/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger. Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc. Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "gdb_string.h" #include "frame.h" #include "inferior.h" #include "symtab.h" #include "value.h" #include "gdbcmd.h" #include "language.h" #include "gdbcore.h" #include "symfile.h" #include "objfiles.h" #include "gdbtypes.h" #include "target.h" #include "opcode/mips.h" #define VM_MIN_ADDRESS (CORE_ADDR)0x400000 /* FIXME: Put this declaration in frame.h. */ extern struct obstack frame_cache_obstack; /* FIXME! this code assumes 4-byte instructions. */ #define MIPS_INSTLEN 4 /* Length of an instruction */ #define MIPS_NUMREGS 32 /* Number of integer or float registers */ typedef unsigned long t_inst; /* Integer big enough to hold an instruction */ #if 0 static int mips_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR)); #endif static int gdb_print_insn_mips PARAMS ((bfd_vma, disassemble_info *)); static void mips_print_register PARAMS ((int, int)); static mips_extra_func_info_t heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, struct frame_info *)); static CORE_ADDR heuristic_proc_start PARAMS ((CORE_ADDR)); static CORE_ADDR read_next_frame_reg PARAMS ((struct frame_info *, int)); static void mips_set_fpu_command PARAMS ((char *, int, struct cmd_list_element *)); static void mips_show_fpu_command PARAMS ((char *, int, struct cmd_list_element *)); void mips_set_processor_type_command PARAMS ((char *, int)); int mips_set_processor_type PARAMS ((char *)); static void mips_show_processor_type_command PARAMS ((char *, int)); static void reinit_frame_cache_sfunc PARAMS ((char *, int, struct cmd_list_element *)); static mips_extra_func_info_t find_proc_desc PARAMS ((CORE_ADDR pc, struct frame_info *next_frame)); static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc, mips_extra_func_info_t proc_desc)); /* This value is the model of MIPS in use. It is derived from the value of the PrID register. */ char *mips_processor_type; char *tmp_mips_processor_type; /* Some MIPS boards don't support floating point, so we permit the user to turn it off. */ enum mips_fpu_type mips_fpu; static char *mips_fpu_string; /* A set of original names, to be used when restoring back to generic registers from a specific set. */ char *mips_generic_reg_names[] = REGISTER_NAMES; /* Names of IDT R3041 registers. */ char *mips_r3041_reg_names[] = { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", "sr", "lo", "hi", "bad", "cause","pc", "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", "fsr", "fir", "fp", "", "", "", "bus", "ccfg", "", "", "", "", "", "", "port", "cmp", "", "", "epc", "prid", }; /* Names of IDT R3051 registers. */ char *mips_r3051_reg_names[] = { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", "sr", "lo", "hi", "bad", "cause","pc", "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", "fsr", "fir", "fp", "", "inx", "rand", "elo", "", "ctxt", "", "", "", "", "", "ehi", "", "", "", "epc", "prid", }; /* Names of IDT R3081 registers. */ char *mips_r3081_reg_names[] = { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", "sr", "lo", "hi", "bad", "cause","pc", "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", "fsr", "fir", "fp", "", "inx", "rand", "elo", "cfg", "ctxt", "", "", "", "", "", "ehi", "", "", "", "epc", "prid", }; /* Names of LSI 33k registers. */ char *mips_lsi33k_reg_names[] = { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", "epc", "hi", "lo", "sr", "cause","badvaddr", "dcic", "bpc", "bda", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", }; struct { char *name; char **regnames; } mips_processor_type_table[] = { { "generic", mips_generic_reg_names }, { "r3041", mips_r3041_reg_names }, { "r3051", mips_r3051_reg_names }, { "r3071", mips_r3081_reg_names }, { "r3081", mips_r3081_reg_names }, { "lsi33k", mips_lsi33k_reg_names }, { NULL, NULL } }; /* Heuristic_proc_start may hunt through the text section for a long time across a 2400 baud serial line. Allows the user to limit this search. */ static unsigned int heuristic_fence_post = 0; #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */ #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */ #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset) #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg) #define PROC_REG_MASK(proc) ((proc)->pdr.regmask) #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask) #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset) #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset) #define PROC_PC_REG(proc) ((proc)->pdr.pcreg) #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym) #define _PROC_MAGIC_ 0x0F0F0F0F #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_) #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_) struct linked_proc_info { struct mips_extra_func_info info; struct linked_proc_info *next; } *linked_proc_desc_table = NULL; /* This returns the PC of the first inst after the