/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
Free Software Foundation, Inc.
Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
#include "defs.h"
#include "gdb_string.h"
#include "gdb_assert.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "value.h"
#include "gdbcmd.h"
#include "language.h"
#include "gdbcore.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "target.h"
#include "arch-utils.h"
#include "regcache.h"
#include "osabi.h"
#include "mips-tdep.h"
#include "block.h"
#include "reggroups.h"
#include "opcode/mips.h"
#include "elf/mips.h"
#include "elf-bfd.h"
#include "symcat.h"
#include "sim-regno.h"
#include "dis-asm.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "infcall.h"
#include "floatformat.h"
#include "remote.h"
#include "target-descriptions.h"
#include "dwarf2-frame.h"
#include "user-regs.h"
static const struct objfile_data *mips_pdr_data;
static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
#define ST0_FR (1 << 26)
/* The sizes of floating point registers. */
enum
{
MIPS_FPU_SINGLE_REGSIZE = 4,
MIPS_FPU_DOUBLE_REGSIZE = 8
};
enum
{
MIPS32_REGSIZE = 4,
MIPS64_REGSIZE = 8
};
static const char *mips_abi_string;
static const char *mips_abi_strings[] = {
"auto",
"n32",
"o32",
"n64",
"o64",
"eabi32",
"eabi64",
NULL
};
/* The standard register names, and all the valid aliases for them. */
struct register_alias
{
const char *name;
int regnum;
};
/* Aliases for o32 and most other ABIs. */
const struct register_alias mips_o32_aliases[] = {
{ "ta0", 12 },
{ "ta1", 13 },
{ "ta2", 14 },
{ "ta3", 15 }
};
/* Aliases for n32 and n64. */
const struct register_alias mips_n32_n64_aliases[] = {
{ "ta0", 8 },
{ "ta1", 9 },
{ "ta2", 10 },
{ "ta3", 11 }
};
/* Aliases for ABI-independent registers. */
const struct register_alias mips_register_aliases[] = {
/* The architecture manuals specify these ABI-independent names for
the GPRs. */
#define R(n) { "r" #n, n }
R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
#undef R
/* k0 and k1 are sometimes called these instead (for "kernel
temp"). */
{ "kt0", 26 },
{ "kt1", 27 },
/* This is the traditional GDB name for the CP0 status register. */
{ "sr", MIPS_PS_REGNUM },
/* This is the traditional GDB name for the CP0 BadVAddr register. */
{ "bad", MIPS_EMBED_BADVADDR_REGNUM },
/* This is the traditional GDB name for the FCSR. */
{ "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
};
/* Some MIPS boards don't support floating point while others only
support single-precision floating-point operations. */
enum mips_fpu_type
{
MIPS_FPU_DOUBLE, /* Full double precision floating point. */
MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
MIPS_FPU_NONE /* No floating point. */
};
#ifndef MIPS_DEFAULT_FPU_TYPE
#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
#endif
static int mips_fpu_type_auto = 1;
static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
static int mips_debug = 0;
/* Properties (for struct target_desc) describing the g/G packet
layout. */
#define PROPERTY_GP32 "internal: transfers-32bit-registers"
#define PROPERTY_GP64 "internal: transfers-64bit-registers"
struct target_desc *mips_tdesc_gp32;
struct target_desc *mips_tdesc_gp64;
/* MIPS specific per-architecture information */
struct gdbarch_tdep
{
/* from the elf header */
int elf_flags;
/* mips options */
enum mips_abi mips_abi;
enum mips_abi found_abi;
enum mips_fpu_type mips_fpu_type;
int mips_last_arg_regnum;
int mips_last_fp_arg_regnum;
int default_mask_address_p;
/* Is the target using 64-bit raw integer registers but only
storing a left-aligned 32-bit value in each? */
int mips64_transfers_32bit_regs_p;
/* Indexes for various registers. IRIX and embedded have
different values. This contains the "public" fields. Don't
add any that do not need to be public. */
const struct mips_regnum *regnum;
/* Register names table for the current register set. */
const char **mips_processor_reg_names;
/* The size of register data available from the target, if known.
This doesn't quite obsolete the manual
mips64_transfers_32bit_regs_p, since that is documented to force
left alignment even for big endian (very strange). */
int register_size_valid_p;
int register_size;
};
static int
n32n64_floatformat_always_valid (const struct floatformat *fmt,
const void *from)
{
return 1;
}
/* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
They are implemented as a pair of 64bit doubles where the high
part holds the result of the operation rounded to double, and
the low double holds the difference between the exact result and
the rounded result. So "high" + "low" contains the result with
added precision. Unfortunately, the floatformat structure used
by GDB is not powerful enough to describe this format. As a temporary
measure, we define a 128bit floatformat that only uses the high part.
We lose a bit of precision but that's probably the best we can do
for now with the current infrastructure. */
static const struct floatformat floatformat_n32n64_long_double_big =
{
floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
floatformat_intbit_no,
"floatformat_n32n64_long_double_big",
n32n64_floatformat_always_valid
};
static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
{
&floatformat_n32n64_long_double_big,
&floatformat_n32n64_long_double_big
};
const struct mips_regnum *
mips_regnum (struct gdbarch *gdbarch)
{
return gdbarch_tdep (gdbarch)->regnum;
}
static int
mips_fpa0_regnum (struct gdbarch *gdbarch)
{
return mips_regnum (gdbarch)->fp0 + 12;
}
#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
|| gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
/* MIPS16 function addresses are odd (bit 0 is set). Here are some
functions to test, set, or clear bit 0 of addresses. */
static CORE_ADDR
is_mips16_addr (CORE_ADDR addr)
{
return ((addr) & 1);
}
static CORE_ADDR
unmake_mips16_addr (CORE_ADDR addr)
{
return ((addr) & ~(CORE_ADDR) 1);
}
/* Return the MIPS ABI associated with GDBARCH. */
enum mips_abi
mips_abi (struct gdbarch *gdbarch)
{
return gdbarch_tdep (gdbarch)->mips_abi;
}
int
mips_isa_regsize (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* If we know how big the registers are, use that size. */
if (tdep->register_size_valid_p)
return tdep->register_size;
/* Fall back to the previous behavior. */
return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
/ gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
}
/* Return the currently configured (or set) saved register size. */
unsigned int
mips_abi_regsize (struct gdbarch *gdbarch)
{
switch (mips_abi (gdbarch))
{
case MIPS_ABI_EABI32:
case MIPS_ABI_O32:
return 4;
case MIPS_ABI_N32:
case MIPS_ABI_N64:
case MIPS_ABI_O64:
case MIPS_ABI_EABI64:
return 8;
case MIPS_ABI_UNKNOWN:
case MIPS_ABI_LAST:
default:
internal_error (__FILE__, __LINE__, _("bad switch"));
}
}
/* Functions for setting and testing a bit in a minimal symbol that
marks it as 16-bit function. The MSB of the minimal symbol's
"info" field is used for this purpose.
gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
i.e. refers to a 16-bit function, and sets a "special" bit in a
minimal symbol to mark it as a 16-bit function
MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
static void
mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
{
if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
{
MSYMBOL_INFO (msym) = (char *)
(((long) MSYMBOL_INFO (msym)) | 0x80000000);
SYMBOL_VALUE_ADDRESS (msym) |= 1;
}
}
static int
msymbol_is_special (struct minimal_symbol *msym)
{
return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
}
/* XFER a value from the big/little/left end of the register.
Depending on the size of the value it might occupy the entire
register or just part of it. Make an allowance for this, aligning
things accordingly. */
static void
mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
int reg_num, int length,
enum bfd_endian endian, gdb_byte *in,
const gdb_byte *out, int buf_offset)
{
int reg_offset = 0;
gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
/* Need to transfer the left or right part of the register, based on
the targets byte order. */
switch (endian)
{
case BFD_ENDIAN_BIG:
reg_offset = register_size (gdbarch, reg_num) - length;
break;
case BFD_ENDIAN_LITTLE:
reg_offset = 0;
break;
case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
reg_offset = 0;
break;
default:
internal_error (__FILE__, __LINE__, _("bad switch"));
}
if (mips_debug)
fprintf_unfiltered (gdb_stderr,
"xfer $%d, reg offset %d, buf offset %d, length %d, ",
reg_num, reg_offset, buf_offset, length);
if (mips_debug && out != NULL)
{
int i;
fprintf_unfiltered (gdb_stdlog, "out ");
for (i = 0; i < length; i++)
fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
}
if (in != NULL)
regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
in + buf_offset);
if (out != NULL)
regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
out + buf_offset);
if (mips_debug && in != NULL)
{
int i;
fprintf_unfiltered (gdb_stdlog, "in ");
for (i = 0; i < length; i++)
fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
}
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, "\n");
}
/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
compatiblity mode. A return value of 1 means that we have
physical 64-bit registers, but should treat them as 32-bit registers. */
static int
mips2_fp_compat (struct frame_info *frame)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
/* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
meaningful. */
if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
return 0;
#if 0
/* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
in all the places we deal with FP registers. PR gdb/413. */
/* Otherwise check the FR bit in the status register - it controls
the FP compatiblity mode. If it is clear we are in compatibility
mode. */
if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
return 1;
#endif
return 0;
}
#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
static CORE_ADDR heuristic_proc_start (CORE_ADDR);
static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
static struct type *mips_float_register_type (void);
static struct type *mips_double_register_type (void);
/* The list of available "set mips " and "show mips " commands */
static struct cmd_list_element *setmipscmdlist = NULL;
static struct cmd_list_element *showmipscmdlist = NULL;
/* Integer registers 0 thru 31 are handled explicitly by
mips_register_name(). Processor specific registers 32 and above
are listed in the following tables. */
enum
{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
/* Generic MIPS. */
static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
"sr", "lo", "hi", "bad", "cause", "pc",
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
"fsr", "fir", "" /*"fp" */ , "",
"", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "",
};
/* Names of IDT R3041 registers. */
static const char *mips_r3041_reg_names[] = {
"sr", "lo", "hi", "bad", "cause", "pc",
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
"fsr", "fir", "", /*"fp" */ "",
"", "", "bus", "ccfg", "", "", "", "",
"", "", "port", "cmp", "", "", "epc", "prid",
};
/* Names of tx39 registers. */
static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
"sr", "lo", "hi", "bad", "cause", "pc",
"", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "",
"", "", "", "",
"", "", "", "", "", "", "", "",
"", "", "config", "cache", "debug", "depc", "epc", ""
};
/* Names of IRIX registers. */
static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
"pc", "cause", "bad", "hi", "lo", "fsr", "fir"
};
/* Return the name of the register corresponding to REGNO. */
static const char *
mips_register_name (struct gdbarch *gdbarch, int regno)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* GPR names for all ABIs other than n32/n64. */
static char *mips_gpr_names[] = {
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
};
/* GPR names for n32 and n64 ABIs. */
static char *mips_n32_n64_gpr_names[] = {
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
};
enum mips_abi abi = mips_abi (gdbarch);
/* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
but then don't make the raw register names visible. */
int rawnum = regno % gdbarch_num_regs (gdbarch);
if (regno < gdbarch_num_regs (gdbarch))
return "";
/* The MIPS integer registers are always mapped from 0 to 31. The
names of the registers (which reflects the conventions regarding
register use) vary depending on the ABI. */
if (0 <= rawnum && rawnum < 32)
{
if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
return mips_n32_n64_gpr_names[rawnum];
else
return mips_gpr_names[rawnum];
}
else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
return tdesc_register_name (gdbarch, rawnum);
else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
{
gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
return tdep->mips_processor_reg_names[rawnum - 32];
}
else
internal_error (__FILE__, __LINE__,
_("mips_register_name: bad register number %d"), rawnum);
}
/* Return the groups that a MIPS register can be categorised into. */
static int
mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
struct reggroup *reggroup)
{
int vector_p;
int float_p;
int raw_p;
int rawnum = regnum % gdbarch_num_regs (gdbarch);
int pseudo = regnum / gdbarch_num_regs (gdbarch);
if (reggroup == all_reggroup)
return pseudo;
vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
/* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
(gdbarch), as not all architectures are multi-arch. */
raw_p = rawnum < gdbarch_num_regs (gdbarch);
if (gdbarch_register_name (gdbarch, regnum) == NULL
|| gdbarch_register_name (gdbarch, regnum)[0] == '\0')
return 0;
if (reggroup == float_reggroup)
return float_p && pseudo;
if (reggroup == vector_reggroup)
return vector_p && pseudo;
if (reggroup == general_reggroup)
return (!vector_p && !float_p) && pseudo;
/* Save the pseudo registers. Need to make certain that any code
extracting register values from a saved register cache also uses
pseudo registers. */
if (reggroup == save_reggroup)
return raw_p && pseudo;
/* Restore the same pseudo register. */
if (reggroup == restore_reggroup)
return raw_p && pseudo;
return 0;
}
/* Return the groups that a MIPS register can be categorised into.
This version is only used if we have a target description which
describes real registers (and their groups). */
static int
mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
struct reggroup *reggroup)
{
int rawnum = regnum % gdbarch_num_regs (gdbarch);
int pseudo = regnum / gdbarch_num_regs (gdbarch);
int ret;
/* Only save, restore, and display the pseudo registers. Need to
make certain that any code extracting register values from a
saved register cache also uses pseudo registers.
Note: saving and restoring the pseudo registers is slightly
strange; if we have 64 bits, we should save and restore all
64 bits. But this is hard and has little benefit. */
if (!pseudo)
return 0;
ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
if (ret != -1)
return ret;
return mips_register_reggroup_p (gdbarch, regnum, reggroup);
}
/* Map the symbol table registers which live in the range [1 *
gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
registers. Take care of alignment and size problems. */
static void
mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
int cookednum, gdb_byte *buf)
{
int rawnum = cookednum % gdbarch_num_regs (gdbarch);
gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
&& cookednum < 2 * gdbarch_num_regs (gdbarch));
if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
regcache_raw_read (regcache, rawnum, buf);
else if (register_size (gdbarch, rawnum) >
register_size (gdbarch, cookednum))
{
if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
|| gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
else
regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
}
else
internal_error (__FILE__, __LINE__, _("bad register size"));
}
static void
mips_pseudo_register_write (struct gdbarch *gdbarch,
struct regcache *regcache, int cookednum,
const gdb_byte *buf)
{
int rawnum = cookednum % gdbarch_num_regs (gdbarch);
gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
&& cookednum < 2 * gdbarch_num_regs (gdbarch));
if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
regcache_raw_write (regcache, rawnum, buf);
else if (register_size (gdbarch, rawnum) >
register_size (gdbarch, cookednum))
{
if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
|| gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
else
regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
}
else
internal_error (__FILE__, __LINE__, _("bad register size"));
}
/* Table to translate MIPS16 register field to actual register number. */
static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
/* Heuristic_proc_start may hunt through the text section for a long
time across a 2400 baud serial line. Allows the user to limit this
search. */
static unsigned int heuristic_fence_post = 0;
/* Number of bytes of storage in the actual machine representation for
register N. NOTE: This defines the pseudo register type so need to
rebuild the architecture vector. */
static int mips64_transfers_32bit_regs_p = 0;
static void
set_mips64_transfers_32bit_regs (char *args, int from_tty,
struct cmd_list_element *c)
{
struct gdbarch_info info;
gdbarch_info_init (&info);
/* FIXME: cagney/2003-11-15: Should be setting a field in "info"
instead of relying on globals. Doing that would let generic code
handle the search for this specific architecture. */
if (!gdbarch_update_p (info))
{
mips64_transfers_32bit_regs_p = 0;
error (_("32-bit compatibility mode not supported"));
}
}
/* Convert to/from a register and the corresponding memory value. */
static int
mips_convert_register_p (int regnum, struct type *type)
{
return (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
&& register_size (current_gdbarch, regnum) == 4
&& (regnum % gdbarch_num_regs (current_gdbarch))
>= mips_regnum (current_gdbarch)->fp0
&& (regnum % gdbarch_num_regs (current_gdbarch))
< mips_regnum (current_gdbarch)->fp0 + 32
&& TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
}
static void
mips_register_to_value (struct frame_info *frame, int regnum,
struct type *type, gdb_byte *to)
{
get_frame_register (frame, regnum + 0, to + 4);
get_frame_register (frame, regnum + 1, to + 0);
}
static void
mips_value_to_register (struct frame_info *frame, int regnum,
struct type *type, const gdb_byte *from)
{
put_frame_register (frame, regnum + 0, from + 4);
put_frame_register (frame, regnum + 1, from + 0);
}
/* Return the GDB type object for the "standard" data type of data in
register REG. */
static struct type *
mips_register_type (struct gdbarch *gdbarch, int regnum)
{
gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
if ((regnum % gdbarch_num_regs (gdbarch)) >= mips_regnum (gdbarch)->fp0
&& (regnum % gdbarch_num_regs (gdbarch))
< mips_regnum (gdbarch)->fp0 + 32)
{
/* The floating-point registers raw, or cooked, always match
mips_isa_regsize(), and also map 1:1, byte for byte. */
if (mips_isa_regsize (gdbarch) == 4)
return builtin_type_ieee_single;
else
return builtin_type_ieee_double;
}
else if (regnum < gdbarch_num_regs (gdbarch))
{
/* The raw or ISA registers. These are all sized according to
the ISA regsize. */
if (mips_isa_regsize (gdbarch) == 4)
return builtin_type_int32;
else
return builtin_type_int64;
}
else
{
/* The cooked or ABI registers. These are sized according to
the ABI (with a few complications). */
if (regnum >= (gdbarch_num_regs (gdbarch)
+ mips_regnum (gdbarch)->fp_control_status)
&& regnum <= gdbarch_num_regs (gdbarch) + MIPS_LAST_EMBED_REGNUM)
/* The pseudo/cooked view of the embedded registers is always
32-bit. The raw view is handled below. */
return builtin_type_int32;
else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
/* The target, while possibly using a 64-bit register buffer,
is only transfering 32-bits of each integer register.
Reflect this in the cooked/pseudo (ABI) register value. */
return builtin_type_int32;
else if (mips_abi_regsize (gdbarch) == 4)
/* The ABI is restricted to 32-bit registers (the ISA could be
32- or 64-bit). */
return builtin_type_int32;
else
/* 64-bit ABI. */
return builtin_type_int64;
}
}
/* Return the GDB type for the pseudo register REGNUM, which is the
ABI-level view. This function is only called if there is a target
description which includes registers, so we know precisely the
types of hardware registers. */
static struct type *
mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
{
const int num_regs = gdbarch_num_regs (gdbarch);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
int rawnum = regnum % num_regs;
struct type *rawtype;
gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
/* Absent registers are still absent. */
rawtype = gdbarch_register_type (gdbarch, rawnum);
if (TYPE_LENGTH (rawtype) == 0)
return rawtype;
if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
/* Present the floating point registers however the hardware did;
do not try to convert between FPU layouts. */
return rawtype;
if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
{
/* The pseudo/cooked view of embedded registers is always
32-bit, even if the target transfers 64-bit values for them.
