cur_fdr = (FDR*)(cur_hdr->cbFdOffset); ax = 0; } top_stack->cur_st = cur_stab; top_stack->cur_block = BLOCKVECTOR_BLOCK(BLOCKVECTOR(top_stack->cur_st), GLOBAL_BLOCK); /* Reading .o files */ if (es->asym.sc == scUndefined || es->asym.sc == scNil) { char *what; switch (es->asym.st) { case stStaticProc: case stProc: what = "procedure"; n_undef_procs++; break; case stGlobal: what = "variable"; n_undef_vars++; break; case stLabel: what = "label"; n_undef_labels++; break; default : what = "symbol"; break; } n_undef_symbols++; if (info_verbose) printf_filtered("Warning: %s `%s' is undefined (in %s)\n", what, es->asym.iss, fdr_name(cur_fdr->rss)); return; } switch (es->asym.st) { case stProc: /* If we have full symbols we do not need more */ if (skip_procedures) return; if (mylookup_symbol (es->asym.iss, top_stack->cur_block, VAR_NAMESPACE, LOC_BLOCK)) break; /* fall through */ case stGlobal: case stLabel: /* * Note that the case of a symbol with indexNil * must be handled anyways by parse_symbol(). */ parse_symbol(&es->asym, ax, bigend); break; default: break; } } /* Parse the line number info for file descriptor FH into GDB's linetable LT. MIPS' encoding requires a little bit of magic to get things out. Note also that MIPS' line numbers can go back and forth, apparently we can live with that and do not need to reorder our linetables */ static parse_lines(fh, lt) FDR *fh; struct linetable *lt; { unsigned char *base = (unsigned char*)fh->cbLineOffset; int i, j, k; int delta, count, lineno = 0; PDR *pr; if (base == 0) return; /* Scan by procedure descriptors */ i = 0; j = 0, k = 0; for (pr = (PDR*)IPDFIRST(cur_hdr,fh); j < fh->cpd; j++, pr++) { int l, halt; /* No code for this one */ if (pr->iline == ilineNil || pr->lnLow == -1 || pr->lnHigh == -1) continue; /* * Aurgh! To know where to stop expanding we * must look-ahead. */ for (l = 1; l < (fh->cpd - j); l++) if (pr[l].iline != -1) break; if (l == (fh->cpd - j)) halt = fh->cline; else halt = pr[l].iline; /* * When procedures are moved around the linenumbers * are attributed to the next procedure up */ if (pr->iline >= halt) continue; base = (unsigned char*)pr->cbLineOffset; l = pr->adr >> 2; /* in words */ halt += (pr->adr >> 2) - pr->iline; for (lineno = pr->lnLow; l < halt;) { count = *base & 0x0f; delta = *base++ >> 4; if (delta >= 8) delta -= 16; if (delta == -8) { delta = (base[0] << 8) | base[1]; if (delta >= 0x8000) delta -= 0x10000; base += 2; } lineno += delta;/* first delta is 0 */ k = add_line(lt, lineno, l, k); l += count + 1; } } } /* Master parsing procedure for first-pass reading of file symbols into a partial_symtab. Parses the symtab described by the global symbolic header CUR_HDR. END_OF_TEXT_SEG gives the address just after the text segment for the symtab we are reading. */ static void parse_partial_symbols(end_of_text_seg, objfile) int end_of_text_seg; struct objfile *objfile; { int f_idx, s_idx; /* int stat_idx, h_max;*/ HDRR *hdr = cur_hdr; /* Running pointers */ FDR *fh; RFDT *rh; register EXTR *esh; register SYMR *sh; struct partial_symtab *pst; int past_first_source_file = 0; /* List of current psymtab's include files */ char **psymtab_include_list; int includes_allocated; int includes_used; EXTR **extern_tab; struct pst_map * fdr_to_pst; /* Index within current psymtab dependency list */ struct partial_symtab **dependency_list; int dependencies_used, dependencies_allocated; struct cleanup *old_chain; extern_tab = (EXTR**)obstack_alloc (&objfile->psymbol_obstack, sizeof(EXTR *) * hdr->iextMax); includes_allocated = 30; includes_used = 0; psymtab_include_list = (char **) alloca (includes_allocated * sizeof (char *)); next_symbol_text_func = mips_next_symbol_text; dependencies_allocated = 30; dependencies_used = 0; dependency_list = (struct partial_symtab **) alloca (dependencies_allocated * sizeof (struct partial_symtab *)); last_source_file = 0; /* * Big plan: * * Only parse the Local and External symbols, and the Relative FDR. * Fixup enough of the loader symtab to be able to use it. * Allocate space only for the file's portions we need to * look at. (XXX) */ max_gdbinfo = 