New targets relying on XML descriptions should only transfer
the necessary 32 bits, but older versions of GDB expected 64,
so allow the target to provide 64 bits without interfering
with the displayed type. */
return builtin_type_int32;
}
/* Use pointer types for registers if we can. For n32 we can not,
since we do not have a 64-bit pointer type. */
if (mips_abi_regsize (gdbarch) == TYPE_LENGTH (builtin_type_void_data_ptr))
{
if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
return builtin_type_void_data_ptr;
else if (rawnum == MIPS_EMBED_PC_REGNUM)
return builtin_type_void_func_ptr;
}
if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
&& rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
return builtin_type_int32;
/* For all other registers, pass through the hardware type. */
return rawtype;
}
/* Should the upper word of 64-bit addresses be zeroed? */
enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
static int
mips_mask_address_p (struct gdbarch_tdep *tdep)
{
switch (mask_address_var)
{
case AUTO_BOOLEAN_TRUE:
return 1;
case AUTO_BOOLEAN_FALSE:
return 0;
break;
case AUTO_BOOLEAN_AUTO:
return tdep->default_mask_address_p;
default:
internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
return -1;
}
}
static void
show_mask_address (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
deprecated_show_value_hack (file, from_tty, c, value);
switch (mask_address_var)
{
case AUTO_BOOLEAN_TRUE:
printf_filtered ("The 32 bit mips address mask is enabled\n");
break;
case AUTO_BOOLEAN_FALSE:
printf_filtered ("The 32 bit mips address mask is disabled\n");
break;
case AUTO_BOOLEAN_AUTO:
printf_filtered
("The 32 bit address mask is set automatically. Currently %s\n",
mips_mask_address_p (tdep) ? "enabled" : "disabled");
break;
default:
internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
break;
}
}
/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
int
mips_pc_is_mips16 (CORE_ADDR memaddr)
{
struct minimal_symbol *sym;
/* If bit 0 of the address is set, assume this is a MIPS16 address. */
if (is_mips16_addr (memaddr))
return 1;
/* A flag indicating that this is a MIPS16 function is stored by elfread.c in
the high bit of the info field. Use this to decide if the function is
MIPS16 or normal MIPS. */
sym = lookup_minimal_symbol_by_pc (memaddr);
if (sym)
return msymbol_is_special (sym);
else
return 0;
}
/* MIPS believes that the PC has a sign extended value. Perhaps the
all registers should be sign extended for simplicity? */
static CORE_ADDR
mips_read_pc (struct regcache *regcache)
{
ULONGEST pc;
int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
regcache_cooked_read_signed (regcache, regnum, &pc);
return pc;
}
static CORE_ADDR
mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_unwind_register_signed
(next_frame, gdbarch_num_regs (gdbarch) + mips_regnum (gdbarch)->pc);
}
static CORE_ADDR
mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_unwind_register_signed
(next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
}
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
dummy frame. The frame ID's base needs to match the TOS value
saved by save_dummy_frame_tos(), and the PC match the dummy frame's
breakpoint. */
static struct frame_id
mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_id_build
(frame_unwind_register_signed (next_frame,
gdbarch_num_regs (gdbarch)
+ MIPS_SP_REGNUM),
frame_pc_unwind (next_frame));
}
static void
mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
regcache_cooked_write_unsigned (regcache, regnum, pc);
}
/* Fetch and return instruction from the specified location. If the PC
is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
static ULONGEST
mips_fetch_instruction (CORE_ADDR addr)
{
gdb_byte buf[MIPS_INSN32_SIZE];
int instlen;
int status;
if (mips_pc_is_mips16 (addr))
{
instlen = MIPS_INSN16_SIZE;
addr = unmake_mips16_addr (addr);
}
else
instlen = MIPS_INSN32_SIZE;
status = read_memory_nobpt (addr, buf, instlen);
if (status)
memory_error (status, addr);
return extract_unsigned_integer (buf, instlen);
}
/* These the fields of 32 bit mips instructions */
#define mips32_op(x) (x >> 26)
#define itype_op(x) (x >> 26)
#define itype_rs(x) ((x >> 21) & 0x1f)
#define itype_rt(x) ((x >> 16) & 0x1f)
#define itype_immediate(x) (x & 0xffff)
#define jtype_op(x) (x >> 26)
#define jtype_target(x) (x & 0x03ffffff)
#define rtype_op(x) (x >> 26)
#define rtype_rs(x) ((x >> 21) & 0x1f)
#define rtype_rt(x) ((x >> 16) & 0x1f)
#define rtype_rd(x) ((x >> 11) & 0x1f)
#define rtype_shamt(x) ((x >> 6) & 0x1f)
#define rtype_funct(x) (x & 0x3f)
static LONGEST
mips32_relative_offset (ULONGEST inst)
{
return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
}
/* Determine where to set a single step breakpoint while considering
branch prediction. */
static CORE_ADDR
mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
{
unsigned long inst;
int op;
inst = mips_fetch_instruction (pc);
if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
{
if (itype_op (inst) >> 2 == 5)
/* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
{
op = (itype_op (inst) & 0x03);
switch (op)
{
case 0: /* BEQL */
goto equal_branch;
case 1: /* BNEL */
goto neq_branch;
case 2: /* BLEZL */
goto less_branch;
case 3: /* BGTZL */
goto greater_branch;
default:
pc += 4;
}
}
else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
/* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
{
int tf = itype_rt (inst) & 0x01;
int cnum = itype_rt (inst) >> 2;
int fcrcs =
get_frame_register_signed (frame,
mips_regnum (get_frame_arch (frame))->
fp_control_status);
int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
if (((cond >> cnum) & 0x01) == tf)
pc += mips32_relative_offset (inst) + 4;
else
pc += 8;
}
else
pc += 4; /* Not a branch, next instruction is easy */
}
else
{ /* This gets way messy */
/* Further subdivide into SPECIAL, REGIMM and other */
switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
{
case 0: /* SPECIAL */
op = rtype_funct (inst);
switch (op)
{
case 8: /* JR */
case 9: /* JALR */
/* Set PC to that address */
pc = get_frame_register_signed (frame, rtype_rs (inst));
break;
default:
pc += 4;
}
break; /* end SPECIAL */
case 1: /* REGIMM */
{
op = itype_rt (inst); /* branch condition */
switch (op)
{
case 0: /* BLTZ */
case 2: /* BLTZL */
case 16: /* BLTZAL */
case 18: /* BLTZALL */
less_branch:
if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
pc += mips32_relative_offset (inst) + 4;
else
pc += 8; /* after the delay slot */
break;
case 1: /* BGEZ */
case 3: /* BGEZL */
case 17: /* BGEZAL */
case 19: /* BGEZALL */
if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
pc += mips32_relative_offset (inst) + 4;
else
pc += 8; /* after the delay slot */
break;
/* All of the other instructions in the REGIMM category */
default:
pc += 4;
}
}
break; /* end REGIMM */
case 2: /* J */
case 3: /* JAL */
{
unsigned long reg;
reg = jtype_target (inst) << 2;
/* Upper four bits get never changed... */
pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
}
break;
/* FIXME case JALX : */
{
unsigned long reg;
reg = jtype_target (inst) << 2;
pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
/* Add 1 to indicate 16 bit mode - Invert ISA mode */
}
break; /* The new PC will be alternate mode */
case 4: /* BEQ, BEQL */
equal_branch:
if (get_frame_register_signed (frame, itype_rs (inst)) ==
get_frame_register_signed (frame, itype_rt (inst)))
pc += mips32_relative_offset (inst) + 4;
else
pc += 8;
break;
case 5: /* BNE, BNEL */
neq_branch:
if (get_frame_register_signed (frame, itype_rs (inst)) !=
get_frame_register_signed (frame, itype_rt (inst)))
pc += mips32_relative_offset (inst) + 4;
else
pc += 8;
break;
case 6: /* BLEZ, BLEZL */
if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
pc += mips32_relative_offset (inst) + 4;
else
pc += 8;
break;
case 7:
default:
greater_branch: /* BGTZ, BGTZL */
if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
pc += mips32_relative_offset (inst) + 4;
else
pc += 8;
break;
} /* switch */
} /* else */
return pc;
} /* mips32_next_pc */
/* Decoding the next place to set a breakpoint is irregular for the
mips 16 variant, but fortunately, there fewer instructions. We have to cope
ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
We dont want to set a single step instruction on the extend instruction
either.
*/
/* Lots of mips16 instruction formats */
/* Predicting jumps requires itype,ritype,i8type
and their extensions extItype,extritype,extI8type
*/
enum mips16_inst_fmts
{
itype, /* 0 immediate 5,10 */
ritype, /* 1 5,3,8 */
rrtype, /* 2 5,3,3,5 */
rritype, /* 3 5,3,3,5 */
rrrtype, /* 4 5,3,3,3,2 */
rriatype, /* 5 5,3,3,1,4 */
shifttype, /* 6 5,3,3,3,2 */
i8type, /* 7 5,3,8 */
i8movtype, /* 8 5,3,3,5 */
i8mov32rtype, /* 9 5,3,5,3 */
i64type, /* 10 5,3,8 */
ri64type, /* 11 5,3,3,5 */
jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
extRRItype, /* 15 5,5,5,5,3,3,5 */
extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
extRi64type, /* 20 5,6,5,5,3,3,5 */
extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
};
/* I am heaping all the fields of the formats into one structure and
then, only the fields which are involved in instruction extension */
struct upk_mips16
{
CORE_ADDR offset;
unsigned int regx; /* Function in i8 type */
unsigned int regy;
};
/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
for the bits which make up the immediatate extension. */
static CORE_ADDR
extended_offset (unsigned int extension)
{
CORE_ADDR value;
value = (extension >> 21) & 0x3f; /* * extract 15:11 */
value = value << 6;
value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
value = value << 5;
value |= extension & 0x01f; /* extract 4:0 */
return value;
}
/* Only call this function if you know that this is an extendable
instruction. It won't malfunction, but why make excess remote memory
references? If the immediate operands get sign extended or something,
do it after the extension is performed. */
/* FIXME: Every one of these cases needs to worry about sign extension
when the offset is to be used in relative addressing. */
static unsigned int
fetch_mips_16 (CORE_ADDR pc)
{
gdb_byte buf[8];
pc &= 0xfffffffe; /* clear the low order bit */
target_read_memory (pc, buf, 2);
return extract_unsigned_integer (buf, 2);
}
static void
unpack_mips16 (CORE_ADDR pc,
unsigned int extension,
unsigned int inst,
enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
{
CORE_ADDR offset;
int regx;
int regy;
switch (insn_format)
{
case itype:
{
CORE_ADDR value;
if (extension)
{
value = extended_offset (extension);
value = value << 11; /* rom for the original value */
value |= inst & 0x7ff; /* eleven bits from instruction */
}
else
{
value = inst & 0x7ff;
/* FIXME : Consider sign extension */
}
offset = value;
regx = -1;
regy = -1;
}
break;
case ritype:
case i8type:
{ /* A register identifier and an offset */
/* Most of the fields are the same as I type but the
immediate value is of a different length */
CORE_ADDR value;
if (extension)
{
value = extended_offset (extension);
value = value << 8; /* from the original instruction */
value |= inst & 0xff; /* eleven bits from instruction */
regx = (extension >> 8) & 0x07; /* or i8 funct */
if (value & 0x4000) /* test the sign bit , bit 26 */
{
value &= ~0x3fff; /* remove the sign bit */
value = -value;
}
}
else
{
value = inst & 0xff; /* 8 bits */
regx = (inst >> 8) & 0x07; /* or i8 funct */
/* FIXME: Do sign extension , this format needs it */
if (value & 0x80) /* THIS CONFUSES ME */
{
value &= 0xef; /* remove the sign bit */
value = -value;
}
}
offset = value;
regy = -1;
break;
}
case jalxtype:
{
unsigned long value;
unsigned int nexthalf;
value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
value = value << 16;
nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
value |= nexthalf;
offset = value;
regx = -1;
regy = -1;
break;
}
default:
internal_error (__FILE__, __LINE__, _("bad switch"));
}
upk->offset = offset;
upk->regx = regx;
upk->regy = regy;
}
static CORE_ADDR
add_offset_16 (CORE_ADDR pc, int offset)
{
return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
}
static CORE_ADDR
extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
unsigned int extension, unsigned int insn)
{
int op = (insn >> 11);
switch (op)
{
case 2: /* Branch */
{
CORE_ADDR offset;
struct upk_mips16 upk;
unpack_mips16 (pc, extension, insn, itype, &upk);
offset = upk.offset;
if (offset & 0x800)
{
offset &= 0xeff;
offset = -offset;
}
pc += (offset << 1) + 2;
break;
}
case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
{
struct upk_mips16 upk;
unpack_mips16 (pc, extension, insn, jalxtype, &upk);
pc = add_offset_16 (pc, upk.offset);
if ((insn >> 10) & 0x01) /* Exchange mode */
pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
else
pc |= 0x01;
break;
}
case 4: /* beqz */
{
struct upk_mips16 upk;
int reg;
unpack_mips16 (pc, extension, insn, ritype, &upk);
reg = get_frame_register_signed (frame, upk.regx);
if (reg == 0)
pc += (upk.offset << 1) + 2;
else
pc += 2;
break;
}
case 5: /* bnez */
{
struct upk_mips16 upk;
int reg;
unpack_mips16 (pc, extension, insn, ritype, &upk);
reg = get_frame_register_signed (frame, upk.regx);
if (reg != 0)
pc += (upk.offset << 1) + 2;
else
pc += 2;
break;
}
case 12: /* I8 Formats btez btnez */
{
struct upk_mips16 upk;
int reg;
unpack_mips16 (pc, extension, insn, i8type, &upk);
/* upk.regx contains the opcode */
reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
|| ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
/* pc = add_offset_16(pc,upk.offset) ; */
pc += (upk.offset << 1) + 2;
else
pc += 2;
break;
}
case 29: /* RR Formats JR, JALR, JALR-RA */
{
struct upk_mips16 upk;
/* upk.fmt = rrtype; */
op = insn & 0x1f;
if (op == 0)
{
int reg;
upk.regx = (insn >> 8) & 0x07;
upk.regy = (insn >> 5) & 0x07;
switch (upk.regy)
{
case 0:
reg = upk.regx;
break;
case 1:
reg = 31;
break; /* Function return instruction */
case 2:
reg = upk.regx;
break;
default:
reg = 31;
break; /* BOGUS Guess */
}
pc = get_frame_register_signed (frame, reg);
}
else
pc += 2;
break;
}
case 30:
/* This is an instruction extension. Fetch the real instruction
(which follows the extension) and decode things based on
that. */
{
pc += 2;
pc = extended_mips16_next_pc (frame, pc, insn, fetch_mips_16 (pc));
break;
}
default:
{
pc += 2;
break;
}
}
return pc;
}
static CORE_ADDR
mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
{
unsigned int insn = fetch_mips_16 (pc);
return extended_mips16_next_pc (frame, pc, 0, insn);
}
/* The mips_next_pc function supports single_step when the remote
target monitor or stub is not developed enough to do a single_step.
It works by decoding the current instruction and predicting where a
branch will go. This isnt hard because all the data is available.
The MIPS32 and MIPS16 variants are quite different. */
static CORE_ADDR
mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
{
if (is_mips16_addr (pc))
return mips16_next_pc (frame, pc);
else
return mips32_next_pc (frame, pc);
}
struct mips_frame_cache
{
CORE_ADDR base;
struct trad_frame_saved_reg *saved_regs;
};
/* Set a register's saved stack address in temp_saved_regs. If an
address has already been set for this register, do nothing; this
way we will only recognize the first save of a given register in a
function prologue.
For simplicity, save the address in both [0 .. gdbarch_num_regs) and
[gdbarch_num_regs .. 2*gdbarch_num_regs).
Strictly speaking, only the second range is used as it is only second
range (the ABI instead of ISA registers) that comes into play when finding
saved registers in a frame. */
static void
set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
CORE_ADDR offset)
{
if (this_cache != NULL
&& this_cache->saved_regs[regnum].addr == -1)
{
this_cache->saved_regs[regnum
+ 0 * gdbarch_num_regs (current_gdbarch)].addr
= offset;
this_cache->saved_regs[regnum
+ 1 * gdbarch_num_regs (current_gdbarch)].addr
= offset;
}
}
/* Fetch the immediate value from a MIPS16 instruction.
If the previous instruction was an EXTEND, use it to extend
the upper bits of the immediate value. This is a helper function
for mips16_scan_prologue. */
static int
mips16_get_imm (unsigned short prev_inst, /* previous instruction */
unsigned short inst, /* current instruction */
int nbits, /* number of bits in imm field */
int scale, /* scale factor to be applied to imm */
int is_signed) /* is the imm field signed? */
{
int offset;
if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
{
offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
if (offset & 0x8000) /* check for negative extend */
offset = 0 - (0x10000 - (offset & 0xffff));
return offset | (inst & 0x1f);
}
else
{
int max_imm = 1 << nbits;
int mask = max_imm - 1;
int sign_bit = max_imm >> 1;
offset = inst & mask;
if (is_signed && (offset & sign_bit))
offset = 0 - (max_imm - offset);
return offset * scale;
}
}
/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
the associated FRAME_CACHE if not null.
Return the address of the first instruction past the prologue. */
static CORE_ADDR
mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
struct frame_info *next_frame,
struct mips_frame_cache *this_cache)
{
CORE_ADDR cur_pc;
CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
CORE_ADDR sp;
long frame_offset = 0; /* Size of stack frame. */
long frame_adjust = 0; /* Offset of FP from SP. */
int frame_reg = MIPS_SP_REGNUM;
unsigned short prev_inst = 0; /* saved copy of previous instruction */
unsigned inst = 0; /* current instruction */
unsigned entry_inst = 0; /* the entry instruction */
int reg, offset;
int extend_bytes = 0;
int prev_extend_bytes;
CORE_ADDR end_prologue_addr = 0;
struct gdbarch *gdbarch = get_frame_arch (next_frame);
/* Can be called when there's no process, and hence when there's no
NEXT_FRAME. */
if (next_frame != NULL)
sp = frame_unwind_register_signed (next_frame,
gdbarch_num_regs (gdbarch)
+ MIPS_SP_REGNUM);
else
sp = 0;
if (limit_pc > start_pc + 200)
limit_pc = start_pc + 200;
for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
{
/* Save the previous instruction. If it's an EXTEND, we'll extract
the immediate offset extension from it in mips16_get_imm. */
prev_inst = inst;
/* Fetch and decode the instruction. */
inst = (unsigned short) mips_fetch_instruction (cur_pc);
/* Normally we ignore extend instructions. However, if it is
not followed by a valid prologue instruction, then this
instruction is not part of the prologue either. We must
remember in this case to adjust the end_prologue_addr back
over the extend. */
if ((inst & 0xf800) == 0xf000) /* extend */
{
extend_bytes = MIPS_INSN16_SIZE;
continue;
}
prev_extend_bytes = extend_bytes;
extend_bytes = 0;
if ((inst & 0xff00) == 0x6300 /* addiu sp */
|| (inst & 0xff00) == 0xfb00) /* daddiu sp */
{
offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
if (offset < 0) /* negative stack adjustment? */
frame_offset -= offset;
else
/* Exit loop if a positive stack adjustment is found, which
usually means that the stack cleanup code in the function
epilogue is reached. */
break;
}
else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
{
offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
reg = mips16_to_32_reg[(inst & 0x700) >> 8];
set_reg_offset (this_cache, reg, sp + offset);
}
else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
{
offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
set_reg_offset (this_cache, reg, sp + offset);
}
else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
{
offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
}
else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
{
offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
}
else if (inst == 0x673d) /* move $s1, $sp */
{
frame_addr = sp;
frame_reg = 17;
}
else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
{
offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
frame_addr = sp + offset;
frame_reg = 17;
frame_adjust = offset;
}
else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
{
offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
set_reg_offset (this_cache, reg, frame_addr + offset);
}
else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
{
offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
set_reg_offset (this_cache, reg, frame_addr + offset);
}
else if ((inst & 0xf81f) == 0xe809
&& (inst & 0x700) != 0x700) /* entry */
entry_inst = inst; /* save for later processing */
else if ((inst & 0xf800) == 0x1800) /* jal(x) */
cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
{
/* This instruction is part of the prologue, but we don't
need to do anything special to handle it. */
}
else
{
/* This instruction is not an instruction typically found
in a prologue, so we must have reached the end of the
prologue. */
if (end_prologue_addr == 0)
end_prologue_addr = cur_pc - prev_extend_bytes;
}
}
/* The entry instruction is typically the first instruction in a function,
and it stores registers at offsets relative to the value of the old SP
(before the prologue). But the value of the sp parameter to this
function is the new SP (after the prologue has been executed). So we
can't calculate those offsets until we've seen the entire prologue,
and can calculate what the old SP must have been. */
if (entry_inst != 0)
{
int areg_count = (entry_inst >> 8) & 7;
int sreg_count = (entry_inst >> 6) & 3;
/* The entry instruction always subtracts 32 from the SP. */
frame_offset += 32;
/* Now we can calculate what the SP must have been at the
start of the function prologue. */
sp += frame_offset;
/* Check if a0-a3 were saved in the caller's argument save area. */
for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
{
set_reg_offset (this_cache, reg, sp + offset);
offset += mips_abi_regsize (gdbarch);
}
/* Check if the ra register was pushed on the stack. */
offset = -4;
if (entry_inst & 0x20)
{
set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
offset -= mips_abi_regsize (gdbarch);
}
/* Check if the s0 and s1 registers were pushed on the stack. */
for (reg = 16; reg < sreg_count + 16; reg++)
{
set_reg_offset (this_cache, reg, sp + offset);
offset -= mips_abi_regsize (gdbarch);
}
}
if (this_cache != NULL)
{
this_cache->base =
(frame_unwind_register_signed (next_frame,
gdbarch_num_regs (gdbarch) + frame_reg)
+ frame_offset - frame_adjust);
/* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
be able to get rid of the assignment below, evetually. But it's
still needed for now. */
this_cache->saved_regs[gdbarch_num_regs (gdbarch)
+ mips_regnum (gdbarch)->pc]
= this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
}
/* If we didn't reach the end of the prologue when scanning the function
instructions, then set end_prologue_addr to the address of the
instruction immediately after the last one we scanned. */
if (end_prologue_addr == 0)
end_prologue_addr = cur_pc;
return end_prologue_addr;
}
/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
Procedures that use the 32-bit instruction set are handled by the
mips_insn32 unwinder. */
static struct mips_frame_cache *
mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
{
struct mips_frame_cache *cache;
if ((*this_cache) != NULL)
return (*this_cache);
cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
(*this_cache) = cache;
cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
/* Analyze the function prologue. */
{
const CORE_ADDR pc =
frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
CORE_ADDR start_addr;
find_pc_partial_function (pc, NULL, &start_addr, NULL);
if (start_addr == 0)
start_addr = heuristic_proc_start (pc);
/* We can't analyze the prologue if we couldn't find the begining
of the function. */
if (start_addr == 0)
return cache;
mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
}
/* gdbarch_sp_regnum contains the value and not the address. */
trad_frame_set_value (cache->saved_regs,
gdbarch_num_regs (get_frame_arch (next_frame))
+ MIPS_SP_REGNUM,
cache->base);
return (*this_cache);
}
static void
mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
struct frame_id *this_id)
{
struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
this_cache);
(*this_id) = frame_id_build (info->base,
frame_func_unwind (next_frame, NORMAL_FRAME));
}
static void
mips_insn16_frame_prev_register (struct frame_info *next_frame,
void **this_cache,
int regnum, int *optimizedp,
enum lval_type *lvalp, CORE_ADDR *addrp,
int *realnump, gdb_byte *valuep)
{
struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
this_cache);
trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
optimizedp, lvalp, addrp, realnump, valuep);
}
static const struct frame_unwind mips_insn16_frame_unwind =
{
NORMAL_FRAME,
mips_insn16_frame_this_id,
mips_insn16_frame_prev_register
};
static const struct frame_unwind *
mips_insn16_frame_sniffer (struct frame_info *next_frame)
{
CORE_ADDR pc = frame_pc_unwind (next_frame);
if (mips_pc_is_mips16 (pc))
return &mips_insn16_frame_unwind;
return NULL;
}
static CORE_ADDR
mips_insn16_frame_base_address (struct frame_info *next_frame,
void **this_cache)
{
struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
this_cache);
return info->base;
}
static const struct frame_base mips_insn16_frame_base =
{
&mips_insn16_frame_unwind,
mips_insn16_frame_base_address,
mips_insn16_frame_base_address,
mips_insn16_frame_base_address
};
static const struct frame_base *
mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
{
if (mips_insn16_frame_sniffer (next_frame) != NULL)
return &mips_insn16_frame_base;
else
return NULL;
}
/* Mark all the registers as unset in the saved_regs array
of THIS_CACHE. Do nothing if THIS_CACHE is null. */
void
reset_saved_regs (struct mips_frame_cache *this_cache)
{
if (this_cache == NULL || this_cache->saved_regs == NULL)
return;
{
const int num_regs = gdbarch_num_regs (current_gdbarch);
int i;
for (i = 0; i < num_regs; i++)
{
this_cache->saved_regs[i].addr = -1;
}
}
}
/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
the associated FRAME_CACHE if not null.
Return the address of the first instruction past the prologue. */
static CORE_ADDR
mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
struct frame_info *next_frame,
struct mips_frame_cache *this_cache)
{
CORE_ADDR cur_pc;
CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
CORE_ADDR sp;
long frame_offset;
int frame_reg = MIPS_SP_REGNUM;
CORE_ADDR end_prologue_addr = 0;
int seen_sp_adjust = 0;
int load_immediate_bytes = 0;
struct gdbarch *gdbarch = get_frame_arch (next_frame);
/* Can be called when there's no process, and hence when there's no
NEXT_FRAME. */
if (next_frame != NULL)
sp = frame_unwind_register_signed (next_frame,
gdbarch_num_regs (gdbarch)
+ MIPS_SP_REGNUM);
else
sp = 0;
if (limit_pc > start_pc + 200)
limit_pc = start_pc + 200;
restart:
frame_offset = 0;
for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
{
unsigned long inst, high_word, low_word;
int reg;
/* Fetch the instruction. */
inst = (unsigned long) mips_fetch_instruction (cur_pc);
/* Save some code by pre-extracting some useful fields. */
high_word = (inst >> 16) & 0xffff;
low_word = inst & 0xffff;
reg = high_word & 0x1f;
if (high_word == 0x27bd /* addiu $sp,$sp,-i */
|| high_word == 0x23bd /* addi $sp,$sp,-i */
|| high_word == 0x67bd) /* daddiu $sp,$sp,-i */
{
if (low_word & 0x8000) /* negative stack adjustment? */
frame_offset += 0x10000 - low_word;
else
/* Exit loop if a positive stack adjustment is found, which
usually means that the stack cleanup code in the function
epilogue is reached. */
break;
seen_sp_adjust = 1;
}
else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
{
set_reg_offset (this_cache, reg, sp + low_word);
}
else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
{
/* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
set_reg_offset (this_cache, reg, sp + low_word);
}
else if (high_word == 0x27be) /* addiu $30,$sp,size */
{
/* Old gcc frame, r30 is virtual frame pointer. */
if ((long) low_word != frame_offset)
frame_addr = sp + low_word;
else if (next_frame && frame_reg == MIPS_SP_REGNUM)
{
unsigned alloca_adjust;
frame_reg = 30;
frame_addr = frame_unwind_register_signed
(next_frame, gdbarch_num_regs (gdbarch) + 30);
alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
if (alloca_adjust > 0)
{
/* FP > SP + frame_size. This may be because of
an alloca or somethings similar. Fix sp to
"pre-alloca" value, and try again. */
sp += alloca_adjust;
/* Need to reset the status of all registers. Otherwise,
we will hit a guard that prevents the new address
for each register to be recomputed during the second
pass. */
reset_saved_regs (this_cache);
goto restart;
}
}
}
/* move $30,$sp. With different versions of gas this will be either
`addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
Accept any one of these. */
else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
{
/* New gcc frame, virtual frame pointer is at r30 + frame_size. */
if (next_frame && frame_reg == MIPS_SP_REGNUM)
{
unsigned alloca_adjust;
frame_reg = 30;
frame_addr = frame_unwind_register_signed
(next_frame, gdbarch_num_regs (gdbarch) + 30);
alloca_adjust = (unsigned) (frame_addr - sp);
if (alloca_adjust > 0)
{
/* FP > SP + frame_size. This may be because of
an alloca or somethings similar. Fix sp to
"pre-alloca" value, and try again. */
sp = frame_addr;
/* Need to reset the status of all registers. Otherwise,
we will hit a guard that prevents the new address
for each register to be recomputed during the second
pass. */
reset_saved_regs (this_cache);
goto restart;
}
}
}
else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
{
set_reg_offset (this_cache, reg, frame_addr + low_word);
}
else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
|| (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
|| (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
|| high_word == 0x3c1c /* lui $gp,n */
|| high_word == 0x279c /* addiu $gp,$gp,n */
|| inst == 0x0399e021 /* addu $gp,$gp,$t9 */
|| inst == 0x033ce021 /* addu $gp,$t9,$gp */
)
{
/* These instructions are part of the prologue, but we don't
need to do anything special to handle them. */
}
/* The instructions below load $at or $t0 with an immediate
value in preparation for a stack adjustment via
subu $sp,$sp,[$at,$t0]. These instructions could also
initialize a local variable, so we accept them only before
a stack adjustment instruction was seen. */
else if (!seen_sp_adjust
&& (high_word == 0x3c01 /* lui $at,n */
|| high_word == 0x3c08 /* lui $t0,n */
|| high_word == 0x3421 /* ori $at,$at,n */
|| high_word == 0x3508 /* ori $t0,$t0,n */
|| high_word == 0x3401 /* ori $at,$zero,n */
|| high_word == 0x3408 /* ori $t0,$zero,n */
))
{
load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
}
else
{
/* This instruction is not an instruction typically found
in a prologue, so we must have reached the end of the
prologue. */
/* FIXME: brobecker/2004-10-10: Can't we just break out of this
loop now? Why would we need to continue scanning the function
instructions? */
if (end_prologue_addr == 0)
end_prologue_addr = cur_pc;
}
}
if (this_cache != NULL)
{
this_cache->base =
(frame_unwind_register_signed (next_frame,
gdbarch_num_regs (gdbarch) + frame_reg)
+ frame_offset);
/* FIXME: brobecker/2004-09-15: We should be able to get rid of
this assignment below, eventually. But it's still needed
for now. */
this_cache->saved_regs[gdbarch_num_regs (gdbarch)
+ mips_regnum (gdbarch)->pc]
= this_cache->saved_regs[gdbarch_num_regs (gdbarch)
+ MIPS_RA_REGNUM];
}
/* If we didn't reach the end of the prologue when scanning the function
instructions, then set end_prologue_addr to the address of the
instruction immediately after the last one we scanned. */
/* brobecker/2004-10-10: I don't think this would ever happen, but
we may as well be careful and do our best if we have a null
end_prologue_addr. */
if (end_prologue_addr == 0)
end_prologue_addr = cur_pc;
/* In a frameless function, we might have incorrectly
skipped some load immediate instructions. Undo the skipping
if the load immediate was not followed by a stack adjustment. */
if (load_immediate_bytes && !seen_sp_adjust)
end_prologue_addr -= load_immediate_bytes;
return end_prologue_addr;
}
/* Heuristic unwinder for procedures using 32-bit instructions (covers
both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
instructions (a.k.a. MIPS16) are handled by the mips_insn16
unwinder. */
static struct mips_frame_cache *
mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
{
struct mips_frame_cache *cache;
if ((*this_cache) != NULL)
return (*this_cache);
cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
(*this_cache) = cache;
cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
/* Analyze the function prologue. */
{
const CORE_ADDR pc =
frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
CORE_ADDR start_addr;
find_pc_partial_function (pc, NULL, &start_addr, NULL);
if (start_addr == 0)
start_addr = heuristic_proc_start (pc);
/* We can't analyze the prologue if we couldn't find the begining
of the function. */
if (start_addr == 0)
return cache;
mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
}
/* gdbarch_sp_regnum contains the value and not the address. */
trad_frame_set_value (cache->saved_regs,
gdbarch_num_regs (get_frame_arch (next_frame))
+ MIPS_SP_REGNUM,
cache->base);
return (*this_cache);
}
static void
mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
struct frame_id *this_id)
{
struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
this_cache);
(*this_id) = frame_id_build (info->base,
frame_func_unwind (next_frame, NORMAL_FRAME));
}
static void
mips_insn32_frame_prev_register (struct frame_info *next_frame,
void **this_cache,
int regnum, int *optimizedp,
enum lval_type *lvalp, CORE_ADDR *addrp,
int *realnump, gdb_byte *valuep)
{
struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
this_cache);
trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
optimizedp, lvalp, addrp, realnump, valuep);
}
static const struct frame_unwind mips_insn32_frame_unwind =
{
NORMAL_FRAME,
mips_insn32_frame_this_id,
mips_insn32_frame_prev_register
};
static const struct frame_unwind *
mips_insn32_frame_sniffer (struct frame_info *next_frame)
{
CORE_ADDR pc = frame_pc_unwind (next_frame);
if (! mips_pc_is_mips16 (pc))
return &mips_insn32_frame_unwind;
return NULL;
}
static CORE_ADDR
mips_insn32_frame_base_address (struct frame_info *next_frame,
void **this_cache)
{
struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
this_cache);
return info->base;
}
static const struct frame_base mips_insn32_frame_base =
{
&mips_insn32_frame_unwind,
mips_insn32_frame_base_address,
mips_insn32_frame_base_address,
mips_insn32_frame_base_address
};
static const struct frame_base *
mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
{
if (mips_insn32_frame_sniffer (next_frame) != NULL)
return &mips_insn32_frame_base;
else
return NULL;
}
static struct trad_frame_cache *
mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
{
CORE_ADDR pc;
CORE_ADDR start_addr;
CORE_ADDR stack_addr;
struct trad_frame_cache *this_trad_cache;
struct gdbarch *gdbarch = get_frame_arch (next_frame);
if ((*this_cache) != NULL)
return (*this_cache);
this_trad_cache = trad_frame_cache_zalloc (next_frame);
(*this_cache) = this_trad_cache;
/* The return address is in the link register. */
trad_frame_set_reg_realreg (this_trad_cache,
gdbarch_pc_regnum (gdbarch),
(gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM));
/* Frame ID, since it's a frameless / stackless function, no stack
space is allocated and SP on entry is the current SP. */
pc = frame_pc_unwind (next_frame);
find_pc_partial_function (pc, NULL, &start_addr, NULL);
stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
/* Assume that the frame's base is the same as the
stack-pointer. */
trad_frame_set_this_base (this_trad_cache, stack_addr);
return this_trad_cache;
}
static void
mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
struct frame_id *this_id)
{
struct trad_frame_cache *this_trad_cache
= mips_stub_frame_cache (next_frame, this_cache);
trad_frame_get_id (this_trad_cache, this_id);
}
static void
mips_stub_frame_prev_register (struct frame_info *next_frame,
void **this_cache,
int regnum, int *optimizedp,
enum lval_type *lvalp, CORE_ADDR *addrp,
int *realnump, gdb_byte *valuep)
{
struct trad_frame_cache *this_trad_cache
= mips_stub_frame_cache (next_frame, this_cache);
trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
lvalp, addrp, realnump, valuep);
}
static const struct frame_unwind mips_stub_frame_unwind =
{
NORMAL_FRAME,
mips_stub_frame_this_id,
mips_stub_frame_prev_register
};
static const struct frame_unwind *
mips_stub_frame_sniffer (struct frame_info *next_frame)
{
gdb_byte dummy[4];
struct obj_section *s;
CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
/* Use the stub unwinder for unreadable code. */
if (target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
return &mips_stub_frame_unwind;
if (in_plt_section (pc, NULL))
return &mips_stub_frame_unwind;
/* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
s = find_pc_section (pc);
if (s != NULL
&& strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
".MIPS.stubs") == 0)
return &mips_stub_frame_unwind;
return NULL;
}
static CORE_ADDR
mips_stub_frame_base_address (struct frame_info *next_frame,
void **this_cache)
{
struct trad_frame_cache *this_trad_cache
= mips_stub_frame_cache (next_frame, this_cache);
return trad_frame_get_this_base (this_trad_cache);
}
static const struct frame_base mips_stub_frame_base =
{
&mips_stub_frame_unwind,
mips_stub_frame_base_address,
mips_stub_frame_base_address,
mips_stub_frame_base_address
};
static const struct frame_base *
mips_stub_frame_base_sniffer (struct frame_info *next_frame)
{
if (mips_stub_frame_sniffer (next_frame) != NULL)
return &mips_stub_frame_base;
else
return NULL;
}
/* mips_addr_bits_remove - remove useless address bits */
static CORE_ADDR
mips_addr_bits_remove (CORE_ADDR addr)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
/* This hack is a work-around for existing boards using PMON, the
simulator, and any other 64-bit targets that doesn't have true
64-bit addressing. On these targets, the upper 32 bits of
addresses are ignored by the hardware. Thus, the PC or SP are
likely to have been sign extended to all 1s by instruction
sequences that load 32-bit addresses. For example, a typical
piece of code that loads an address is this:
lui $r2,
ori $r2,
But the lui sign-extends the value such that the upper 32 bits
may be all 1s. The workaround is simply to mask off these
bits. In the future, gcc may be changed to support true 64-bit
addressing, and this masking will have to be disabled. */
return addr &= 0xffffffffUL;
else
return addr;
}
/* Instructions used during single-stepping of atomic sequences. */
#define LL_OPCODE 0x30
#define LLD_OPCODE 0x34
#define SC_OPCODE 0x38
#define SCD_OPCODE 0x3c
/* Checks for an atomic sequence of instructions beginning with a LL/LLD
instruction and ending with a SC/SCD instruction. If such a sequence
is found, attempt to step through it. A breakpoint is placed at the end of
the sequence. */
static int
deal_with_atomic_sequence (CORE_ADDR pc)
{
CORE_ADDR breaks[2] = {-1, -1};
CORE_ADDR loc = pc;
CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
unsigned long insn;
int insn_count;
int index;
int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
const int atomic_sequence_length = 16; /* Instruction sequence length. */
if (pc & 0x01)
return 0;
insn = mips_fetch_instruction (loc);
/* Assume all atomic sequences start with a ll/lld instruction. */