0; max_glevel = MIN_GLEVEL; /* Allocate the map FDR -> PST. Minor hack: -O3 images might claim some global data belongs to FDR -1. We`ll go along with that */ fdr_to_pst = (struct pst_map *)xzalloc((hdr->ifdMax+1) * sizeof *fdr_to_pst); old_chain = make_cleanup (free, fdr_to_pst); fdr_to_pst++; { struct partial_symtab * pst = new_psymtab("", objfile); fdr_to_pst[-1].pst = pst; FDR_IDX(pst) = -1; } /* Pass 1 over external syms: Presize and partition the list */ for (s_idx = 0; s_idx < hdr->iextMax; s_idx++) { esh = (EXTR *) (hdr->cbExtOffset) + s_idx; fdr_to_pst[esh->ifd].n_globals++; } /* Pass 1.5 over files: partition out global symbol space */ s_idx = 0; for (f_idx = -1; f_idx < hdr->ifdMax; f_idx++) { fdr_to_pst[f_idx].globals_offset = s_idx; s_idx += fdr_to_pst[f_idx].n_globals; fdr_to_pst[f_idx].n_globals = 0; } /* Pass 2 over external syms: fill in external symbols */ for (s_idx = 0; s_idx < hdr->iextMax; s_idx++) { enum minimal_symbol_type ms_type = mst_text; esh = (EXTR *) (hdr->cbExtOffset) + s_idx; extern_tab[fdr_to_pst[esh->ifd].globals_offset + fdr_to_pst[esh->ifd].n_globals++] = esh; if (esh->asym.sc == scUndefined || esh->asym.sc == scNil) continue; switch (esh->asym.st) { case stProc: break; case stGlobal: ms_type = mst_data; break; case stLabel: break; default: ms_type = mst_unknown; complain (&unknown_ext_complaint, (char *)(esh->asym.iss)); } prim_record_minimal_symbol ((char *)(esh->asym.iss), esh->asym.value, ms_type); } /* Pass 3 over files, over local syms: fill in static symbols */ for (f_idx = 0; f_idx < hdr->ifdMax; f_idx++) { struct partial_symtab *save_pst; EXTR **ext_ptr; cur_fdr = fh = f_idx + (FDR *)(cur_hdr->cbFdOffset); if (fh->csym == 0) { fdr_to_pst[f_idx].pst = NULL; continue; } pst = start_psymtab_common (objfile, 0, (char*)fh->rss, fh->cpd ? fh->adr : 0, objfile->global_psymbols.next, objfile->static_psymbols.next); pst->read_symtab_private = (char *) obstack_alloc (&objfile->psymbol_obstack, sizeof (struct symloc)); save_pst = pst; /* Make everything point to everything. */ FDR_IDX(pst) = f_idx; fdr_to_pst[f_idx].pst = pst; fh->ioptBase = (int)pst; CUR_HDR(pst) = cur_hdr; /* The way to turn this into a symtab is to call... */ pst->read_symtab = mipscoff_psymtab_to_symtab; pst->texthigh = pst->textlow; #if 0 /* This is done in start_psymtab_common */ pst->globals_offset = global_psymbols.next - global_psymbols.list; pst->statics_offset = static_psymbols.next - static_psymbols.list; pst->n_global_syms = 0; pst->n_static_syms = 0; #endif /* The second symbol must be @stab. This symbol is emitted by mips-tfile to signal that the current object file uses encapsulated stabs instead of mips ecoff for local symbols. (It is the second symbol because the first symbol is the stFile used to signal the start of a file). */ if (fh->csym >= 2 && strcmp((char *)(((SYMR *)fh->isymBase)[1].iss), stabs_symbol) == 0) { for (cur_sdx = 2; cur_sdx < fh->csym; cur_sdx++) { int type_code; char *namestring; sh = cur_sdx + (SYMR *) fh->isymBase; type_code = MIPS_UNMARK_STAB(sh->index); if (!MIPS_IS_STAB(sh)) { if (sh->st == stProc || sh->st == stStaticProc) { long procaddr = sh->value; sh = AUX_GET_ISYM (fh->fBigendian, sh->index + (union aux_ext *)(fh->iauxBase)) + (SYMR *) fh->isymBase - 1; if (sh->st == stEnd) { long high = procaddr + sh->value; if (high > pst->texthigh) pst->texthigh = high; } } continue; } #define SET_NAMESTRING() namestring = (char*)sh->iss #define CUR_SYMBOL_TYPE type_code #define CUR_SYMBOL_VALUE sh->value #define START_PSYMTAB(ofile,addr,fname,low,symoff,global_syms,static_syms)\ pst = save_pst #define END_PSYMTAB(pst,ilist,ninc,c_off,c_text,dep_list,n_deps) (void)0 #define addr 0 /* FIXME, should be offset of addresses */ #define HANDLE_RBRAC(val) \ if ((val) > save_pst->texthigh) save_pst->texthigh = (val); #include "partial-stab.h" #undef addr } } else { register struct partial_symbol *psym; for (cur_sdx = 0; cur_sdx < fh->csym; ) { register struct partial_symbol *p; char *name; int class; sh = cur_sdx + (SYMR *) fh->isymBase; if (MIPS_IS_STAB(sh)) { cur_sdx++; continue; } if (sh->sc == scUndefined || sh->sc == scNil || sh->index == 0xfffff) { /* FIXME, premature? */ cur_sdx++; continue; } name = (char *)(sh->iss); switch (sh->st) { long high; long procaddr; case stProc: /* Asm labels apparently */ case stStaticProc: /* Function */ ADD_PSYMBOL_TO_LIST(name, strlen(name), VAR_NAMESPACE, LOC_BLOCK, objfile->static_psymbols, sh->value); /* Skip over procedure to next one. */ cur_sdx = AUX_GET_ISYM (fh->fBigendian, sh->index + (union aux_ext *)fh->iauxBase); procaddr = sh->value; sh = cur_sdx + (SYMR *) fh->isymBase - 1; if (sh->st != stEnd) continue; high = procaddr + sh->value; if (high > pst->texthigh) pst->texthigh = high; continue; case stStatic: /* Variable */ class = LOC_STATIC; break; case stTypedef: /* Typedef */ class = LOC_TYPEDEF; break; case stConstant: /* Constant decl */ class = LOC_CONST; break; case stBlock: /* { }, str, un, enum*/ if (sh->sc == scInfo) { ADD_PSYMBOL_TO_LIST(name, strlen(name), STRUCT_NAMESPACE, LOC_TYPEDEF, objfile->static_psymbols, sh->value); } /* Skip over the block */ cur_sdx = sh->index; continue; case stFile: /* File headers */ case stLabel: /* Labels */ case stEnd: /* Ends of files */ goto skip; default: complain (&unknown_sym_complaint, SYMBOL_NAME(p)); complain (&unknown_st_complaint, sh->st); cur_sdx++; continue; } /* Use this gdb symbol */ ADD_PSYMBOL_TO_LIST(name, strlen(name), VAR_NAMESPACE, class, objfile->static_psymbols, sh->value); skip: cur_sdx++; /* Go to next file symbol */ } /* Now do enter the external symbols. */ ext_ptr = &extern_tab[fdr_to_pst[f_idx].globals_offset]; cur_sdx = fdr_to_pst[f_idx].n_globals; PST_PRIVATE(save_pst)->extern_count = cur_sdx; PST_PRIVATE(save_pst)->extern_tab = ext_ptr; for (; --cur_sdx >= 0; ext_ptr++) { enum address_class class; if ((*ext_ptr)->ifd != f_idx) abort(); sh = &(*ext_ptr)->asym; switch (sh->st) { case stProc: class = LOC_BLOCK; break; case stLabel: class = LOC_LABEL; break; default: complain (&unknown_ext_complaint, sh->iss); case stGlobal: class = LOC_STATIC; break; } if (objfile->global_psymbols.next >= objfile->global_psymbols.list + objfile->global_psymbols.size) extend_psymbol_list (&objfile->global_psymbols, objfile); psym = objfile->global_psymbols.next++; SYMBOL_NAME (psym) = (char*)sh->iss; SYMBOL_NAMESPACE (psym) = VAR_NAMESPACE; SYMBOL_CLASS (psym) = class; SYMBOL_VALUE_ADDRESS (psym) = (CORE_ADDR)sh->value; } } end_psymtab (save_pst, psymtab_include_list, includes_used, -1, save_pst->texthigh, dependency_list, dependencies_used); if (entry_point < save_pst->texthigh && entry_point >= save_pst->textlow) { startup_file_start = save_pst->textlow; startup_file_end = save_pst->texthigh; } } /* Mark the last code address, and remember it for later */ hdr->cbDnOffset = end_of_text_seg; /* Now scan the FDRs for dependencies */ for (f_idx = 0; f_idx < hdr->ifdMax; f_idx++) { int s_id0 = 0; fh = f_idx + (FDR *)(cur_hdr->cbFdOffset); pst = fdr_to_pst[f_idx].pst; /* This should catch stabs-in-ecoff. */ if (fh->crfd <= 1) continue; if (fh->cpd == 0) { /* If there are no functions defined here ... */ /* ...then presumably a .h file: drop reverse depends .h->.c */ for (; s_id0 < fh->crfd; s_id0++) { RFDT *rh = (RFDT *) (fh->rfdBase) + s_id0; if (*rh == f_idx) { s_id0++; /* Skip self-dependency */ break; } } } pst->number_of_dependencies = fh->crfd - s_id0; pst->dependencies = (struct partial_symtab **) obstack_alloc (&objfile->psymbol_obstack, pst->number_of_dependencies * sizeof (struct partial_symtab *)); for (s_idx = s_id0; s_idx < fh->crfd; s_idx++) { RFDT *rh = (RFDT *) (fh->rfdBase) + s_idx; if (*rh < 0 || *rh >= hdr->ifdMax) complain(&bad_file_number_complaint, *rh); else pst->dependencies[s_idx-s_id0] = fdr_to_pst[*rh].pst; } } do_cleanups (old_chain); } #if 0 /* Do the initial analisys of the F_IDX-th file descriptor. Allocates a partial symtab for it, and builds the list of dependent files by recursion. LEV says at which level of recursion we are called (to pretty up debug traces) */ static struct partial_symtab * parse_fdr(f_idx, lev, objfile) int f_idx; int lev; struct objfile *objfile; { register FDR *fh; register struct partial_symtab *pst; int