if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
return 0;
/* Assume that no atomic sequence is longer than "atomic_sequence_length"
instructions. */
for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
{
int is_branch = 0;
loc += MIPS_INSN32_SIZE;
insn = mips_fetch_instruction (loc);
/* Assume that there is at most one branch in the atomic
sequence. If a branch is found, put a breakpoint in its
destination address. */
switch (itype_op (insn))
{
case 0: /* SPECIAL */
if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
return 0; /* fallback to the standard single-step code. */
break;
case 1: /* REGIMM */
is_branch = ((itype_rt (insn) & 0xc0) == 0); /* B{LT,GE}Z* */
break;
case 2: /* J */
case 3: /* JAL */
return 0; /* fallback to the standard single-step code. */
case 4: /* BEQ */
case 5: /* BNE */
case 6: /* BLEZ */
case 7: /* BGTZ */
case 20: /* BEQL */
case 21: /* BNEL */
case 22: /* BLEZL */
case 23: /* BGTTL */
is_branch = 1;
break;
case 17: /* COP1 */
case 18: /* COP2 */
case 19: /* COP3 */
is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
break;
}
if (is_branch)
{
branch_bp = loc + mips32_relative_offset (insn) + 4;
if (last_breakpoint >= 1)
return 0; /* More than one branch found, fallback to the
standard single-step code. */
breaks[1] = branch_bp;
last_breakpoint++;
}
if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
break;
}
/* Assume that the atomic sequence ends with a sc/scd instruction. */
if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
return 0;
loc += MIPS_INSN32_SIZE;
/* Insert a breakpoint right after the end of the atomic sequence. */
breaks[0] = loc;
/* Check for duplicated breakpoints. Check also for a breakpoint
placed (branch instruction's destination) in the atomic sequence */
if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
last_breakpoint = 0;
/* Effectively inserts the breakpoints. */
for (index = 0; index <= last_breakpoint; index++)
insert_single_step_breakpoint (breaks[index]);
return 1;
}
/* mips_software_single_step() is called just before we want to resume
the inferior, if we want to single-step it but there is no hardware
or kernel single-step support (MIPS on GNU/Linux for example). We find
the target of the coming instruction and breakpoint it. */
int
mips_software_single_step (struct frame_info *frame)
{
CORE_ADDR pc, next_pc;
pc = get_frame_pc (frame);
if (deal_with_atomic_sequence (pc))
return 1;
next_pc = mips_next_pc (frame, pc);
insert_single_step_breakpoint (next_pc);
return 1;
}
/* Test whether the PC points to the return instruction at the
end of a function. */
static int
mips_about_to_return (CORE_ADDR pc)
{
if (mips_pc_is_mips16 (pc))
/* This mips16 case isn't necessarily reliable. Sometimes the compiler
generates a "jr $ra"; other times it generates code to load
the return address from the stack to an accessible register (such
as $a3), then a "jr" using that register. This second case
is almost impossible to distinguish from an indirect jump
used for switch statements, so we don't even try. */
return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
else
return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
}
/* This fencepost looks highly suspicious to me. Removing it also
seems suspicious as it could affect remote debugging across serial
lines. */
static CORE_ADDR
heuristic_proc_start (CORE_ADDR pc)
{
CORE_ADDR start_pc;
CORE_ADDR fence;
int instlen;
int seen_adjsp = 0;
pc = gdbarch_addr_bits_remove (current_gdbarch, pc);
start_pc = pc;
fence = start_pc - heuristic_fence_post;
if (start_pc == 0)
return 0;
if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
fence = VM_MIN_ADDRESS;
instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
/* search back for previous return */
for (start_pc -= instlen;; start_pc -= instlen)
if (start_pc < fence)
{
/* It's not clear to me why we reach this point when
stop_soon, but with this test, at least we
don't print out warnings for every child forked (eg, on
decstation). 22apr93 rich@cygnus.com. */
if (stop_soon == NO_STOP_QUIETLY)
{
static int blurb_printed = 0;
warning (_("GDB can't find the start of the function at 0x%s."),
paddr_nz (pc));
if (!blurb_printed)
{
/* This actually happens frequently in embedded
development, when you first connect to a board
and your stack pointer and pc are nowhere in
particular. This message needs to give people
in that situation enough information to
determine that it's no big deal. */
printf_filtered ("\n\
GDB is unable to find the start of the function at 0x%s\n\
and thus can't determine the size of that function's stack frame.\n\
This means that GDB may be unable to access that stack frame, or\n\
the frames below it.\n\
This problem is most likely caused by an invalid program counter or\n\
stack pointer.\n\
However, if you think GDB should simply search farther back\n\
from 0x%s for code which looks like the beginning of a\n\
function, you can increase the range of the search using the `set\n\
heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
blurb_printed = 1;
}
}
return 0;
}
else if (mips_pc_is_mips16 (start_pc))
{
unsigned short inst;
/* On MIPS16, any one of the following is likely to be the
start of a function:
extend save
save
entry
addiu sp,-n
daddiu sp,-n
extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
inst = mips_fetch_instruction (start_pc);
if ((inst & 0xff80) == 0x6480) /* save */
{
if (start_pc - instlen >= fence)
{
inst = mips_fetch_instruction (start_pc - instlen);
if ((inst & 0xf800) == 0xf000) /* extend */
start_pc -= instlen;
}
break;
}
else if (((inst & 0xf81f) == 0xe809
&& (inst & 0x700) != 0x700) /* entry */
|| (inst & 0xff80) == 0x6380 /* addiu sp,-n */
|| (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
|| ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
break;
else if ((inst & 0xff00) == 0x6300 /* addiu sp */
|| (inst & 0xff00) == 0xfb00) /* daddiu sp */
seen_adjsp = 1;
else
seen_adjsp = 0;
}
else if (mips_about_to_return (start_pc))
{
/* Skip return and its delay slot. */
start_pc += 2 * MIPS_INSN32_SIZE;
break;
}
return start_pc;
}
struct mips_objfile_private
{
bfd_size_type size;
char *contents;
};
/* According to the current ABI, should the type be passed in a
floating-point register (assuming that there is space)? When there
is no FPU, FP are not even considered as possible candidates for
FP registers and, consequently this returns false - forces FP
arguments into integer registers. */
static int
fp_register_arg_p (enum type_code typecode, struct type *arg_type)
{
return ((typecode == TYPE_CODE_FLT
|| (MIPS_EABI
&& (typecode == TYPE_CODE_STRUCT
|| typecode == TYPE_CODE_UNION)
&& TYPE_NFIELDS (arg_type) == 1
&& TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
== TYPE_CODE_FLT))
&& MIPS_FPU_TYPE != MIPS_FPU_NONE);
}
/* On o32, argument passing in GPRs depends on the alignment of the type being
passed. Return 1 if this type must be aligned to a doubleword boundary. */
static int
mips_type_needs_double_align (struct type *type)
{
enum type_code typecode = TYPE_CODE (type);
if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
return 1;
else if (typecode == TYPE_CODE_STRUCT)
{
if (TYPE_NFIELDS (type) < 1)
return 0;
return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
}
else if (typecode == TYPE_CODE_UNION)
{
int i, n;
n = TYPE_NFIELDS (type);
for (i = 0; i < n; i++)
if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
return 1;
return 0;
}
return 0;
}
/* Adjust the address downward (direction of stack growth) so that it
is correctly aligned for a new stack frame. */
static CORE_ADDR
mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
return align_down (addr, 16);
}
static CORE_ADDR
mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
struct regcache *regcache, CORE_ADDR bp_addr,
int nargs, struct value **args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
int argreg;
int float_argreg;
int argnum;
int len = 0;
int stack_offset = 0;
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
CORE_ADDR func_addr = find_function_addr (function, NULL);
int regsize = mips_abi_regsize (gdbarch);
/* For shared libraries, "t9" needs to point at the function
address. */
regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
/* Set the return address register to point to the entry point of
the program, where a breakpoint lies in wait. */
regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
/* First ensure that the stack and structure return address (if any)
are properly aligned. The stack has to be at least 64-bit
aligned even on 32-bit machines, because doubles must be 64-bit
aligned. For n32 and n64, stack frames need to be 128-bit
aligned, so we round to this widest known alignment. */
sp = align_down (sp, 16);
struct_addr = align_down (struct_addr, 16);
/* Now make space on the stack for the args. We allocate more
than necessary for EABI, because the first few arguments are
passed in registers, but that's OK. */
for (argnum = 0; argnum < nargs; argnum++)
len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
sp -= align_up (len, 16);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
paddr_nz (sp), (long) align_up (len, 16));
/* Initialize the integer and float register pointers. */
argreg = MIPS_A0_REGNUM;
float_argreg = mips_fpa0_regnum (gdbarch);
/* The struct_return pointer occupies the first parameter-passing reg. */
if (struct_return)
{
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
argreg, paddr_nz (struct_addr));
regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
}
/* Now load as many as possible of the first arguments into
registers, and push the rest onto the stack. Loop thru args
from first to last. */
for (argnum = 0; argnum < nargs; argnum++)
{
const gdb_byte *val;
gdb_byte valbuf[MAX_REGISTER_SIZE];
struct value *arg = args[argnum];
struct type *arg_type = check_typedef (value_type (arg));
int len = TYPE_LENGTH (arg_type);
enum type_code typecode = TYPE_CODE (arg_type);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_eabi_push_dummy_call: %d len=%d type=%d",
argnum + 1, len, (int) typecode);
/* The EABI passes structures that do not fit in a register by
reference. */
if (len > regsize
&& (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
{
store_unsigned_integer (valbuf, regsize, VALUE_ADDRESS (arg));
typecode = TYPE_CODE_PTR;
len = regsize;
val = valbuf;
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " push");
}
else
val = value_contents (arg);
/* 32-bit ABIs always start floating point arguments in an
even-numbered floating point register. Round the FP register
up before the check to see if there are any FP registers
left. Non MIPS_EABI targets also pass the FP in the integer
registers so also round up normal registers. */
if (regsize < 8 && fp_register_arg_p (typecode, arg_type))
{
if ((float_argreg & 1))
float_argreg++;
}
/* Floating point arguments passed in registers have to be
treated specially. On 32-bit architectures, doubles
are passed in register pairs; the even register gets
the low word, and the odd register gets the high word.
On non-EABI processors, the first two floating point arguments are
also copied to general registers, because MIPS16 functions
don't use float registers for arguments. This duplication of
arguments in general registers can't hurt non-MIPS16 functions
because those registers are normally skipped. */
/* MIPS_EABI squeezes a struct that contains a single floating
point value into an FP register instead of pushing it onto the
stack. */
if (fp_register_arg_p (typecode, arg_type)
&& float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
{
/* EABI32 will pass doubles in consecutive registers, even on
64-bit cores. At one time, we used to check the size of
`float_argreg' to determine whether or not to pass doubles
in consecutive registers, but this is not sufficient for
making the ABI determination. */
if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
{
int low_offset = gdbarch_byte_order (gdbarch)
== BFD_ENDIAN_BIG ? 4 : 0;
unsigned long regval;
/* Write the low word of the double to the even register(s). */
regval = extract_unsigned_integer (val + low_offset, 4);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg, phex (regval, 4));
regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
/* Write the high word of the double to the odd register(s). */
regval = extract_unsigned_integer (val + 4 - low_offset, 4);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg, phex (regval, 4));
regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
}
else
{
/* This is a floating point value that fits entirely
in a single register. */
/* On 32 bit ABI's the float_argreg is further adjusted
above to ensure that it is even register aligned. */
LONGEST regval = extract_unsigned_integer (val, len);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg, phex (regval, len));
regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
}
}
else
{
/* Copy the argument to general registers or the stack in
register-sized pieces. Large arguments are split between
registers and stack. */
/* Note: structs whose size is not a multiple of regsize
are treated specially: Irix cc passes
them in registers where gcc sometimes puts them on the
stack. For maximum compatibility, we will put them in
both places. */
int odd_sized_struct = (len > regsize && len % regsize != 0);
/* Note: Floating-point values that didn't fit into an FP
register are only written to memory. */
while (len > 0)
{
/* Remember if the argument was written to the stack. */
int stack_used_p = 0;
int partial_len = (len < regsize ? len : regsize);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
partial_len);
/* Write this portion of the argument to the stack. */
if (argreg > MIPS_LAST_ARG_REGNUM
|| odd_sized_struct
|| fp_register_arg_p (typecode, arg_type))
{
/* Should shorter than int integer values be
promoted to int before being stored? */
int longword_offset = 0;
CORE_ADDR addr;
stack_used_p = 1;
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
{
if (regsize == 8
&& (typecode == TYPE_CODE_INT
|| typecode == TYPE_CODE_PTR
|| typecode == TYPE_CODE_FLT) && len <= 4)
longword_offset = regsize - len;
else if ((typecode == TYPE_CODE_STRUCT
|| typecode == TYPE_CODE_UNION)
&& TYPE_LENGTH (arg_type) < regsize)
longword_offset = regsize - len;
}
if (mips_debug)
{
fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
paddr_nz (stack_offset));
fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
paddr_nz (longword_offset));
}
addr = sp + stack_offset + longword_offset;
if (mips_debug)
{
int i;
fprintf_unfiltered (gdb_stdlog, " @0x%s ",
paddr_nz (addr));
for (i = 0; i < partial_len; i++)
{
fprintf_unfiltered (gdb_stdlog, "%02x",
val[i] & 0xff);
}
}
write_memory (addr, val, partial_len);
}
/* Note!!! This is NOT an else clause. Odd sized
structs may go thru BOTH paths. Floating point
arguments will not. */
/* Write this portion of the argument to a general
purpose register. */
if (argreg <= MIPS_LAST_ARG_REGNUM
&& !fp_register_arg_p (typecode, arg_type))
{
LONGEST regval =
extract_unsigned_integer (val, partial_len);
if (mips_debug)
fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
argreg,
phex (regval, regsize));
regcache_cooked_write_unsigned (regcache, argreg, regval);
argreg++;
}
len -= partial_len;
val += partial_len;
/* Compute the the offset into the stack at which we
will copy the next parameter.
In the new EABI (and the NABI32), the stack_offset
only needs to be adjusted when it has been used. */
if (stack_used_p)
stack_offset += align_up (partial_len, regsize);
}
}
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, "\n");
}
regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
/* Return adjusted stack pointer. */
return sp;
}
/* Determine the return value convention being used. */
static enum return_value_convention
mips_eabi_return_value (struct gdbarch *gdbarch,
struct type *type, struct regcache *regcache,
gdb_byte *readbuf, const gdb_byte *writebuf)
{
if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
return RETURN_VALUE_STRUCT_CONVENTION;
if (readbuf)
memset (readbuf, 0, TYPE_LENGTH (type));
return RETURN_VALUE_REGISTER_CONVENTION;
}
/* N32/N64 ABI stuff. */
/* Search for a naturally aligned double at OFFSET inside a struct
ARG_TYPE. The N32 / N64 ABIs pass these in floating point
registers. */
static int
mips_n32n64_fp_arg_chunk_p (struct type *arg_type, int offset)
{
int i;
if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
return 0;
if (MIPS_FPU_TYPE != MIPS_FPU_DOUBLE)
return 0;
if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
return 0;
for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
{
int pos;
struct type *field_type;
/* We're only looking at normal fields. */
if (TYPE_FIELD_STATIC (arg_type, i)
|| (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
continue;
/* If we have gone past the offset, there is no double to pass. */
pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
if (pos > offset)
return 0;
field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
/* If this field is entirely before the requested offset, go
on to the next one. */
if (pos + TYPE_LENGTH (field_type) <= offset)
continue;
/* If this is our special aligned double, we can stop. */
if (TYPE_CODE (field_type) == TYPE_CODE_FLT
&& TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
return 1;
/* This field starts at or before the requested offset, and
overlaps it. If it is a structure, recurse inwards. */
return mips_n32n64_fp_arg_chunk_p (field_type, offset - pos);
}
return 0;
}
static CORE_ADDR
mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
struct regcache *regcache, CORE_ADDR bp_addr,
int nargs, struct value **args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
int argreg;
int float_argreg;
int argnum;
int len = 0;
int stack_offset = 0;
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
CORE_ADDR func_addr = find_function_addr (function, NULL);
/* For shared libraries, "t9" needs to point at the function
address. */
regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
/* Set the return address register to point to the entry point of
the program, where a breakpoint lies in wait. */
regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
/* First ensure that the stack and structure return address (if any)
are properly aligned. The stack has to be at least 64-bit
aligned even on 32-bit machines, because doubles must be 64-bit
aligned. For n32 and n64, stack frames need to be 128-bit
aligned, so we round to this widest known alignment. */
sp = align_down (sp, 16);
struct_addr = align_down (struct_addr, 16);
/* Now make space on the stack for the args. */
for (argnum = 0; argnum < nargs; argnum++)
len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
sp -= align_up (len, 16);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
paddr_nz (sp), (long) align_up (len, 16));
/* Initialize the integer and float register pointers. */
argreg = MIPS_A0_REGNUM;
float_argreg = mips_fpa0_regnum (gdbarch);
/* The struct_return pointer occupies the first parameter-passing reg. */
if (struct_return)
{
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
argreg, paddr_nz (struct_addr));
regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
}
/* Now load as many as possible of the first arguments into
registers, and push the rest onto the stack. Loop thru args
from first to last. */
for (argnum = 0; argnum < nargs; argnum++)
{
const gdb_byte *val;
struct value *arg = args[argnum];
struct type *arg_type = check_typedef (value_type (arg));
int len = TYPE_LENGTH (arg_type);
enum type_code typecode = TYPE_CODE (arg_type);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_n32n64_push_dummy_call: %d len=%d type=%d",
argnum + 1, len, (int) typecode);
val = value_contents (arg);
if (fp_register_arg_p (typecode, arg_type)
&& argreg <= MIPS_LAST_ARG_REGNUM)
{
/* This is a floating point value that fits entirely
in a single register. */
LONGEST regval = extract_unsigned_integer (val, len);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg, phex (regval, len));
regcache_cooked_write_unsigned (regcache, float_argreg, regval);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
argreg, phex (regval, len));
regcache_cooked_write_unsigned (regcache, argreg, regval);
float_argreg++;
argreg++;
}
else
{
/* Copy the argument to general registers or the stack in
register-sized pieces. Large arguments are split between
registers and stack. */
/* For N32/N64, structs, unions, or other composite types are
treated as a sequence of doublewords, and are passed in integer
or floating point registers as though they were simple scalar
parameters to the extent that they fit, with any excess on the
stack packed according to the normal memory layout of the
object.
The caller does not reserve space for the register arguments;
the callee is responsible for reserving it if required. */
/* Note: Floating-point values that didn't fit into an FP
register are only written to memory. */
while (len > 0)
{
/* Remember if the argument was written to the stack. */
int stack_used_p = 0;
int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
partial_len);
if (fp_register_arg_p (typecode, arg_type))
gdb_assert (argreg > MIPS_LAST_ARG_REGNUM);
/* Write this portion of the argument to the stack. */
if (argreg > MIPS_LAST_ARG_REGNUM)
{
/* Should shorter than int integer values be
promoted to int before being stored? */
int longword_offset = 0;
CORE_ADDR addr;
stack_used_p = 1;
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
{
if ((typecode == TYPE_CODE_INT
|| typecode == TYPE_CODE_PTR
|| typecode == TYPE_CODE_FLT)
&& len <= 4)
longword_offset = MIPS64_REGSIZE - len;
}
if (mips_debug)
{
fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
paddr_nz (stack_offset));
fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
paddr_nz (longword_offset));
}
addr = sp + stack_offset + longword_offset;
if (mips_debug)
{
int i;
fprintf_unfiltered (gdb_stdlog, " @0x%s ",
paddr_nz (addr));
for (i = 0; i < partial_len; i++)
{
fprintf_unfiltered (gdb_stdlog, "%02x",
val[i] & 0xff);
}
}
write_memory (addr, val, partial_len);
}
/* Note!!! This is NOT an else clause. Odd sized
structs may go thru BOTH paths. */
/* Write this portion of the argument to a general
purpose register. */
if (argreg <= MIPS_LAST_ARG_REGNUM)
{
LONGEST regval =
extract_unsigned_integer (val, partial_len);
/* A non-floating-point argument being passed in a
general register. If a struct or union, and if
the remaining length is smaller than the register
size, we have to adjust the register value on
big endian targets.