s_idx, s_id0; fh = (FDR *) (cur_hdr->cbFdOffset) + f_idx; /* Use this to indicate into which symtab this file was parsed */ if (fh->ioptBase) return (struct partial_symtab *) fh->ioptBase; /* Debuggability level */ if (compare_glevel(max_glevel, fh->glevel) < 0) max_glevel = fh->glevel; /* Make a new partial_symtab */ pst = new_psymtab(fh->rss, objfile); if (fh->cpd == 0){ pst->textlow = 0; pst->texthigh = 0; } else { pst->textlow = fh->adr; pst->texthigh = fh->cpd; /* To be fixed later */ } /* Make everything point to everything. */ FDR_IDX(pst) = f_idx; fdr_to_pst[f_idx].pst = pst; fh->ioptBase = (int)pst; /* Analyze its dependencies */ if (fh->crfd <= 1) return pst; s_id0 = 0; if (fh->cpd == 0) { /* If there are no functions defined here ... */ /* ...then presumably a .h file: drop reverse depends .h->.c */ for (; s_id0 < fh->crfd; s_id0++) { RFDT *rh = (RFDT *) (fh->rfdBase) + s_id0; if (*rh == f_idx) { s_id0++; /* Skip self-dependency */ break; } } } pst->number_of_dependencies = fh->crfd - s_id0; pst->dependencies = (struct partial_symtab **) obstack_alloc (&objfile->psymbol_obstack, pst->number_of_dependencies * sizeof (struct partial_symtab *)); for (s_idx = s_id0; s_idx < fh->crfd; s_idx++) { RFDT *rh = (RFDT *) (fh->rfdBase) + s_idx; pst->dependencies[s_idx-s_id0] = parse_fdr(*rh, lev+1, objfile); } return pst; } #endif static char* mips_next_symbol_text () { cur_sdx++; return (char*)((SYMR *)cur_fdr->isymBase)[cur_sdx].iss; } /* Ancillary function to psymtab_to_symtab(). Does all the work for turning the partial symtab PST into a symtab, recurring first on all dependent psymtabs. The argument FILENAME is only passed so we can see in debug stack traces what file is being read. */ static void psymtab_to_symtab_1(pst, filename) struct partial_symtab *pst; char *filename; { int have_stabs; int i, f_max; struct symtab *st; FDR *fh; int maxlines; struct linetable *lines; if (pst->readin) return; pst->readin = 1; /* How many symbols will we need */ /* FIXME, this does not count enum values. */ f_max = pst->n_global_syms + pst->n_static_syms; if (FDR_IDX(pst) == -1) { fh = 0; maxlines = 0; } else { fh = (FDR *) (cur_hdr->cbFdOffset) + FDR_IDX(pst); f_max += fh->csym + fh->cpd; maxlines = 2 * fh->cline; } /* See comment in parse_partial_symbols about the @stabs sentinel. */ have_stabs = fh && fh->csym >= 2 && strcmp((char *)(((SYMR *)fh->isymBase)[1].iss), stabs_symbol) == 0; if (!have_stabs) { if (fh) st = new_symtab (pst->filename, 2 * f_max, maxlines, pst->objfile); else st = new_symtab ("unknown", f_max, 0, pst->objfile); lines = LINETABLE(st); pending_list = (struct mips_pending **) cur_hdr->cbOptOffset; if (pending_list == 0) { pending_list = (struct mips_pending **) xzalloc(cur_hdr->ifdMax * sizeof(struct mips_pending *)); cur_hdr->cbOptOffset = (int)pending_list; } } /* Read in all partial symbtabs on which this one is dependent. NOTE that we do have circular dependencies, sigh. We solved that by setting pst->readin before this point. */ for (i = 0; i < pst->number_of_dependencies; i++) if (!pst->dependencies[i]->readin) { /* Inform about additional files to be read in. */ if (info_verbose) { fputs_filtered (" ", stdout); wrap_here (""); fputs_filtered ("and ", stdout); wrap_here (""); printf_filtered ("%s...", pst->dependencies[i]->filename); wrap_here (""); /* Flush output */ fflush (stdout); } /* We only pass the filename for debug purposes */ psymtab_to_symtab_1(pst->dependencies[i], pst->dependencies[i]->filename); } cur_fdr = fh; /* Now read the symbols for this symtab */ current_objfile = pst -> objfile; if (!have_stabs) { cur_fd = FDR_IDX(pst); cur_stab = st; /* Get a new lexical context */ push_parse_stack(); top_stack->cur_st = cur_stab; top_stack->cur_block = BLOCKVECTOR_BLOCK(BLOCKVECTOR(cur_stab), STATIC_BLOCK); BLOCK_START(top_stack->cur_block) = fh ? fh->adr : 0; BLOCK_END(top_stack->cur_block) = 0; top_stack->blocktype = stFile; top_stack->maxsyms = 2*f_max; top_stack->cur_type = 0; top_stack->procadr = 0; top_stack->numargs = 0; } /* Parse locals and procedures */ if (fh) { SYMR *sh; PDR *pr; int f_idx = cur_fd; char *fh_name = (char*)fh->rss; /* Parse local symbols first */ if (have_stabs) { if (fh->csym <= 2) { current_objfile = NULL; return; } for (cur_sdx = 2; cur_sdx < fh->csym; cur_sdx++) { register SYMR *sh = cur_sdx + (SYMR *) fh->isymBase; char *name = (char*)sh->iss; CORE_ADDR valu = sh->value; if (MIPS_IS_STAB(sh)) { int type_code = MIPS_UNMARK_STAB(sh->index); process_one_symbol (type_code, 0, valu, name, /*FIXME*/ 0); } else if (sh->st == stLabel && sh->index != indexNil) { /* Handle encoded stab line number. */ record_line (current_subfile, sh->index, valu); } } st = end_symtab (pst->texthigh, 0, 0, pst->objfile); } else { /* BOUND is the highest core address of this file's procedures */ int bound = cur_fd == cur_hdr->ifdMax - 1 ? cur_hdr->cbDnOffset : fh[1].adr; for (cur_sdx = 0; cur_sdx < fh->csym; ) { sh = (SYMR *) (fh->isymBase) + cur_sdx; cur_sdx += parse_symbol(sh, fh->iauxBase, fh->fBigendian); } /* Procedures next, note we need to look-ahead to find out where the procedure's code ends */ if (fh->cpd > 0) for (i = 0; i < fh->cpd-1; i++) { pr = (PDR *) (IPDFIRST(cur_hdr, fh)) + i; parse_procedure(pr, pr[1].adr); /* next proc up */ } if (fh->cpd) { pr = (PDR *) (IPDFIRST(cur_hdr, fh)) + i; parse_procedure(pr, bound); /* next file up */ } /* Linenumbers. At the end, check if we can save memory */ parse_lines(fh, lines); if (lines->nitems < fh->cline) lines = shrink_linetable(lines); } } if (!have_stabs) { EXTR **ext_ptr; LINETABLE(st) = lines; /* .. and our share of externals. XXX use the global list to speed up things here. how ? FIXME, Maybe quit once we have found the right number of ext's? */ /* parse_external clobbers top_stack->cur_block and ->cur_st here. */ top_stack->blocktype = stFile; top_stack->maxsyms = cur_hdr->isymMax + cur_hdr->ipdMax + cur_hdr->iextMax; ext_ptr = PST_PRIVATE(pst)->extern_tab; for (i = PST_PRIVATE(pst)->extern_count; --i >= 0; ext_ptr++) parse_external(*ext_ptr, 1, fh->fBigendian); /* If there are undefined, tell the user */ if (n_undef_symbols) { printf_filtered("File %s contains %d unresolved references:", st->filename, n_undef_symbols); printf_filtered("\n\t%4d variables\n\t%4d procedures\n\t%4d labels\n", n_undef_vars, n_undef_procs, n_undef_labels); n_undef_symbols = n_undef_labels = n_undef_vars = n_undef_procs = 0; } pop_parse_stack(); } /* Sort the symbol table now, we are done adding symbols to it.*/ sort_symtab_syms(st); sort_blocks (st); /* Now link the psymtab and the symtab. */ pst->symtab = st; current_objfile = NULL; } /* Ancillary parsing procedures. */ /* Lookup the type at relative index RN. Return it in TPP if found and in any event come up with its name PNAME. BIGEND says whether aux symbols are big-endian or not (from fh->fBigendian). Return value says how many aux symbols we ate. */ static int cross_ref(ax, tpp, type_code, pname, bigend) union aux_ext *ax; struct type **tpp; int type_code; /* Use to alloc new type if none is found. */ char **pname; int bigend; { RNDXR rn[1]; unsigned rf; int result = 1; ecoff_swap_rndx_in (bigend, ax, rn); /* Escape index means 'the next one' */ if (rn->rfd == 0xfff) { result++; rf = AUX_GET_ISYM (bigend, ax + 1); } else { rf = rn->rfd; } if (rf == -1) { /* Ooops */ *pname = ""; } else { /* * Find the relative file descriptor and the symbol in it */ FDR *fh = get_rfd(cur_fd, rf); SYMR *sh; struct type *t; /* * If we have processed this symbol then we left a forwarding * pointer to the corresponding GDB symbol. If not, we`ll put * it in a list of pending symbols, to be processed later when * the file f will be. In any event, we collect the name for * the type here. Which is why we made a first pass at * strings. */ sh = (SYMR *) (fh->isymBase) + rn->index; /* Careful, we might be looking at .o files */ *pname = (UNSAFE_DATA_ADDR(sh->iss)) ? "" : (char *) sh->iss; /* Have we parsed it ? */ if ((!UNSAFE_DATA_ADDR(sh->value)) && (sh->st == stParsed)) { t = (struct type *) sh->value; *tpp = t; } else { /* Avoid duplicates */ struct mips_pending *p = is_pending_symbol(fh, sh); if (p) *tpp = p->t; else { *tpp = init_type(type_code, 0, 0, 0, (struct objfile *) NULL); add_pending(fh, sh, *tpp); } } } /* We used one auxent normally, two if we got a "next one" rf. */ return result; } /* Quick&dirty lookup procedure, to avoid the MI ones that require keeping the symtab sorted */ static struct symbol * mylookup_symbol (name, block, namespace, class) char *name; register struct block *block; enum namespace namespace; enum address_class class; { register int bot, top, inc; register struct symbol *sym; bot = 0; top = BLOCK_NSYMS(block); inc = name[0]; while (bot < top) { sym = BLOCK_SYM(block, bot); if (SYMBOL_NAME(sym)[0] == inc && SYMBOL_NAMESPACE(sym) == namespace && SYMBOL_CLASS(sym) == class && !strcmp(SYMBOL_NAME(sym), name)) return sym; bot++; } if (block = BLOCK_SUPERBLOCK (block)) return mylookup_symbol (name, block, namespace, class); return 0; } /* Add a new symbol S to a block B. Infrequently, we will need to reallocate the block to make it bigger. We only detect this case when adding to top_stack->cur_block, since that's the only time we know how big the block is. FIXME. */ static void add_symbol(s,b) struct symbol *s; struct block *b; { int nsyms = BLOCK_NSYMS(b)++; struct block *origb; struct parse_stack *stackp; if (b == top_stack->cur_block && nsyms >= top_stack->maxsyms) { complain (&block_overflow_complaint, s->name); /* In this case shrink_block is actually grow_block, since BLOCK_NSYMS(b) is larger than its current size. */ origb = b; b = shrink_block (top_stack->cur_block, top_stack->cur_st); /* Now run through the stack replacing pointers to the original block. shrink_block has already done this for the blockvector and BLOCK_FUNCTION. */ for (stackp = top_stack; stackp; stackp = stackp->next) { if (stackp->cur_block == origb) { stackp->cur_block = b; stackp->maxsyms = BLOCK_NSYMS (b); } } } BLOCK_SYM(b,nsyms) = s; } /* Add a new block B to a symtab S */ static void add_block(b,s) struct block *b; struct symtab *s; { struct blockvector *bv = BLOCKVECTOR(s); bv = (struct blockvector *)xrealloc((char *) bv, sizeof(struct blockvector) + BLOCKVECTOR_NBLOCKS(bv) * sizeof(bv->block)); if (bv != BLOCKVECTOR(s)) BLOCKVECTOR(s) = bv; BLOCKVECTOR_BLOCK(bv, BLOCKVECTOR_NBLOCKS(bv)++) = b; } /* Add a new linenumber entry (LINENO,ADR) to a linevector LT. MIPS' linenumber encoding might need more than one byte to describe it, LAST is used to detect these continuation lines */ static int add_line(lt, lineno, adr, last) struct linetable *lt; int lineno; CORE_ADDR adr; int last; { if (last == 0) last = -2; /* make sure we record first line */ if (last == lineno) /* skip continuation lines */ return lineno; lt->item[lt->nitems].line = lineno; lt->item[lt->nitems++].pc = adr << 2; return lineno; } /* Comparison functions, used when sorting things */ /* Symtabs must be ordered viz the code segments they cover */ static int compare_symtabs( s1, s2) struct symtab **s1, **s2; { /* "most specific" first */ register struct block *b1, *b2; b1 = BLOCKVECTOR_BLOCK(BLOCKVECTOR(*s1),GLOBAL_BLOCK); b2 = BLOCKVECTOR_BLOCK(BLOCKVECTOR(*s2),GLOBAL_BLOCK); if (BLOCK_END(b1) == BLOCK_END(b2)) return BLOCK_START(b1) - BLOCK_START(b2); return BLOCK_END(b1) - BLOCK_END(b2); } /* Partial Symtabs, same */ static int compare_psymtabs( s1, s2) struct partial_symtab **s1, **s2; { /* Perf twist: put the ones with no code at the end */ register int a = (*s1)->textlow; register int b = (*s2)->textlow; if (a == 0) return b; if (b == 0) return -a; return a - b; } /* Blocks with a smaller low bound should come first */ static int compare_blocks(b1,b2) struct block **b1, **b2; { register int addr_diff; addr_diff = (BLOCK_START((*b1))) - (BLOCK_START((*b2))); if (addr_diff == 0) return (BLOCK_END((*b1))) - (BLOCK_END((*b2))); return addr_diff; } /* Sorting and reordering procedures */ /* Sort the blocks of a symtab S. Reorder the blocks in the blockvector by code-address, as required by some MI search routines */ static void sort_blocks(s) struct symtab *s; { struct blockvector *bv = BLOCKVECTOR(s); if (BLOCKVECTOR_NBLOCKS(bv) <= 2) { /* Cosmetic */ if (BLOCK_END(BLOCKVECTOR_BLOCK(bv,GLOBAL_BLOCK)) == 0) BLOCK_START(BLOCKVECTOR_BLOCK(bv,GLOBAL_BLOCK)) = 