It does not seem to be necessary to do the
same for integral types. */
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
&& partial_len < MIPS64_REGSIZE
&& (typecode == TYPE_CODE_STRUCT
|| typecode == TYPE_CODE_UNION))
regval <<= ((MIPS64_REGSIZE - partial_len)
* TARGET_CHAR_BIT);
if (mips_debug)
fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
argreg,
phex (regval, MIPS64_REGSIZE));
regcache_cooked_write_unsigned (regcache, argreg, regval);
if (mips_n32n64_fp_arg_chunk_p (arg_type,
TYPE_LENGTH (arg_type) - len))
{
if (mips_debug)
fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg,
phex (regval, MIPS64_REGSIZE));
regcache_cooked_write_unsigned (regcache, float_argreg,
regval);
}
float_argreg++;
argreg++;
}
len -= partial_len;
val += partial_len;
/* Compute the the offset into the stack at which we
will copy the next parameter.
In N32 (N64?), the stack_offset only needs to be
adjusted when it has been used. */
if (stack_used_p)
stack_offset += align_up (partial_len, MIPS64_REGSIZE);
}
}
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, "\n");
}
regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
/* Return adjusted stack pointer. */
return sp;
}
static enum return_value_convention
mips_n32n64_return_value (struct gdbarch *gdbarch,
struct type *type, struct regcache *regcache,
gdb_byte *readbuf, const gdb_byte *writebuf)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
if needed), as appropriate for the type. Composite results (struct,
union, or array) are returned in $2/$f0 and $3/$f2 according to the
following rules:
* A struct with only one or two floating point fields is returned in $f0
(and $f2 if necessary). This is a generalization of the Fortran COMPLEX
case.
* Any other struct or union results of at most 128 bits are returned in
$2 (first 64 bits) and $3 (remainder, if necessary).
* Larger composite results are handled by converting the function to a
procedure with an implicit first parameter, which is a pointer to an area
reserved by the caller to receive the result. [The o32-bit ABI requires
that all composite results be handled by conversion to implicit first
parameters. The MIPS/SGI Fortran implementation has always made a
specific exception to return COMPLEX results in the floating point
registers.] */
if (TYPE_CODE (type) == TYPE_CODE_ARRAY
|| TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
return RETURN_VALUE_STRUCT_CONVENTION;
else if (TYPE_CODE (type) == TYPE_CODE_FLT
&& TYPE_LENGTH (type) == 16
&& tdep->mips_fpu_type != MIPS_FPU_NONE)
{
/* A 128-bit floating-point value fills both $f0 and $f2. The
two registers are used in the same as memory order, so the
eight bytes with the lower memory address are in $f0. */
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
mips_xfer_register (gdbarch, regcache,
gdbarch_num_regs (gdbarch)
+ mips_regnum (gdbarch)->fp0,
8, gdbarch_byte_order (gdbarch),
readbuf, writebuf, 0);
mips_xfer_register (gdbarch, regcache,
gdbarch_num_regs (gdbarch)
+ mips_regnum (gdbarch)->fp0 + 2,
8, gdbarch_byte_order (gdbarch),
readbuf ? readbuf + 8 : readbuf,
writebuf ? writebuf + 8 : writebuf, 0);
return RETURN_VALUE_REGISTER_CONVENTION;
}
else if (TYPE_CODE (type) == TYPE_CODE_FLT
&& tdep->mips_fpu_type != MIPS_FPU_NONE)
{
/* A single or double floating-point value that fits in FP0. */
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
mips_xfer_register (gdbarch, regcache,
gdbarch_num_regs (gdbarch)
+ mips_regnum (gdbarch)->fp0,
TYPE_LENGTH (type),
gdbarch_byte_order (gdbarch),
readbuf, writebuf, 0);
return RETURN_VALUE_REGISTER_CONVENTION;
}
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
&& TYPE_NFIELDS (type) <= 2
&& TYPE_NFIELDS (type) >= 1
&& ((TYPE_NFIELDS (type) == 1
&& (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
== TYPE_CODE_FLT))
|| (TYPE_NFIELDS (type) == 2
&& (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
== TYPE_CODE_FLT)
&& (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
== TYPE_CODE_FLT)))
&& tdep->mips_fpu_type != MIPS_FPU_NONE)
{
/* A struct that contains one or two floats. Each value is part
in the least significant part of their floating point
register.. */
int regnum;
int field;
for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
field < TYPE_NFIELDS (type); field++, regnum += 2)
{
int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
/ TARGET_CHAR_BIT);
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
offset);
mips_xfer_register (gdbarch, regcache,
gdbarch_num_regs (gdbarch) + regnum,
TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
gdbarch_byte_order (gdbarch),
readbuf, writebuf, offset);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION)
{
/* A structure or union. Extract the left justified value,
regardless of the byte order. I.e. DO NOT USE
mips_xfer_lower. */
int offset;
int regnum;
for (offset = 0, regnum = MIPS_V0_REGNUM;
offset < TYPE_LENGTH (type);
offset += register_size (gdbarch, regnum), regnum++)
{
int xfer = register_size (gdbarch, regnum);
if (offset + xfer > TYPE_LENGTH (type))
xfer = TYPE_LENGTH (type) - offset;
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
offset, xfer, regnum);
mips_xfer_register (gdbarch, regcache,
gdbarch_num_regs (gdbarch) + regnum,
xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
offset);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
else
{
/* A scalar extract each part but least-significant-byte
justified. */
int offset;
int regnum;
for (offset = 0, regnum = MIPS_V0_REGNUM;
offset < TYPE_LENGTH (type);
offset += register_size (gdbarch, regnum), regnum++)
{
int xfer = register_size (gdbarch, regnum);
if (offset + xfer > TYPE_LENGTH (type))
xfer = TYPE_LENGTH (type) - offset;
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
offset, xfer, regnum);
mips_xfer_register (gdbarch, regcache,
gdbarch_num_regs (gdbarch) + regnum,
xfer, gdbarch_byte_order (gdbarch),
readbuf, writebuf, offset);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
}
/* O32 ABI stuff. */
static CORE_ADDR
mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
struct regcache *regcache, CORE_ADDR bp_addr,
int nargs, struct value **args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
int argreg;
int float_argreg;
int argnum;
int len = 0;
int stack_offset = 0;
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
CORE_ADDR func_addr = find_function_addr (function, NULL);
/* For shared libraries, "t9" needs to point at the function
address. */
regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
/* Set the return address register to point to the entry point of
the program, where a breakpoint lies in wait. */
regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
/* First ensure that the stack and structure return address (if any)
are properly aligned. The stack has to be at least 64-bit
aligned even on 32-bit machines, because doubles must be 64-bit
aligned. For n32 and n64, stack frames need to be 128-bit
aligned, so we round to this widest known alignment. */
sp = align_down (sp, 16);
struct_addr = align_down (struct_addr, 16);
/* Now make space on the stack for the args. */
for (argnum = 0; argnum < nargs; argnum++)
{
struct type *arg_type = check_typedef (value_type (args[argnum]));
int arglen = TYPE_LENGTH (arg_type);
/* Align to double-word if necessary. */
if (mips_type_needs_double_align (arg_type))
len = align_up (len, MIPS32_REGSIZE * 2);
/* Allocate space on the stack. */
len += align_up (arglen, MIPS32_REGSIZE);
}
sp -= align_up (len, 16);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
paddr_nz (sp), (long) align_up (len, 16));
/* Initialize the integer and float register pointers. */
argreg = MIPS_A0_REGNUM;
float_argreg = mips_fpa0_regnum (gdbarch);
/* The struct_return pointer occupies the first parameter-passing reg. */
if (struct_return)
{
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
argreg, paddr_nz (struct_addr));
regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
stack_offset += MIPS32_REGSIZE;
}
/* Now load as many as possible of the first arguments into
registers, and push the rest onto the stack. Loop thru args
from first to last. */
for (argnum = 0; argnum < nargs; argnum++)
{
const gdb_byte *val;
struct value *arg = args[argnum];
struct type *arg_type = check_typedef (value_type (arg));
int len = TYPE_LENGTH (arg_type);
enum type_code typecode = TYPE_CODE (arg_type);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_o32_push_dummy_call: %d len=%d type=%d",
argnum + 1, len, (int) typecode);
val = value_contents (arg);
/* 32-bit ABIs always start floating point arguments in an
even-numbered floating point register. Round the FP register
up before the check to see if there are any FP registers
left. O32/O64 targets also pass the FP in the integer
registers so also round up normal registers. */
if (fp_register_arg_p (typecode, arg_type))
{
if ((float_argreg & 1))
float_argreg++;
}
/* Floating point arguments passed in registers have to be
treated specially. On 32-bit architectures, doubles
are passed in register pairs; the even register gets
the low word, and the odd register gets the high word.
On O32/O64, the first two floating point arguments are
also copied to general registers, because MIPS16 functions
don't use float registers for arguments. This duplication of
arguments in general registers can't hurt non-MIPS16 functions
because those registers are normally skipped. */
if (fp_register_arg_p (typecode, arg_type)
&& float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
{
if (register_size (gdbarch, float_argreg) < 8 && len == 8)
{
int low_offset = gdbarch_byte_order (gdbarch)
== BFD_ENDIAN_BIG ? 4 : 0;
unsigned long regval;
/* Write the low word of the double to the even register(s). */
regval = extract_unsigned_integer (val + low_offset, 4);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg, phex (regval, 4));
regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
argreg, phex (regval, 4));
regcache_cooked_write_unsigned (regcache, argreg++, regval);
/* Write the high word of the double to the odd register(s). */
regval = extract_unsigned_integer (val + 4 - low_offset, 4);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg, phex (regval, 4));
regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
argreg, phex (regval, 4));
regcache_cooked_write_unsigned (regcache, argreg++, regval);
}
else
{
/* This is a floating point value that fits entirely
in a single register. */
/* On 32 bit ABI's the float_argreg is further adjusted
above to ensure that it is even register aligned. */
LONGEST regval = extract_unsigned_integer (val, len);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg, phex (regval, len));
regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
/* CAGNEY: 32 bit MIPS ABI's always reserve two FP
registers for each argument. The below is (my
guess) to ensure that the corresponding integer
register has reserved the same space. */
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
argreg, phex (regval, len));
regcache_cooked_write_unsigned (regcache, argreg, regval);
argreg += 2;
}
/* Reserve space for the FP register. */
stack_offset += align_up (len, MIPS32_REGSIZE);
}
else
{
/* Copy the argument to general registers or the stack in
register-sized pieces. Large arguments are split between
registers and stack. */
/* Note: structs whose size is not a multiple of MIPS32_REGSIZE
are treated specially: Irix cc passes
them in registers where gcc sometimes puts them on the
stack. For maximum compatibility, we will put them in
both places. */
int odd_sized_struct = (len > MIPS32_REGSIZE
&& len % MIPS32_REGSIZE != 0);
/* Structures should be aligned to eight bytes (even arg registers)
on MIPS_ABI_O32, if their first member has double precision. */
if (mips_type_needs_double_align (arg_type))
{
if ((argreg & 1))
{
argreg++;
stack_offset += MIPS32_REGSIZE;
}
}
while (len > 0)
{
/* Remember if the argument was written to the stack. */
int stack_used_p = 0;
int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
partial_len);
/* Write this portion of the argument to the stack. */
if (argreg > MIPS_LAST_ARG_REGNUM
|| odd_sized_struct)
{
/* Should shorter than int integer values be
promoted to int before being stored? */
int longword_offset = 0;
CORE_ADDR addr;
stack_used_p = 1;
if (mips_debug)
{
fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
paddr_nz (stack_offset));
fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
paddr_nz (longword_offset));
}
addr = sp + stack_offset + longword_offset;
if (mips_debug)
{
int i;
fprintf_unfiltered (gdb_stdlog, " @0x%s ",
paddr_nz (addr));
for (i = 0; i < partial_len; i++)
{
fprintf_unfiltered (gdb_stdlog, "%02x",
val[i] & 0xff);
}
}
write_memory (addr, val, partial_len);
}
/* Note!!! This is NOT an else clause. Odd sized
structs may go thru BOTH paths. */
/* Write this portion of the argument to a general
purpose register. */
if (argreg <= MIPS_LAST_ARG_REGNUM)
{
LONGEST regval = extract_signed_integer (val, partial_len);
/* Value may need to be sign extended, because
mips_isa_regsize() != mips_abi_regsize(). */
/* A non-floating-point argument being passed in a
general register. If a struct or union, and if
the remaining length is smaller than the register
size, we have to adjust the register value on
big endian targets.
It does not seem to be necessary to do the
same for integral types.
Also don't do this adjustment on O64 binaries.
cagney/2001-07-23: gdb/179: Also, GCC, when
outputting LE O32 with sizeof (struct) <
mips_abi_regsize(), generates a left shift
as part of storing the argument in a register
(the left shift isn't generated when
sizeof (struct) >= mips_abi_regsize()). Since
it is quite possible that this is GCC
contradicting the LE/O32 ABI, GDB has not been
adjusted to accommodate this. Either someone
needs to demonstrate that the LE/O32 ABI
specifies such a left shift OR this new ABI gets
identified as such and GDB gets tweaked
accordingly. */
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
&& partial_len < MIPS32_REGSIZE
&& (typecode == TYPE_CODE_STRUCT
|| typecode == TYPE_CODE_UNION))
regval <<= ((MIPS32_REGSIZE - partial_len)
* TARGET_CHAR_BIT);
if (mips_debug)
fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
argreg,
phex (regval, MIPS32_REGSIZE));
regcache_cooked_write_unsigned (regcache, argreg, regval);
argreg++;
/* Prevent subsequent floating point arguments from
being passed in floating point registers. */
float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
}
len -= partial_len;
val += partial_len;
/* Compute the the offset into the stack at which we
will copy the next parameter.
In older ABIs, the caller reserved space for
registers that contained arguments. This was loosely
refered to as their "home". Consequently, space is
always allocated. */
stack_offset += align_up (partial_len, MIPS32_REGSIZE);
}
}
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, "\n");
}
regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
/* Return adjusted stack pointer. */
return sp;
}
static enum return_value_convention
mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
struct regcache *regcache,
gdb_byte *readbuf, const gdb_byte *writebuf)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION
|| TYPE_CODE (type) == TYPE_CODE_ARRAY)
return RETURN_VALUE_STRUCT_CONVENTION;
else if (TYPE_CODE (type) == TYPE_CODE_FLT
&& TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
{
/* A single-precision floating-point value. It fits in the
least significant part of FP0. */
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
mips_xfer_register (gdbarch, regcache,
gdbarch_num_regs (gdbarch)
+ mips_regnum (gdbarch)->fp0,
TYPE_LENGTH (type),
gdbarch_byte_order (gdbarch),
readbuf, writebuf, 0);
return RETURN_VALUE_REGISTER_CONVENTION;
}
else if (TYPE_CODE (type) == TYPE_CODE_FLT
&& TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
{
/* A double-precision floating-point value. The most
significant part goes in FP1, and the least significant in
FP0. */
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
switch (gdbarch_byte_order (gdbarch))
{
case BFD_ENDIAN_LITTLE:
mips_xfer_register (gdbarch, regcache,
gdbarch_num_regs (gdbarch)
+ mips_regnum (gdbarch)->fp0 +
0, 4, gdbarch_byte_order (gdbarch),
readbuf, writebuf, 0);
mips_xfer_register (gdbarch, regcache,
gdbarch_num_regs (gdbarch)
+ mips_regnum (gdbarch)->fp0 + 1,
4, gdbarch_byte_order (gdbarch),
readbuf, writebuf, 4);
break;
case BFD_ENDIAN_BIG:
mips_xfer_register (gdbarch, regcache,
gdbarch_num_regs (gdbarch)
+ mips_regnum (gdbarch)->fp0 + 1,
4, gdbarch_byte_order (gdbarch),
readbuf, writebuf, 0);
mips_xfer_register (gdbarch, regcache,
gdbarch_num_regs (gdbarch)
+ mips_regnum (gdbarch)->fp0 + 0,
4, gdbarch_byte_order (gdbarch),
readbuf, writebuf, 4);
break;
default:
internal_error (__FILE__, __LINE__, _("bad switch"));
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
#if 0
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
&& TYPE_NFIELDS (type) <= 2
&& TYPE_NFIELDS (type) >= 1
&& ((TYPE_NFIELDS (type) == 1
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
== TYPE_CODE_FLT))
|| (TYPE_NFIELDS (type) == 2
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
== TYPE_CODE_FLT)
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
== TYPE_CODE_FLT)))
&& tdep->mips_fpu_type != MIPS_FPU_NONE)
{
/* A struct that contains one or two floats. Each value is part
in the least significant part of their floating point
register.. */
gdb_byte reg[MAX_REGISTER_SIZE];
int regnum;
int field;
for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
field < TYPE_NFIELDS (type); field++, regnum += 2)
{
int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
/ TARGET_CHAR_BIT);
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
offset);
mips_xfer_register (gdbarch, regcache,
gdbarch_num_regs (gdbarch) + regnum,
TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
gdbarch_byte_order (gdbarch),
readbuf, writebuf, offset);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
#endif
#if 0
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION)
{
/* A structure or union. Extract the left justified value,
regardless of the byte order. I.e. DO NOT USE
mips_xfer_lower. */
int offset;
int regnum;
for (offset = 0, regnum = MIPS_V0_REGNUM;
offset < TYPE_LENGTH (type);
offset += register_size (gdbarch, regnum), regnum++)
{
int xfer = register_size (gdbarch, regnum);
if (offset + xfer > TYPE_LENGTH (type))
xfer = TYPE_LENGTH (type) - offset;
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
offset, xfer, regnum);
mips_xfer_register (gdbarch, regcache,
gdbarch_num_regs (gdbarch) + regnum, xfer,
BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
#endif
else
{
/* A scalar extract each part but least-significant-byte
justified. o32 thinks registers are 4 byte, regardless of
the ISA. */
int offset;
int regnum;
for (offset = 0, regnum = MIPS_V0_REGNUM;
offset < TYPE_LENGTH (type);
offset += MIPS32_REGSIZE, regnum++)
{
int xfer = MIPS32_REGSIZE;
if (offset + xfer > TYPE_LENGTH (type))
xfer = TYPE_LENGTH (type) - offset;
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
offset, xfer, regnum);
mips_xfer_register (gdbarch, regcache,
gdbarch_num_regs (gdbarch) + regnum, xfer,
gdbarch_byte_order (gdbarch),
readbuf, writebuf, offset);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
}
/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
ABI. */
static CORE_ADDR
mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
struct regcache *regcache, CORE_ADDR bp_addr,
int nargs,
struct value **args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
int argreg;
int float_argreg;
int argnum;
int len = 0;
int stack_offset = 0;
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
CORE_ADDR func_addr = find_function_addr (function, NULL);
/* For shared libraries, "t9" needs to point at the function
address. */
regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
/* Set the return address register to point to the entry point of
the program, where a breakpoint lies in wait. */
regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
/* First ensure that the stack and structure return address (if any)
are properly aligned. The stack has to be at least 64-bit
aligned even on 32-bit machines, because doubles must be 64-bit
aligned. For n32 and n64, stack frames need to be 128-bit
aligned, so we round to this widest known alignment. */
sp = align_down (sp, 16);
struct_addr = align_down (struct_addr, 16);
/* Now make space on the stack for the args. */
for (argnum = 0; argnum < nargs; argnum++)
{
struct type *arg_type = check_typedef (value_type (args[argnum]));
int arglen = TYPE_LENGTH (arg_type);
/* Allocate space on the stack. */
len += align_up (arglen, MIPS64_REGSIZE);
}
sp -= align_up (len, 16);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
paddr_nz (sp), (long) align_up (len, 16));
/* Initialize the integer and float register pointers. */
argreg = MIPS_A0_REGNUM;
float_argreg = mips_fpa0_regnum (gdbarch);
/* The struct_return pointer occupies the first parameter-passing reg. */
if (struct_return)
{
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
argreg, paddr_nz (struct_addr));
regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
stack_offset += MIPS64_REGSIZE;
}
/* Now load as many as possible of the first arguments into
registers, and push the rest onto the stack. Loop thru args
from first to last. */
for (argnum = 0; argnum < nargs; argnum++)
{
const gdb_byte *val;
struct value *arg = args[argnum];
struct type *arg_type = check_typedef (value_type (arg));
int len = TYPE_LENGTH (arg_type);
enum type_code typecode = TYPE_CODE (arg_type);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_o64_push_dummy_call: %d len=%d type=%d",
argnum + 1, len, (int) typecode);
val = value_contents (arg);
/* Floating point arguments passed in registers have to be
treated specially. On 32-bit architectures, doubles
are passed in register pairs; the even register gets
the low word, and the odd register gets the high word.
On O32/O64, the first two floating point arguments are
also copied to general registers, because MIPS16 functions
don't use float registers for arguments. This duplication of
arguments in general registers can't hurt non-MIPS16 functions
because those registers are normally skipped. */
if (fp_register_arg_p (typecode, arg_type)
&& float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
{
LONGEST regval = extract_unsigned_integer (val, len);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
float_argreg, phex (regval, len));
regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
argreg, phex (regval, len));
regcache_cooked_write_unsigned (regcache, argreg, regval);
argreg++;
/* Reserve space for the FP register. */
stack_offset += align_up (len, MIPS64_REGSIZE);
}
else
{
/* Copy the argument to general registers or the stack in
register-sized pieces. Large arguments are split between
registers and stack. */
/* Note: structs whose size is not a multiple of MIPS64_REGSIZE
are treated specially: Irix cc passes them in registers
where gcc sometimes puts them on the stack. For maximum
compatibility, we will put them in both places. */
int odd_sized_struct = (len > MIPS64_REGSIZE
&& len % MIPS64_REGSIZE != 0);
while (len > 0)
{
/* Remember if the argument was written to the stack. */
int stack_used_p = 0;
int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
partial_len);
/* Write this portion of the argument to the stack. */
if (argreg > MIPS_LAST_ARG_REGNUM
|| odd_sized_struct)
{
/* Should shorter than int integer values be
promoted to int before being stored? */
int longword_offset = 0;
CORE_ADDR addr;
stack_used_p = 1;
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
{
if ((typecode == TYPE_CODE_INT
|| typecode == TYPE_CODE_PTR
|| typecode == TYPE_CODE_FLT)
&& len <= 4)
longword_offset = MIPS64_REGSIZE - len;
}
if (mips_debug)
{
fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
paddr_nz (stack_offset));
fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
paddr_nz (longword_offset));
}
addr = sp + stack_offset + longword_offset;
if (mips_debug)
{
int i;
fprintf_unfiltered (gdb_stdlog, " @0x%s ",
paddr_nz (addr));
for (i = 0; i < partial_len; i++)
{
fprintf_unfiltered (gdb_stdlog, "%02x",
val[i] & 0xff);
}
}
write_memory (addr, val, partial_len);
}
/* Note!!! This is NOT an else clause. Odd sized
structs may go thru BOTH paths. */
/* Write this portion of the argument to a general
purpose register. */
if (argreg <= MIPS_LAST_ARG_REGNUM)
{
LONGEST regval = extract_signed_integer (val, partial_len);
/* Value may need to be sign extended, because
mips_isa_regsize() != mips_abi_regsize(). */
/* A non-floating-point argument being passed in a
general register. If a struct or union, and if
the remaining length is smaller than the register
size, we have to adjust the register value on
big endian targets.
It does not seem to be necessary to do the
same for integral types. */
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
&& partial_len < MIPS64_REGSIZE
&& (typecode == TYPE_CODE_STRUCT
|| typecode == TYPE_CODE_UNION))
regval <<= ((MIPS64_REGSIZE - partial_len)
* TARGET_CHAR_BIT);
if (mips_debug)
fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
argreg,
phex (regval, MIPS64_REGSIZE));
regcache_cooked_write_unsigned (regcache, argreg, regval);
argreg++;
/* Prevent subsequent floating point arguments from
being passed in floating point registers. */
float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
}
len -= partial_len;
val += partial_len;
/* Compute the the offset into the stack at which we
will copy the next parameter.
In older ABIs, the caller reserved space for
registers that contained arguments. This was loosely
refered to as their "home". Consequently, space is
always allocated. */
stack_offset += align_up (partial_len, MIPS64_REGSIZE);
}
}
if (mips_debug)
fprintf_unfiltered (gdb_stdlog, "\n");
}
regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
/* Return adjusted stack pointer. */
return sp;
}
static enum return_value_convention
mips_o64_return_value (struct gdbarch *gdbarch,
struct type *type, struct regcache *regcache,
gdb_byte *readbuf, const gdb_byte *writebuf)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION
|| TYPE_CODE (type) == TYPE_CODE_ARRAY)
return RETURN_VALUE_STRUCT_CONVENTION;
else if (fp_register_arg_p (TYPE_CODE (type), type))
{
/* A floating-point value. It fits in the least significant
part of FP0. */
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
mips_xfer_register (gdbarch, regcache,
gdbarch_num_regs (gdbarch)
+ mips_regnum (gdbarch)->fp0,
TYPE_LENGTH (type),
gdbarch_byte_order (gdbarch),
readbuf, writebuf, 0);
return RETURN_VALUE_REGISTER_CONVENTION;
}
else
{
/* A scalar extract each part but least-significant-byte
justified. */
int offset;
int regnum;
for (offset = 0, regnum = MIPS_V0_REGNUM;
offset < TYPE_LENGTH (type);
offset += MIPS64_REGSIZE, regnum++)
{
int xfer = MIPS64_REGSIZE;
if (offset + xfer > TYPE_LENGTH (type))
xfer = TYPE_LENGTH (type) - offset;
if (mips_debug)
fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
offset, xfer, regnum);
mips_xfer_register (gdbarch, regcache,
gdbarch_num_regs (gdbarch) + regnum,
xfer, gdbarch_byte_order (gdbarch),
readbuf, writebuf, offset);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
}
/* Floating point register management.
Background: MIPS1 & 2 fp registers are 32 bits wide. To support
64bit operations, these early MIPS cpus treat fp register pairs
(f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
registers and offer a compatibility mode that emulates the MIPS2 fp
model. When operating in MIPS2 fp compat mode, later cpu's split
double precision floats into two 32-bit chunks and store them in
consecutive fp regs. To display 64-bit floats stored in this
fashion, we have to combine 32 bits from f0 and 32 bits from f1.
Throw in user-configurable endianness and you have a real mess.
The way this works is:
- If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
double-precision value will be split across two logical registers.
The lower-numbered logical register will hold the low-order bits,
regardless of the processor's endianness.
- If we are on a 64-bit processor, and we are looking for a
single-precision value, it will be in the low ordered bits
of a 64-bit GPR (after mfc1, for example) or a 64-bit register
save slot in memory.
- If we are in 64-bit mode, everything is straightforward.
Note that this code only deals with "live" registers at the top of the
stack. We will attempt to deal with saved registers later, when
the raw/cooked register interface is in place. (We need a general
interface that can deal with dynamic saved register sizes -- fp
regs could be 32 bits wide in one frame and 64 on the frame above
and below). */
static struct type *
mips_float_register_type (void)
{
return builtin_type_ieee_single;
}
static struct type *
mips_double_register_type (void)
{
return builtin_type_ieee_double;
}
/* Copy a 32-bit single-precision value from the current frame
into rare_buffer. */
static void
mips_read_fp_register_single (struct frame_info *frame, int regno,
gdb_byte *rare_buffer)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
int raw_size = register_size (gdbarch, regno);
gdb_byte *raw_buffer = alloca (raw_size);
if (!frame_register_read (frame, regno, raw_buffer))
error (_("can't read register %d (%s)"),
regno, gdbarch_register_name (gdbarch, regno));
if (raw_size == 8)
{
/* We have a 64-bit value for this register. Find the low-order
32 bits. */
int offset;
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
offset = 4;
else
offset = 0;
memcpy (rare_buffer, raw_buffer + offset, 4);
}
else
{
memcpy (rare_buffer, raw_buffer, 4);
}
}
/* Copy a 64-bit double-precision value from the current frame into
rare_buffer. This may include getting half of it from the next
register. */
static void
mips_read_fp_register_double (struct frame_info *frame, int regno,
gdb_byte *rare_buffer)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
int raw_size = register_size (gdbarch, regno);
if (raw_size == 8 && !mips2_fp_compat (frame))
{
/* We have a 64-bit value for this register, and we should use
all 64 bits. */
if (!frame_register_read (frame, regno, rare_buffer))
error (_("can't read register %d (%s)"),
regno, gdbarch_register_name (gdbarch, regno));
}
else
{
int rawnum = regno % gdbarch_num_regs (gdbarch);
if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
internal_error (__FILE__, __LINE__,
_("mips_read_fp_register_double: bad access to "
"odd-numbered FP register"));
/* mips_read_fp_register_single will find the correct 32 bits from
each register. */
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
{
mips_read_fp_register_single (frame, regno, rare_buffer + 4);
mips_read_fp_register_single (frame, regno + 1, rare_buffer);
}
else
{
mips_read_fp_register_single (frame, regno, rare_buffer);
mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
}
}
}
static void
mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
int regnum)
{ /* do values for FP (float) regs */
struct gdbarch *gdbarch = get_frame_arch (frame);
gdb_byte *raw_buffer;
double doub, flt1; /* doubles extracted from raw hex data */
int inv1, inv2;
raw_buffer = alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0));
fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
fprintf_filtered (file, "%*s",
4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
"");
if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
{
/* 4-byte registers: Print hex and floating. Also print even
numbered registers as doubles. */
mips_read_fp_register_single (frame, regnum, raw_buffer);
flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
file);
fprintf_filtered (file, " flt: ");
if (inv1)
fprintf_filtered (file, " ");
else
fprintf_filtered (file, "%-17.9g", flt1);
if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
{
mips_read_fp_register_double (frame, regnum, raw_buffer);
doub = unpack_double (mips_double_register_type (), raw_buffer,
&inv2);
fprintf_filtered (file, " dbl: ");
if (inv2)
fprintf_filtered (file, "");
else
fprintf_filtered (file, "%-24.17g", doub);
}
}
else
{
/* Eight byte registers: print each one as hex, float and double. */
mips_read_fp_register_single (frame, regnum, raw_buffer);
flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
mips_read_fp_register_double (frame, regnum, raw_buffer);
doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
file);
fprintf_filtered (file, " flt: ");
if (inv1)
fprintf_filtered (file, "");
else
fprintf_filtered (file, "%-17.9g", flt1);
fprintf_filtered (file, " dbl: ");
if (inv2)
fprintf_filtered (file, "");
else
fprintf_filtered (file, "%-24.17g", doub);
}
}
static void
mips_print_register (struct ui_file *file, struct frame_info *frame,
int regnum)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
gdb_byte raw_buffer[MAX_REGISTER_SIZE];
int offset;
if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
{
mips_print_fp_register (file, frame, regnum);
return;
}
/* Get the data in raw format. */
if (!frame_register_read (frame, regnum, raw_buffer))
{
fprintf_filtered (file, "%s: [Invalid]",
gdbarch_register_name (gdbarch, regnum));
return;
}
fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
/* The problem with printing numeric register names (r26, etc.) is that
the user can't use them on input. Probably the best solution is to
fix it so that either the numeric or the funky (a2, etc.) names
are accepted on input. */
if (regnum < MIPS_NUMREGS)
fprintf_filtered (file, "(r%d): ", regnum);
else
fprintf_filtered (file, ": ");
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
offset =
register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
else
offset = 0;
print_scalar_formatted (raw_buffer + offset,
register_type (gdbarch, regnum), 'x', 0,
file);
}
/* Replacement for generic do_registers_info.
Print regs in pretty columns. */
static int
print_fp_register_row (struct ui_file *file, struct frame_info *frame,
int regnum)
{
fprintf_filtered (file, " ");
mips_print_fp_register (file, frame, regnum);
fprintf_filtered (file, "\n");
return regnum + 1;
}
/* Print a row's worth of GP (int) registers, with name labels above */
static int
print_gp_register_row (struct ui_file *file, struct frame_info *frame,
int start_regnum)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
/* do values for GP (int) regs */
gdb_byte raw_buffer[MAX_REGISTER_SIZE];
int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
int col, byte;
int regnum;
/* For GP registers, we print a separate row of names above the vals */
for (col = 0, regnum = start_regnum;
col < ncols && regnum < gdbarch_num_regs (gdbarch)
+ gdbarch_num_pseudo_regs (gdbarch);
regnum++)
{
if (*gdbarch_register_name (gdbarch, regnum) == '\0')
continue; /* unused register */
if (TYPE_CODE (register_type (gdbarch, regnum)) ==
TYPE_CODE_FLT)
break; /* end the row: reached FP register */
/* Large registers are handled separately. */
if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
{
if (col > 0)
break; /* End the row before this register. */
/* Print this register on a row by itself. */
mips_print_register (file, frame, regnum);
fprintf_filtered (file, "\n");
return regnum + 1;
}
if (col == 0)
fprintf_filtered (file, " ");
fprintf_filtered (file,
mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
gdbarch_register_name (gdbarch, regnum));
col++;
}
if (col == 0)
return regnum;
/* print the R0 to R31 names */
if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
fprintf_filtered (file, "\n R%-4d",
start_regnum % gdbarch_num_regs (gdbarch));
else
fprintf_filtered (file, "\n ");
/* now print the values in hex, 4 or 8 to the row */
for (col = 0, regnum = start_regnum;
col < ncols && regnum < gdbarch_num_regs (gdbarch)
+ gdbarch_num_pseudo_regs (gdbarch);
regnum++)
{
if (*gdbarch_register_name (gdbarch, regnum) == '\0')
continue; /* unused register */
if (TYPE_CODE (register_type (gdbarch, regnum)) ==
TYPE_CODE_FLT)
break; /* end row: reached FP register */
if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
break; /* End row: large register. */
/* OK: get the data in raw format. */
if (!frame_register_read (frame, regnum, raw_buffer))
error (_("can't read register %d (%s)"),
regnum, gdbarch_register_name (gdbarch, regnum));
/* pad small registers */
for (byte = 0;
byte < (mips_abi_regsize (gdbarch)
- register_size (gdbarch, regnum)); byte++)
printf_filtered (" ");
/* Now print the register value in hex, endian order. */
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
for (byte =
register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
byte < register_size (gdbarch, regnum); byte++)
fprintf_filtered (file, "%02x", raw_buffer[byte]);
else
for (byte = register_size (gdbarch, regnum) - 1;
byte >= 0; byte--)
fprintf_filtered (file, "%02x", raw_buffer[byte]);
fprintf_filtered (file, " ");
col++;
}
if (col > 0) /* ie. if we actually printed anything... */
fprintf_filtered (file, "\n");
return regnum;
}
/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
static void
mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
struct frame_info *frame, int regnum, int all)
{
if (regnum != -1) /* do one specified register */
{
gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
error (_("Not a valid register for the current processor type"));
mips_print_register (file, frame, regnum);
fprintf_filtered (file, "\n");
}
else
/* do all (or most) registers */
{
regnum = gdbarch_num_regs (gdbarch);
while (regnum < gdbarch_num_regs (gdbarch)
+ gdbarch_num_pseudo_regs (gdbarch))
{
if (TYPE_CODE (register_type (gdbarch, regnum)) ==
TYPE_CODE_FLT)
{
if (all) /* true for "INFO ALL-REGISTERS" command */
regnum = print_fp_register_row (file, frame, regnum);
else
regnum += MIPS_NUMREGS; /* skip floating point regs */
}
else
regnum = print_gp_register_row (file, frame, regnum);
}
}
}
/* Is this a branch with a delay slot? */
static int
is_delayed (unsigned long insn)
{
int i;
for (i = 0; i < NUMOPCODES; ++i)
if (mips_opcodes[i].pinfo != INSN_MACRO
&& (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
break;
return (i < NUMOPCODES
&& (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
| INSN_COND_BRANCH_DELAY
| INSN_COND_BRANCH_LIKELY)));
}
int
mips_single_step_through_delay (struct gdbarch *gdbarch,
struct frame_info *frame)
{
CORE_ADDR pc = get_frame_pc (frame);
gdb_byte buf[MIPS_INSN32_SIZE];
/* There is no branch delay slot on MIPS16. */
if (mips_pc_is_mips16 (pc))
return 0;
if (!breakpoint_here_p (pc + 4))
return 0;
if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
/* If error reading memory, guess that it is not a delayed
branch. */
return 0;
return is_delayed (extract_unsigned_integer (buf, sizeof buf));
}
/* To skip prologues, I use this predicate. Returns either PC itself
if the code at PC does not look like a function prologue; otherwise
returns an address that (if we're lucky) follows the prologue. If
LENIENT, then we must skip everything which is involved in setting
up the frame (it's OK to skip more, just so long as we don't skip
anything which might clobber the registers which are being saved.
We must skip more in the case where part of the prologue is in the
delay slot of a non-prologue instruction). */
static CORE_ADDR
mips_skip_prologue (CORE_ADDR pc)
{
CORE_ADDR limit_pc;
CORE_ADDR func_addr;
/* See if we can determine the end of the prologue via the symbol table.
If so, then return either PC, or the PC after the prologue, whichever
is greater. */
if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
{
CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
if (post_prologue_pc != 0)
return max (pc, post_prologue_pc);
}
/* Can't determine prologue from the symbol table, need to examine
instructions. */
/* Find an upper limit on the function prologue using the debug
information. If the debug information could not be used to provide
that bound, then use an arbitrary large number as the upper bound. */
limit_pc = skip_prologue_using_sal (pc);
if (limit_pc == 0)
limit_pc = pc + 100; /* Magic. */
if (mips_pc_is_mips16 (pc))
return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
else
return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
}
/* Check whether the PC is in a function epilogue (32-bit version).