0; if (BLOCK_END(BLOCKVECTOR_BLOCK(bv,STATIC_BLOCK)) == 0) BLOCK_START(BLOCKVECTOR_BLOCK(bv,STATIC_BLOCK)) = 0; return; } /* * This is very unfortunate: normally all functions are compiled in * the order they are found, but if the file is compiled -O3 things * are very different. It would be nice to find a reliable test * to detect -O3 images in advance. */ if (BLOCKVECTOR_NBLOCKS(bv) > 3) qsort(&BLOCKVECTOR_BLOCK(bv,FIRST_LOCAL_BLOCK), BLOCKVECTOR_NBLOCKS(bv) - FIRST_LOCAL_BLOCK, sizeof(struct block *), compare_blocks); { register CORE_ADDR high = 0; register int i, j = BLOCKVECTOR_NBLOCKS(bv); for (i = FIRST_LOCAL_BLOCK; i < j; i++) if (high < BLOCK_END(BLOCKVECTOR_BLOCK(bv,i))) high = BLOCK_END(BLOCKVECTOR_BLOCK(bv,i)); BLOCK_END(BLOCKVECTOR_BLOCK(bv,GLOBAL_BLOCK)) = high; } BLOCK_START(BLOCKVECTOR_BLOCK(bv,GLOBAL_BLOCK)) = BLOCK_START(BLOCKVECTOR_BLOCK(bv,FIRST_LOCAL_BLOCK)); BLOCK_START(BLOCKVECTOR_BLOCK(bv,STATIC_BLOCK)) = BLOCK_START(BLOCKVECTOR_BLOCK(bv,GLOBAL_BLOCK)); BLOCK_END (BLOCKVECTOR_BLOCK(bv,STATIC_BLOCK)) = BLOCK_END (BLOCKVECTOR_BLOCK(bv,GLOBAL_BLOCK)); } /* Constructor/restructor/destructor procedures */ /* Allocate a new symtab for NAME. Needs an estimate of how many symbols MAXSYMS and linenumbers MAXLINES we'll put in it */ static struct symtab * new_symtab(name, maxsyms, maxlines, objfile) char *name; int maxsyms; int maxlines; struct objfile *objfile; { struct symtab *s = allocate_symtab (name, objfile); LINETABLE(s) = new_linetable(maxlines); /* All symtabs must have at least two blocks */ BLOCKVECTOR(s) = new_bvect(2); BLOCKVECTOR_BLOCK(BLOCKVECTOR(s), GLOBAL_BLOCK) = new_block(maxsyms); BLOCKVECTOR_BLOCK(BLOCKVECTOR(s), STATIC_BLOCK) = new_block(maxsyms); BLOCK_SUPERBLOCK( BLOCKVECTOR_BLOCK(BLOCKVECTOR(s),STATIC_BLOCK)) = BLOCKVECTOR_BLOCK(BLOCKVECTOR(s), GLOBAL_BLOCK); s->free_code = free_linetable; return (s); } /* Allocate a new partial_symtab NAME */ static struct partial_symtab * new_psymtab(name, objfile) char *name; struct objfile *objfile; { struct partial_symtab *psymtab; /* FIXME -- why (char *) -1 rather than NULL? */ psymtab = allocate_psymtab (name == (char *) -1 ? "" : name, objfile); /* Keep a backpointer to the file's symbols */ psymtab -> read_symtab_private = (char *) obstack_alloc (&objfile->psymbol_obstack, sizeof (struct symloc)); CUR_HDR(psymtab) = cur_hdr; /* The way to turn this into a symtab is to call... */ psymtab->read_symtab = mipscoff_psymtab_to_symtab; return (psymtab); } /* Allocate a linetable array of the given SIZE */ static struct linetable * new_linetable(size) { struct linetable *l; size = size * sizeof(l->item) + sizeof(struct linetable); l = (struct linetable *)xmalloc(size); l->nitems = 0; return l; } /* Oops, too big. Shrink it. This was important with the 2.4 linetables, I am not so sure about the 3.4 ones */ static struct linetable * shrink_linetable(lt) struct linetable * lt; { struct linetable *l = new_linetable(lt->nitems); memcpy(l, lt, lt->nitems * sizeof(l->item) + sizeof(struct linetable)); free (lt); return l; } /* Allocate and zero a new blockvector of NBLOCKS blocks. */ static struct blockvector * new_bvect(nblocks) { struct blockvector *bv; int size; size = sizeof(struct blockvector) + nblocks * sizeof(struct block*); bv = (struct blockvector *) xzalloc(size); BLOCKVECTOR_NBLOCKS(bv) = nblocks; return bv; } /* Allocate and zero a new block of MAXSYMS symbols */ static struct block * new_block(maxsyms) { int size = sizeof(struct block) + (maxsyms-1) * sizeof(struct symbol *); struct block *b = (struct block *)xzalloc(size); return b; } /* Ooops, too big. Shrink block B in symtab S to its minimal size. Shrink_block can also be used by add_symbol to grow a block. */ static struct block * shrink_block(b, s) struct block *b; struct symtab *s; { struct block *new; struct blockvector *bv = BLOCKVECTOR(s); int i; /* Just reallocate it and fix references to the old one */ new = (struct block *) xrealloc ((char *)b, sizeof(struct block) + (BLOCK_NSYMS(b)-1) * sizeof(struct symbol *)); /* Should chase pointers to old one. Fortunately, that`s just the block`s function