This is a helper function for mips_in_function_epilogue_p. */
static int
mips32_in_function_epilogue_p (CORE_ADDR pc)
{
CORE_ADDR func_addr = 0, func_end = 0;
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
{
/* The MIPS epilogue is max. 12 bytes long. */
CORE_ADDR addr = func_end - 12;
if (addr < func_addr + 4)
addr = func_addr + 4;
if (pc < addr)
return 0;
for (; pc < func_end; pc += MIPS_INSN32_SIZE)
{
unsigned long high_word;
unsigned long inst;
inst = mips_fetch_instruction (pc);
high_word = (inst >> 16) & 0xffff;
if (high_word != 0x27bd /* addiu $sp,$sp,offset */
&& high_word != 0x67bd /* daddiu $sp,$sp,offset */
&& inst != 0x03e00008 /* jr $ra */
&& inst != 0x00000000) /* nop */
return 0;
}
return 1;
}
return 0;
}
/* Check whether the PC is in a function epilogue (16-bit version).
This is a helper function for mips_in_function_epilogue_p. */
static int
mips16_in_function_epilogue_p (CORE_ADDR pc)
{
CORE_ADDR func_addr = 0, func_end = 0;
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
{
/* The MIPS epilogue is max. 12 bytes long. */
CORE_ADDR addr = func_end - 12;
if (addr < func_addr + 4)
addr = func_addr + 4;
if (pc < addr)
return 0;
for (; pc < func_end; pc += MIPS_INSN16_SIZE)
{
unsigned short inst;
inst = mips_fetch_instruction (pc);
if ((inst & 0xf800) == 0xf000) /* extend */
continue;
if (inst != 0x6300 /* addiu $sp,offset */
&& inst != 0xfb00 /* daddiu $sp,$sp,offset */
&& inst != 0xe820 /* jr $ra */
&& inst != 0xe8a0 /* jrc $ra */
&& inst != 0x6500) /* nop */
return 0;
}
return 1;
}
return 0;
}
/* The epilogue is defined here as the area at the end of a function,
after an instruction which destroys the function's stack frame. */
static int
mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
if (mips_pc_is_mips16 (pc))
return mips16_in_function_epilogue_p (pc);
else
return mips32_in_function_epilogue_p (pc);
}
/* Root of all "set mips "/"show mips " commands. This will eventually be
used for all MIPS-specific commands. */
static void
show_mips_command (char *args, int from_tty)
{
help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
}
static void
set_mips_command (char *args, int from_tty)
{
printf_unfiltered
("\"set mips\" must be followed by an appropriate subcommand.\n");
help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
}
/* Commands to show/set the MIPS FPU type. */
static void
show_mipsfpu_command (char *args, int from_tty)
{
char *fpu;
switch (MIPS_FPU_TYPE)
{
case MIPS_FPU_SINGLE:
fpu = "single-precision";
break;
case MIPS_FPU_DOUBLE:
fpu = "double-precision";
break;
case MIPS_FPU_NONE:
fpu = "absent (none)";
break;
default:
internal_error (__FILE__, __LINE__, _("bad switch"));
}
if (mips_fpu_type_auto)
printf_unfiltered
("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
fpu);
else
printf_unfiltered
("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
}
static void
set_mipsfpu_command (char *args, int from_tty)
{
printf_unfiltered
("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
show_mipsfpu_command (args, from_tty);
}
static void
set_mipsfpu_single_command (char *args, int from_tty)
{
struct gdbarch_info info;
gdbarch_info_init (&info);
mips_fpu_type = MIPS_FPU_SINGLE;
mips_fpu_type_auto = 0;
/* FIXME: cagney/2003-11-15: Should be setting a field in "info"
instead of relying on globals. Doing that would let generic code
handle the search for this specific architecture. */
if (!gdbarch_update_p (info))
internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
}
static void
set_mipsfpu_double_command (char *args, int from_tty)
{
struct gdbarch_info info;
gdbarch_info_init (&info);
mips_fpu_type = MIPS_FPU_DOUBLE;
mips_fpu_type_auto = 0;
/* FIXME: cagney/2003-11-15: Should be setting a field in "info"
instead of relying on globals. Doing that would let generic code
handle the search for this specific architecture. */
if (!gdbarch_update_p (info))
internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
}
static void
set_mipsfpu_none_command (char *args, int from_tty)
{
struct gdbarch_info info;
gdbarch_info_init (&info);
mips_fpu_type = MIPS_FPU_NONE;
mips_fpu_type_auto = 0;
/* FIXME: cagney/2003-11-15: Should be setting a field in "info"
instead of relying on globals. Doing that would let generic code
handle the search for this specific architecture. */
if (!gdbarch_update_p (info))
internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
}
static void
set_mipsfpu_auto_command (char *args, int from_tty)
{
mips_fpu_type_auto = 1;
}
/* Attempt to identify the particular processor model by reading the
processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
the relevant processor still exists (it dates back to '94) and
secondly this is not the way to do this. The processor type should
be set by forcing an architecture change. */
void
deprecated_mips_set_processor_regs_hack (void)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
ULONGEST prid;
regcache_cooked_read_unsigned (get_current_regcache (),
MIPS_PRID_REGNUM, &prid);
if ((prid & ~0xf) == 0x700)
tdep->mips_processor_reg_names = mips_r3041_reg_names;
}
/* Just like reinit_frame_cache, but with the right arguments to be
callable as an sfunc. */
static void
reinit_frame_cache_sfunc (char *args, int from_tty,
struct cmd_list_element *c)
{
reinit_frame_cache ();
}
static int
gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
/* FIXME: cagney/2003-06-26: Is this even necessary? The
disassembler needs to be able to locally determine the ISA, and
not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
work. */
if (mips_pc_is_mips16 (memaddr))
info->mach = bfd_mach_mips16;
/* Round down the instruction address to the appropriate boundary. */
memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
/* Set the disassembler options. */
if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
{
/* Set up the disassembler info, so that we get the right
register names from libopcodes. */
if (tdep->mips_abi == MIPS_ABI_N32)
info->disassembler_options = "gpr-names=n32";
else
info->disassembler_options = "gpr-names=64";
info->flavour = bfd_target_elf_flavour;
}
else
/* This string is not recognized explicitly by the disassembler,
but it tells the disassembler to not try to guess the ABI from
the bfd elf headers, such that, if the user overrides the ABI
of a program linked as NewABI, the disassembly will follow the
register naming conventions specified by the user. */
info->disassembler_options = "gpr-names=32";
/* Call the appropriate disassembler based on the target endian-ness. */
if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
return print_insn_big_mips (memaddr, info);
else
return print_insn_little_mips (memaddr, info);
}
/* This function implements gdbarch_breakpoint_from_pc. It uses the program
counter value to determine whether a 16- or 32-bit breakpoint should be used.
It returns a pointer to a string of bytes that encode a breakpoint
instruction, stores the length of the string to *lenptr, and adjusts pc (if
necessary) to point to the actual memory location where the breakpoint
should be inserted. */
static const gdb_byte *
mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
{
if (mips_pc_is_mips16 (*pcptr))
{
static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
*pcptr = unmake_mips16_addr (*pcptr);
*lenptr = sizeof (mips16_big_breakpoint);
return mips16_big_breakpoint;
}
else
{
/* The IDT board uses an unusual breakpoint value, and
sometimes gets confused when it sees the usual MIPS
breakpoint instruction. */
static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
*lenptr = sizeof (big_breakpoint);
if (strcmp (target_shortname, "mips") == 0)
return idt_big_breakpoint;
else if (strcmp (target_shortname, "ddb") == 0
|| strcmp (target_shortname, "pmon") == 0
|| strcmp (target_shortname, "lsi") == 0)
return pmon_big_breakpoint;
else
return big_breakpoint;
}
}
else
{
if (mips_pc_is_mips16 (*pcptr))
{
static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
*pcptr = unmake_mips16_addr (*pcptr);
*lenptr = sizeof (mips16_little_breakpoint);
return mips16_little_breakpoint;
}
else
{
static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
*lenptr = sizeof (little_breakpoint);
if (strcmp (target_shortname, "mips") == 0)
return idt_little_breakpoint;
else if (strcmp (target_shortname, "ddb") == 0
|| strcmp (target_shortname, "pmon") == 0
|| strcmp (target_shortname, "lsi") == 0)
return pmon_little_breakpoint;
else
return little_breakpoint;
}
}
}
/* If PC is in a mips16 call or return stub, return the address of the target
PC, which is either the callee or the caller. There are several
cases which must be handled:
* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
target PC is in $31 ($ra).
* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
and the target PC is in $2.
* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
before the jal instruction, this is effectively a call stub
and the the target PC is in $2. Otherwise this is effectively
a return stub and the target PC is in $18.
See the source code for the stubs in gcc/config/mips/mips16.S for
gory details. */
static CORE_ADDR
mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
char *name;
CORE_ADDR start_addr;
/* Find the starting address and name of the function containing the PC. */
if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
return 0;
/* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
target PC is in $31 ($ra). */
if (strcmp (name, "__mips16_ret_sf") == 0
|| strcmp (name, "__mips16_ret_df") == 0)
return get_frame_register_signed (frame, MIPS_RA_REGNUM);
if (strncmp (name, "__mips16_call_stub_", 19) == 0)
{
/* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
and the target PC is in $2. */
if (name[19] >= '0' && name[19] <= '9')
return get_frame_register_signed (frame, 2);
/* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
before the jal instruction, this is effectively a call stub
and the the target PC is in $2. Otherwise this is effectively
a return stub and the target PC is in $18. */
else if (name[19] == 's' || name[19] == 'd')
{
if (pc == start_addr)
{
/* Check if the target of the stub is a compiler-generated
stub. Such a stub for a function bar might have a name
like __fn_stub_bar, and might look like this:
mfc1 $4,$f13
mfc1 $5,$f12
mfc1 $6,$f15
mfc1 $7,$f14
la $1,bar (becomes a lui/addiu pair)
jr $1
So scan down to the lui/addi and extract the target
address from those two instructions. */
CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
ULONGEST inst;
int i;
/* See if the name of the target function is __fn_stub_*. */
if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
0)
return target_pc;
if (strncmp (name, "__fn_stub_", 10) != 0
&& strcmp (name, "etext") != 0
&& strcmp (name, "_etext") != 0)
return target_pc;
/* Scan through this _fn_stub_ code for the lui/addiu pair.
The limit on the search is arbitrarily set to 20
instructions. FIXME. */
for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
{
inst = mips_fetch_instruction (target_pc);
if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
pc = (inst << 16) & 0xffff0000; /* high word */
else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
return pc | (inst & 0xffff); /* low word */
}
/* Couldn't find the lui/addui pair, so return stub address. */
return target_pc;
}
else
/* This is the 'return' part of a call stub. The return
address is in $r18. */
return get_frame_register_signed (frame, 18);
}
}
return 0; /* not a stub */
}
/* Convert a dbx stab register number (from `r' declaration) to a GDB
[1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
static int
mips_stab_reg_to_regnum (int num)
{
int regnum;
if (num >= 0 && num < 32)
regnum = num;
else if (num >= 38 && num < 70)
regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
else if (num == 70)
regnum = mips_regnum (current_gdbarch)->hi;
else if (num == 71)
regnum = mips_regnum (current_gdbarch)->lo;
else
/* This will hopefully (eventually) provoke a warning. Should
we be calling complaint() here? */
return gdbarch_num_regs (current_gdbarch)
+ gdbarch_num_pseudo_regs (current_gdbarch);
return gdbarch_num_regs (current_gdbarch) + regnum;
}
/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
static int
mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
{
int regnum;
if (num >= 0 && num < 32)
regnum = num;
else if (num >= 32 && num < 64)
regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
else if (num == 64)
regnum = mips_regnum (current_gdbarch)->hi;
else if (num == 65)
regnum = mips_regnum (current_gdbarch)->lo;
else
/* This will hopefully (eventually) provoke a warning. Should we
be calling complaint() here? */
return gdbarch_num_regs (current_gdbarch)
+ gdbarch_num_pseudo_regs (current_gdbarch);
return gdbarch_num_regs (current_gdbarch) + regnum;
}
static int
mips_register_sim_regno (int regnum)
{
/* Only makes sense to supply raw registers. */
gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch));
/* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
decide if it is valid. Should instead define a standard sim/gdb
register numbering scheme. */
if (gdbarch_register_name (current_gdbarch,
gdbarch_num_regs
(current_gdbarch) + regnum) != NULL
&& gdbarch_register_name (current_gdbarch,
gdbarch_num_regs
(current_gdbarch) + regnum)[0] != '\0')
return regnum;
else
return LEGACY_SIM_REGNO_IGNORE;
}
/* Convert an integer into an address. Extracting the value signed
guarantees a correctly sign extended address. */
static CORE_ADDR
mips_integer_to_address (struct gdbarch *gdbarch,
struct type *type, const gdb_byte *buf)
{
return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
}
/* Dummy virtual frame pointer method. This is no more or less accurate
than most other architectures; we just need to be explicit about it,
because the pseudo-register gdbarch_sp_regnum will otherwise lead to
an assertion failure. */
static void
mips_virtual_frame_pointer (CORE_ADDR pc, int *reg, LONGEST *offset)
{
*reg = MIPS_SP_REGNUM;
*offset = 0;
}
static void
mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
{
enum mips_abi *abip = (enum mips_abi *) obj;
const char *name = bfd_get_section_name (abfd, sect);
if (*abip != MIPS_ABI_UNKNOWN)
return;
if (strncmp (name, ".mdebug.", 8) != 0)
return;
if (strcmp (name, ".mdebug.abi32") == 0)
*abip = MIPS_ABI_O32;
else if (strcmp (name, ".mdebug.abiN32") == 0)
*abip = MIPS_ABI_N32;
else if (strcmp (name, ".mdebug.abi64") == 0)
*abip = MIPS_ABI_N64;
else if (strcmp (name, ".mdebug.abiO64") == 0)
*abip = MIPS_ABI_O64;
else if (strcmp (name, ".mdebug.eabi32") == 0)
*abip = MIPS_ABI_EABI32;
else if (strcmp (name, ".mdebug.eabi64") == 0)
*abip = MIPS_ABI_EABI64;
else
warning (_("unsupported ABI %s."), name + 8);
}
static void
mips_find_long_section (bfd *abfd, asection *sect, void *obj)
{
int *lbp = (int *) obj;
const char *name = bfd_get_section_name (abfd, sect);
if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
*lbp = 32;
else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
*lbp = 64;
else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
warning (_("unrecognized .gcc_compiled_longXX"));
}
static enum mips_abi
global_mips_abi (void)
{
int i;
for (i = 0; mips_abi_strings[i] != NULL; i++)
if (mips_abi_strings[i] == mips_abi_string)
return (enum mips_abi) i;
internal_error (__FILE__, __LINE__, _("unknown ABI string"));
}
static void
mips_register_g_packet_guesses (struct gdbarch *gdbarch)
{
/* If the size matches the set of 32-bit or 64-bit integer registers,
assume that's what we've got. */
register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
/* If the size matches the full set of registers GDB traditionally
knows about, including floating point, for either 32-bit or
64-bit, assume that's what we've got. */
register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
/* Otherwise we don't have a useful guess. */
}
static struct value *
value_of_mips_user_reg (struct frame_info *frame, const void *baton)
{
const int *reg_p = baton;
return value_of_register (*reg_p, frame);
}
static struct gdbarch *
mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
struct gdbarch *gdbarch;
struct gdbarch_tdep *tdep;
int elf_flags;
enum mips_abi mips_abi, found_abi, wanted_abi;
int i, num_regs;
enum mips_fpu_type fpu_type;
struct tdesc_arch_data *tdesc_data = NULL;
int elf_fpu_type = 0;
/* Check any target description for validity. */
if (tdesc_has_registers (info.target_desc))
{
static const char *const mips_gprs[] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
};
static const char *const mips_fprs[] = {
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
};
const struct tdesc_feature *feature;
int valid_p;
feature = tdesc_find_feature (info.target_desc,
"org.gnu.gdb.mips.cpu");
if (feature == NULL)
return NULL;
tdesc_data = tdesc_data_alloc ();
valid_p = 1;
for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
mips_gprs[i]);
valid_p &= tdesc_numbered_register (feature, tdesc_data,
MIPS_EMBED_LO_REGNUM, "lo");
valid_p &= tdesc_numbered_register (feature, tdesc_data,
MIPS_EMBED_HI_REGNUM, "hi");
valid_p &= tdesc_numbered_register (feature, tdesc_data,
MIPS_EMBED_PC_REGNUM, "pc");
if (!valid_p)
{
tdesc_data_cleanup (tdesc_data);
return NULL;
}
feature = tdesc_find_feature (info.target_desc,
"org.gnu.gdb.mips.cp0");
if (feature == NULL)
{
tdesc_data_cleanup (tdesc_data);
return NULL;
}
valid_p = 1;
valid_p &= tdesc_numbered_register (feature, tdesc_data,
MIPS_EMBED_BADVADDR_REGNUM,
"badvaddr");
valid_p &= tdesc_numbered_register (feature, tdesc_data,
MIPS_PS_REGNUM, "status");
valid_p &= tdesc_numbered_register (feature, tdesc_data,
MIPS_EMBED_CAUSE_REGNUM, "cause");
if (!valid_p)
{
tdesc_data_cleanup (tdesc_data);
return NULL;
}
/* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
backend is not prepared for that, though. */
feature = tdesc_find_feature (info.target_desc,
"org.gnu.gdb.mips.fpu");
if (feature == NULL)
{
tdesc_data_cleanup (tdesc_data);
return NULL;
}
valid_p = 1;
for (i = 0; i < 32; i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data,
i + MIPS_EMBED_FP0_REGNUM,
mips_fprs[i]);
valid_p &= tdesc_numbered_register (feature, tdesc_data,
MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
valid_p &= tdesc_numbered_register (feature, tdesc_data,
MIPS_EMBED_FP0_REGNUM + 33, "fir");
if (!valid_p)
{
tdesc_data_cleanup (tdesc_data);
return NULL;
}
/* It would be nice to detect an attempt to use a 64-bit ABI
when only 32-bit registers are provided. */
}
/* First of all, extract the elf_flags, if available. */
if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
elf_flags = elf_elfheader (info.abfd)->e_flags;
else if (arches != NULL)
elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
else
elf_flags = 0;
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
/* Check ELF_FLAGS to see if it specifies the ABI being used. */
switch ((elf_flags & EF_MIPS_ABI))
{
case E_MIPS_ABI_O32:
found_abi = MIPS_ABI_O32;
break;
case E_MIPS_ABI_O64:
found_abi = MIPS_ABI_O64;
break;
case E_MIPS_ABI_EABI32:
found_abi = MIPS_ABI_EABI32;
break;
case E_MIPS_ABI_EABI64:
found_abi = MIPS_ABI_EABI64;
break;
default:
if ((elf_flags & EF_MIPS_ABI2))
found_abi = MIPS_ABI_N32;
else
found_abi = MIPS_ABI_UNKNOWN;
break;
}
/* GCC creates a pseudo-section whose name describes the ABI. */
if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
/* If we have no useful BFD information, use the ABI from the last
MIPS architecture (if there is one). */
if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
/* Try the architecture for any hint of the correct ABI. */
if (found_abi == MIPS_ABI_UNKNOWN
&& info.bfd_arch_info != NULL
&& info.bfd_arch_info->arch == bfd_arch_mips)
{
switch (info.bfd_arch_info->mach)
{
case bfd_mach_mips3900:
found_abi = MIPS_ABI_EABI32;
break;
case bfd_mach_mips4100:
case bfd_mach_mips5000:
found_abi = MIPS_ABI_EABI64;
break;
case bfd_mach_mips8000:
case bfd_mach_mips10000:
/* On Irix, ELF64 executables use the N64 ABI. The
pseudo-sections which describe the ABI aren't present
on IRIX. (Even for executables created by gcc.) */
if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
&& elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
found_abi = MIPS_ABI_N64;
else
found_abi = MIPS_ABI_N32;
break;
}
}
/* Default 64-bit objects to N64 instead of O32. */
if (found_abi == MIPS_ABI_UNKNOWN
&& info.abfd != NULL
&& bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
&& elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
found_abi = MIPS_ABI_N64;
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
found_abi);
/* What has the user specified from the command line? */
wanted_abi = global_mips_abi ();
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
wanted_abi);
/* Now that we have found what the ABI for this binary would be,
check whether the user is overriding it. */
if (wanted_abi != MIPS_ABI_UNKNOWN)
mips_abi = wanted_abi;
else if (found_abi != MIPS_ABI_UNKNOWN)
mips_abi = found_abi;
else
mips_abi = MIPS_ABI_O32;
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
mips_abi);
/* Also used when doing an architecture lookup. */
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
mips64_transfers_32bit_regs_p);
/* Determine the MIPS FPU type. */
#ifdef HAVE_ELF
if (info.abfd
&& bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
Tag_GNU_MIPS_ABI_FP);
#endif /* HAVE_ELF */
if (!mips_fpu_type_auto)
fpu_type = mips_fpu_type;
else if (elf_fpu_type != 0)
{
switch (elf_fpu_type)
{
case 1:
fpu_type = MIPS_FPU_DOUBLE;
break;
case 2:
fpu_type = MIPS_FPU_SINGLE;
break;
case 3:
default:
/* Soft float or unknown. */
fpu_type = MIPS_FPU_NONE;
break;
}
}
else if (info.bfd_arch_info != NULL
&& info.bfd_arch_info->arch == bfd_arch_mips)
switch (info.bfd_arch_info->mach)
{
case bfd_mach_mips3900:
case bfd_mach_mips4100:
case bfd_mach_mips4111:
case bfd_mach_mips4120:
fpu_type = MIPS_FPU_NONE;
break;
case bfd_mach_mips4650:
fpu_type = MIPS_FPU_SINGLE;
break;
default:
fpu_type = MIPS_FPU_DOUBLE;
break;
}
else if (arches != NULL)
fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
else
fpu_type = MIPS_FPU_DOUBLE;
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog,
"mips_gdbarch_init: fpu_type = %d\n", fpu_type);
/* Check for blatant incompatibilities. */
/* If we have only 32-bit registers, then we can't debug a 64-bit
ABI. */
if (info.target_desc
&& tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
&& mips_abi != MIPS_ABI_EABI32
&& mips_abi != MIPS_ABI_O32)
{
if (tdesc_data != NULL)
tdesc_data_cleanup (tdesc_data);
return NULL;
}
/* try to find a pre-existing architecture */
for (arches = gdbarch_list_lookup_by_info (arches, &info);
arches != NULL;
arches = gdbarch_list_lookup_by_info (arches->next, &info))
{
/* MIPS needs to be pedantic about which ABI the object is
using. */
if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
continue;
if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
continue;
/* Need to be pedantic about which register virtual size is
used. */
if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
!= mips64_transfers_32bit_regs_p)
continue;
/* Be pedantic about which FPU is selected. */
if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
continue;
if (tdesc_data != NULL)
tdesc_data_cleanup (tdesc_data);
return arches->gdbarch;
}
/* Need a new architecture. Fill in a target specific vector. */
tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
gdbarch = gdbarch_alloc (&info, tdep);
tdep->elf_flags = elf_flags;
tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
tdep->found_abi = found_abi;
tdep->mips_abi = mips_abi;
tdep->mips_fpu_type = fpu_type;
tdep->register_size_valid_p = 0;
tdep->register_size = 0;
if (info.target_desc)
{
/* Some useful properties can be inferred from the target. */
if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
{
tdep->register_size_valid_p = 1;
tdep->register_size = 4;
}
else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
{
tdep->register_size_valid_p = 1;
tdep->register_size = 8;
}
}
/* Initially set everything according to the default ABI/ISA. */
set_gdbarch_short_bit (gdbarch, 16);
set_gdbarch_int_bit (gdbarch, 32);
set_gdbarch_float_bit (gdbarch, 32);
set_gdbarch_double_bit (gdbarch, 64);
set_gdbarch_long_double_bit (gdbarch, 64);
set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
set_gdbarch_elf_make_msymbol_special (gdbarch,
mips_elf_make_msymbol_special);
/* Fill in the OS dependant register numbers and names. */
{
const char **reg_names;
struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
struct mips_regnum);
if (tdesc_has_registers (info.target_desc))
{
regnum->lo = MIPS_EMBED_LO_REGNUM;
regnum->hi = MIPS_EMBED_HI_REGNUM;
regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
regnum->pc = MIPS_EMBED_PC_REGNUM;
regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
regnum->fp_control_status = 70;
regnum->fp_implementation_revision = 71;
num_regs = MIPS_LAST_EMBED_REGNUM + 1;
reg_names = NULL;
}
else if (info.osabi == GDB_OSABI_IRIX)
{
regnum->fp0 = 32;
regnum->pc = 64;
regnum->cause = 65;
regnum->badvaddr = 66;
regnum->hi = 67;
regnum->lo = 68;
regnum->fp_control_status = 69;
regnum->fp_implementation_revision = 70;
num_regs = 71;
reg_names = mips_irix_reg_names;
}
else
{
regnum->lo = MIPS_EMBED_LO_REGNUM;
regnum->hi = MIPS_EMBED_HI_REGNUM;
regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
regnum->pc = MIPS_EMBED_PC_REGNUM;
regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
regnum->fp_control_status = 70;
regnum->fp_implementation_revision = 71;
num_regs = 90;
if (info.bfd_arch_info != NULL
&& info.bfd_arch_info->mach == bfd_mach_mips3900)
reg_names = mips_tx39_reg_names;
else
reg_names = mips_generic_reg_names;
}
/* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
replaced by read_pc? */
set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
set_gdbarch_num_regs (gdbarch, num_regs);
set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
set_gdbarch_register_name (gdbarch, mips_register_name);
set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
tdep->mips_processor_reg_names = reg_names;
tdep->regnum = regnum;
}
switch (mips_abi)
{
case MIPS_ABI_O32:
set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
set_gdbarch_return_value (gdbarch, mips_o32_return_value);
tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
tdep->default_mask_address_p = 0;
set_gdbarch_long_bit (gdbarch, 32);
set_gdbarch_ptr_bit (gdbarch, 32);
set_gdbarch_long_long_bit (gdbarch, 64);
break;
case MIPS_ABI_O64:
set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
set_gdbarch_return_value (gdbarch, mips_o64_return_value);
tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
tdep->default_mask_address_p = 0;
set_gdbarch_long_bit (gdbarch, 32);
set_gdbarch_ptr_bit (gdbarch, 32);
set_gdbarch_long_long_bit (gdbarch, 64);
break;
case MIPS_ABI_EABI32:
set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
tdep->default_mask_address_p = 0;
set_gdbarch_long_bit (gdbarch, 32);
set_gdbarch_ptr_bit (gdbarch, 32);
set_gdbarch_long_long_bit (gdbarch, 64);
break;
case MIPS_ABI_EABI64:
set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
tdep->default_mask_address_p = 0;
set_gdbarch_long_bit (gdbarch, 64);
set_gdbarch_ptr_bit (gdbarch, 64);
set_gdbarch_long_long_bit (gdbarch, 64);
break;
case MIPS_ABI_N32:
set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
tdep->default_mask_address_p = 0;
set_gdbarch_long_bit (gdbarch, 32);
set_gdbarch_ptr_bit (gdbarch, 32);
set_gdbarch_long_long_bit (gdbarch, 64);
set_gdbarch_long_double_bit (gdbarch, 128);
set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
break;
case MIPS_ABI_N64:
set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
tdep->default_mask_address_p = 0;
set_gdbarch_long_bit (gdbarch, 64);
set_gdbarch_ptr_bit (gdbarch, 64);
set_gdbarch_long_long_bit (gdbarch, 64);
set_gdbarch_long_double_bit (gdbarch, 128);
set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
break;
default:
internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
}
/* GCC creates a pseudo-section whose name specifies the size of
longs, since -mlong32 or -mlong64 may be used independent of
other options. How those options affect pointer sizes is ABI and
architecture dependent, so use them to override the default sizes
set by the ABI. This table shows the relationship between ABI,
-mlongXX, and size of pointers:
ABI -mlongXX ptr bits
--- -------- --------
o32 32 32
o32 64 32
n32 32 32
n32 64 64
o64 32 32
o64 64 64
n64 32 32
n64 64 64
eabi32 32 32
eabi32 64 32
eabi64 32 32
eabi64 64 64
Note that for o32 and eabi32, pointers are always 32 bits
regardless of any -mlongXX option. For all others, pointers and
longs are the same, as set by -mlongXX or set by defaults.
*/
if (info.abfd != NULL)
{
int long_bit = 0;
bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
if (long_bit)
{
set_gdbarch_long_bit (gdbarch, long_bit);
switch (mips_abi)
{
case MIPS_ABI_O32:
case MIPS_ABI_EABI32:
break;
case MIPS_ABI_N32:
case MIPS_ABI_O64:
case MIPS_ABI_N64:
case MIPS_ABI_EABI64:
set_gdbarch_ptr_bit (gdbarch, long_bit);
break;
default:
internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
}
}
}
/* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
that could indicate -gp32 BUT gas/config/tc-mips.c contains the
comment:
``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
flag in object files because to do so would make it impossible to
link with libraries compiled without "-gp32". This is
unnecessarily restrictive.
We could solve this problem by adding "-gp32" multilibs to gcc,
but to set this flag before gcc is built with such multilibs will
break too many systems.''
But even more unhelpfully, the default linker output target for
mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
for 64-bit programs - you need to change the ABI to change this,
and not all gcc targets support that currently. Therefore using
this flag to detect 32-bit mode would do the wrong thing given
the current gcc - it would make GDB treat these 64-bit programs
as 32-bit programs by default. */
set_gdbarch_read_pc (gdbarch, mips_read_pc);
set_gdbarch_write_pc (gdbarch, mips_write_pc);
/* Add/remove bits from an address. The MIPS needs be careful to
ensure that all 32 bit addresses are sign extended to 64 bits. */
set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
/* Unwind the frame. */
set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
/* Map debug register numbers onto internal register numbers. */
set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
set_gdbarch_ecoff_reg_to_regnum (gdbarch,
mips_dwarf_dwarf2_ecoff_reg_to_regnum);
set_gdbarch_dwarf_reg_to_regnum (gdbarch,
mips_dwarf_dwarf2_ecoff_reg_to_regnum);
set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
mips_dwarf_dwarf2_ecoff_reg_to_regnum);
set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
/* MIPS version of CALL_DUMMY */
/* NOTE: cagney/2003-08-05: Eventually call dummy location will be
replaced by a command, and all targets will default to on stack
(regardless of the stack's execute status). */
set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
set_gdbarch_frame_align (gdbarch, mips_frame_align);
set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
set_gdbarch_register_type (gdbarch, mips_register_type);
set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
/* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
need to all be folded into the target vector. Since they are
being used as guards for STOPPED_BY_WATCHPOINT, why not have
STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
is sitting on? */
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
/* Virtual tables. */
set_gdbarch_vbit_in_delta (gdbarch, 1);
mips_register_g_packet_guesses (gdbarch);
/* Hook in OS ABI-specific overrides, if they have been registered. */
info.tdep_info = (void *) tdesc_data;
gdbarch_init_osabi (info, gdbarch);
/* Unwind the frame. */
frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
if (tdesc_data)
{
set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
/* Override the normal target description methods to handle our
dual real and pseudo registers. */
set_gdbarch_register_name (gdbarch, mips_register_name);
set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
num_regs = gdbarch_num_regs (gdbarch);
set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
}
/* Add ABI-specific aliases for the registers. */
if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
else
for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
user_reg_add (gdbarch, mips_o32_aliases[i].name,
value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
/* Add some other standard aliases. */
for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
user_reg_add (gdbarch, mips_register_aliases[i].name,
value_of_mips_user_reg, &mips_register_aliases[i].regnum);
return gdbarch;
}
static void
mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
{
struct gdbarch_info info;
/* Force the architecture to update, and (if it's a MIPS architecture)
mips_gdbarch_init will take care of the rest. */
gdbarch_info_init (&info);
gdbarch_update_p (info);
}
/* Print out which MIPS ABI is in use. */
static void
show_mips_abi (struct ui_file *file,
int from_tty,
struct cmd_list_element *ignored_cmd,
const char *ignored_value)
{
if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
fprintf_filtered
(file,
"The MIPS ABI is unknown because the current architecture "
"is not MIPS.\n");
else
{
enum mips_abi global_abi = global_mips_abi ();
enum mips_abi actual_abi = mips_abi (current_gdbarch);
const char *actual_abi_str = mips_abi_strings[actual_abi];
if (global_abi == MIPS_ABI_UNKNOWN)
fprintf_filtered
(file,
"The MIPS ABI is set automatically (currently \"%s\").\n",
actual_abi_str);
else if (global_abi == actual_abi)
fprintf_filtered
(file,
"The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
actual_abi_str);
else
{
/* Probably shouldn't happen... */
fprintf_filtered
(file,
"The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
actual_abi_str, mips_abi_strings[global_abi]);
}
}
}
static void
mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (tdep != NULL)
{
int ef_mips_arch;
int ef_mips_32bitmode;
/* Determine the ISA. */
switch (tdep->elf_flags & EF_MIPS_ARCH)
{
case E_MIPS_ARCH_1:
ef_mips_arch = 1;
break;
case E_MIPS_ARCH_2:
ef_mips_arch = 2;
break;
case E_MIPS_ARCH_3:
ef_mips_arch = 3;
break;
case E_MIPS_ARCH_4:
ef_mips_arch = 4;
break;
default:
ef_mips_arch = 0;
break;
}
/* Determine the size of a pointer. */
ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
fprintf_unfiltered (file,
"mips_dump_tdep: tdep->elf_flags = 0x%x\n",
tdep->elf_flags);
fprintf_unfiltered (file,
"mips_dump_tdep: ef_mips_32bitmode = %d\n",
ef_mips_32bitmode);
fprintf_unfiltered (file,
"mips_dump_tdep: ef_mips_arch = %d\n",
ef_mips_arch);
fprintf_unfiltered (file,
"mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
fprintf_unfiltered (file,
"mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
mips_mask_address_p (tdep),
tdep->default_mask_address_p);
}
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
MIPS_DEFAULT_FPU_TYPE,
(MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
: MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
: MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
: "???"));
fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
fprintf_unfiltered (file,
"mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
MIPS_FPU_TYPE,
(MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
: MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
: MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
: "???"));
}
extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
void
_initialize_mips_tdep (void)
{
static struct cmd_list_element *mipsfpulist = NULL;
struct cmd_list_element *c;
mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
if (MIPS_ABI_LAST + 1
!= sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
mips_pdr_data = register_objfile_data ();
/* Create feature sets with the appropriate properties. The values
are not important. */
mips_tdesc_gp32 = allocate_target_description ();
set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
mips_tdesc_gp64 = allocate_target_description ();
set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
/* Add root prefix command for all "set mips"/"show mips" commands */
add_prefix_cmd ("mips", no_class, set_mips_command,
_("Various MIPS specific commands."),
&setmipscmdlist, "set mips ", 0, &setlist);
add_prefix_cmd ("mips", no_class, show_mips_command,
_("Various MIPS specific commands."),
&showmipscmdlist, "show mips ", 0, &showlist);
/* Allow the user to override the ABI. */
add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
&mips_abi_string, _("\
Set the MIPS ABI used by this program."), _("\
Show the MIPS ABI used by this program."), _("\
This option can be set to one of:\n\
auto - the default ABI associated with the current binary\n\
o32\n\
o64\n\
n32\n\
n64\n\
eabi32\n\
eabi64"),
mips_abi_update,
show_mips_abi,
&setmipscmdlist, &showmipscmdlist);
/* Let the user turn off floating point and set the fence post for
heuristic_proc_start. */
add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
_("Set use of MIPS floating-point coprocessor."),
&mipsfpulist, "set mipsfpu ", 0, &setlist);
add_cmd ("single", class_support, set_mipsfpu_single_command,
_("Select single-precision MIPS floating-point coprocessor."),
&mipsfpulist);
add_cmd ("double", class_support, set_mipsfpu_double_command,
_("Select double-precision MIPS floating-point coprocessor."),
&mipsfpulist);
add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
add_cmd ("none", class_support, set_mipsfpu_none_command,
_("Select no MIPS floating-point coprocessor."), &mipsfpulist);
add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
add_cmd ("auto", class_support, set_mipsfpu_auto_command,
_("Select MIPS floating-point coprocessor automatically."),
&mipsfpulist);
add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
_("Show current use of MIPS floating-point coprocessor target."),
&showlist);
/* We really would like to have both "0" and "unlimited" work, but
command.c doesn't deal with that. So make it a var_zinteger
because the user can always use "999999" or some such for unlimited. */
add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
&heuristic_fence_post, _("\
Set the distance searched for the start of a function."), _("\
Show the distance searched for the start of a function."), _("\
If you are debugging a stripped executable, GDB needs to search through the\n\
program for the start of a function. This command sets the distance of the\n\
search. The only need to set it is when debugging a stripped executable."),
reinit_frame_cache_sfunc,
NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
&setlist, &showlist);
/* Allow the user to control whether the upper bits of 64-bit
addresses should be zeroed. */
add_setshow_auto_boolean_cmd ("mask-address", no_class,
&mask_address_var, _("\
Set zeroing of upper 32 bits of 64-bit addresses."), _("\
Show zeroing of upper 32 bits of 64-bit addresses."), _("\
Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
allow GDB to determine the correct value."),
NULL, show_mask_address,
&setmipscmdlist, &showmipscmdlist);
/* Allow the user to control the size of 32 bit registers within the
raw remote packet. */
add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
&mips64_transfers_32bit_regs_p, _("\
Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
_("\
Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
_("\
Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
64 bits for others. Use \"off\" to disable compatibility mode"),
set_mips64_transfers_32bit_regs,
NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
&setlist, &showlist);
/* Debug this files internals. */
add_setshow_zinteger_cmd ("mips", class_maintenance,
&mips_debug, _("\
Set mips debugging."), _("\
Show mips debugging."), _("\
When non-zero, mips specific debugging is enabled."),
NULL,
NULL, /* FIXME: i18n: Mips debugging is currently %s. */
&setdebuglist, &showdebuglist);
}