and inferior blocks */ if (BLOCK_FUNCTION(new) && SYMBOL_BLOCK_VALUE(BLOCK_FUNCTION(new)) == b) SYMBOL_BLOCK_VALUE(BLOCK_FUNCTION(new)) = new; for (i = 0; i < BLOCKVECTOR_NBLOCKS(bv); i++) if (BLOCKVECTOR_BLOCK(bv,i) == b) BLOCKVECTOR_BLOCK(bv,i) = new; else if (BLOCK_SUPERBLOCK(BLOCKVECTOR_BLOCK(bv,i)) == b) BLOCK_SUPERBLOCK(BLOCKVECTOR_BLOCK(bv,i)) = new; return new; } /* Create a new symbol with printname NAME */ static struct symbol * new_symbol(name) char *name; { struct symbol *s = (struct symbol *) obstack_alloc (¤t_objfile->symbol_obstack, sizeof (struct symbol)); memset (s, 0, sizeof (*s)); SYMBOL_NAME(s) = name; return s; } /* Create a new type with printname NAME */ static struct type * new_type(name) char *name; { struct type *t; t = alloc_type (current_objfile); TYPE_NAME(t) = name; TYPE_CPLUS_SPECIFIC(t) = (struct cplus_struct_type *) &cplus_struct_default; return t; } /* Things used for calling functions in the inferior. These functions are exported to our companion mips-tdep.c file and are here because they play with the symbol-table explicitly. */ /* Sigtramp: make sure we have all the necessary information about the signal trampoline code. Since the official code from MIPS does not do so, we make up that information ourselves. If they fix the library (unlikely) this code will neutralize itself. */ static void fixup_sigtramp() { struct symbol *s; struct symtab *st; struct block *b, *b0; sigtramp_address = -1; /* We know it is sold as sigvec */ s = lookup_symbol("sigvec", 0, VAR_NAMESPACE, 0, NULL); /* Most programs do not play with signals */ if (s == 0) return; b0 = SYMBOL_BLOCK_VALUE(s); /* A label of sigvec, to be more precise */ s = lookup_symbol("sigtramp", b0, VAR_NAMESPACE, 0, NULL); /* But maybe this program uses its own version of sigvec */ if (s == 0) return; sigtramp_address = SYMBOL_VALUE(s); sigtramp_end = sigtramp_address + 0x88; /* black magic */ /* Did we or MIPSco fix the library ? */ if (SYMBOL_CLASS(s) == LOC_BLOCK) return; /* But what symtab does it live in ? */ st = find_pc_symtab(SYMBOL_VALUE(s)); /* * Ok, there goes the fix: turn it into a procedure, with all the * needed info. Note we make it a nested procedure of sigvec, * which is the way the (assembly) code is actually written. */ SYMBOL_NAMESPACE(s) = VAR_NAMESPACE; SYMBOL_CLASS(s) = LOC_BLOCK; SYMBOL_TYPE(s) = init_type(TYPE_CODE_FUNC, 4, 0, 0, (struct objfile *) NULL); TYPE_TARGET_TYPE(SYMBOL_TYPE(s)) = builtin_type_void; /* Need a block to allocate .gdbinfo. in */ b = new_block(1); SYMBOL_BLOCK_VALUE(s) = b; BLOCK_START(b) = sigtramp_address; BLOCK_END(b) = sigtramp_end; BLOCK_FUNCTION(b) = s; BLOCK_SUPERBLOCK(b) = BLOCK_SUPERBLOCK(b0); add_block(b, st); sort_blocks(st); /* Make a .gdbinfo. for it */ { struct mips_extra_func_info *e = (struct mips_extra_func_info *) xzalloc(sizeof(struct mips_extra_func_info)); e->numargs = 0; /* the kernel thinks otherwise */ /* align_longword(sigcontext + SIGFRAME) */ e->framesize = 0x150; e->framereg = SP_REGNUM; e->pcreg = 31; e->regmask = -2; e->regoffset = -(41 * sizeof(int)); e->fregmask = -1; e->fregoffset = -(37 * sizeof(int)); e->isym = (long)s; s = new_symbol(".gdbinfo."); SYMBOL_VALUE(s) = (int) e; SYMBOL_NAMESPACE(s) = LABEL_NAMESPACE; SYMBOL_CLASS(s) = LOC_CONST; SYMBOL_TYPE(s) = builtin_type_void; } BLOCK_SYM(b,BLOCK_NSYMS(b)++) = s; } /* Initialization */ static struct sym_fns ecoff_sym_fns = {"ecoff", 5, mipscoff_new_init, mipscoff_symfile_init, mipscoff_symfile_read}; _initialize_mipsread () { add_symtab_fns (&ecoff_sym_fns); /* Missing basic types */ builtin_type_string = init_type (TYPE_CODE_PASCAL_ARRAY, 1, 0, "string", (struct objfile *) NULL); builtin_type_complex = init_type(TYPE_CODE_FLT, 2 * sizeof(float), 0, "complex", (struct objfile *) NULL); builtin_type_double_complex = init_type(TYPE_CODE_FLT, 2 * sizeof(double), 0, "double_complex", (struct objfile *) NULL); builtin_type_fixed_dec = init_type(TYPE_CODE_INT, sizeof(int), 0, "fixed_decimal", (struct objfile *) NULL); builtin_type_float_dec = init_type(TYPE_CODE_FLT, sizeof(double), 0, "floating_decimal", (struct objfile *) NULL); }