prologue. If we can't find the prologue, then return 0. */ static CORE_ADDR after_prologue (pc, proc_desc) CORE_ADDR pc; mips_extra_func_info_t proc_desc; { struct symtab_and_line sal; CORE_ADDR func_addr, func_end; if (!proc_desc) proc_desc = find_proc_desc (pc, NULL); if (proc_desc) { /* If function is frameless, then we need to do it the hard way. I strongly suspect that frameless always means prologueless... */ if (PROC_FRAME_REG (proc_desc) == SP_REGNUM && PROC_FRAME_OFFSET (proc_desc) == 0) return 0; } if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) return 0; /* Unknown */ sal = find_pc_line (func_addr, 0); if (sal.end < func_end) return sal.end; /* The line after the prologue is after the end of the function. In this case, tell the caller to find the prologue the hard way. */ return 0; } /* Guaranteed to set fci->saved_regs to some values (it never leaves it NULL). */ void mips_find_saved_regs (fci) struct frame_info *fci; { int ireg; CORE_ADDR reg_position; /* r0 bit means kernel trap */ int kernel_trap; /* What registers have been saved? Bitmasks. */ unsigned long gen_mask, float_mask; mips_extra_func_info_t proc_desc; fci->saved_regs = (struct frame_saved_regs *) obstack_alloc (&frame_cache_obstack, sizeof(struct frame_saved_regs)); memset (fci->saved_regs, 0, sizeof (struct frame_saved_regs)); /* If it is the frame for sigtramp, the saved registers are located in a sigcontext structure somewhere on the stack. If the stack layout for sigtramp changes we might have to change these constants and the companion fixup_sigtramp in mdebugread.c */ #ifndef SIGFRAME_BASE /* To satisfy alignment restrictions, sigcontext is located 4 bytes above the sigtramp frame. */ #define SIGFRAME_BASE MIPS_REGSIZE /* FIXME! Are these correct?? */ #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE) #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE) #define SIGFRAME_FPREGSAVE_OFF \ (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE) #endif #ifndef SIGFRAME_REG_SIZE /* FIXME! Is this correct?? */ #define SIGFRAME_REG_SIZE MIPS_REGSIZE #endif if (fci->signal_handler_caller) { for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) { reg_position = fci->frame + SIGFRAME_REGSAVE_OFF + ireg * SIGFRAME_REG_SIZE; fci->saved_regs->regs[ireg] = reg_position; } for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) { reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF + ireg * SIGFRAME_REG_SIZE; fci->saved_regs->regs[FP0_REGNUM + ireg] = reg_position; } fci->saved_regs->regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF; return; } proc_desc = fci->proc_desc; if (proc_desc == NULL) /* I'm not sure how/whether this can happen. Normally when we can't find a proc_desc, we "synthesize" one using heuristic_proc_desc and set the saved_regs right away. */ return; kernel_trap = PROC_REG_MASK(proc_desc) & 1; gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK(proc_desc); float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK(proc_desc); if (/* In any frame other than the innermost, we assume that all registers have been saved. This assumes that all register saves in a function happen before the first function call. */ fci->next == NULL /* In a dummy frame we know exactly where things are saved. */ && !PROC_DESC_IS_DUMMY (proc_desc) /* Don't bother unless we are inside a function prologue. Outside the prologue, we know where everything is. */ && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc)) /* Not sure exactly what kernel_trap means, but if it means the kernel saves the registers without a prologue doing it, we better not examine the prologue to see whether registers have been saved yet. */ && !kernel_trap) { /* We need to figure out whether the registers that the proc_desc claims are saved have been saved yet. */ CORE_ADDR addr; int status; char buf[MIPS_INSTLEN]; t_inst inst; /* Bitmasks; set if we have found a save for the register. */ unsigned long gen_save_found = 0; unsigned long float_save_found = 0; for (addr = PROC_LOW_ADDR (proc_desc); addr < fci->pc /*&& (gen_mask != gen_save_found || float_mask != float_save_found)*/; addr += MIPS_INSTLEN) { status = read_memory_nobpt (addr, buf, MIPS_INSTLEN); if (status) memory_error (status, addr); inst = extract_unsigned_integer (buf, MIPS_INSTLEN); if (/* sw reg,n($sp) */ (inst & 0xffe00000) == 0xafa00000 /* sw reg,n($r30) */ || (inst & 0xffe00000) == 0xafc00000 /* sd reg,n($sp) */ || (inst & 0xffe00000) == 0xffa00000) { /* It might be possible to use the instruction to find the offset, rather than the code below which is based on things being in a certain order in the frame, but figuring out what the instruction's offset is relative to might be a little tricky. */ int reg = (inst & 0x001f0000) >> 16; gen_save_found |= (1 << reg); } else if (/* swc1 freg,n($sp) */ (inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($r30) */ || (inst & 0xffe00000) == 0xe7c00000 /* sdc1 freg,n($sp) */ || (inst & 0xffe00000) == 0xf7a00000) { int reg = ((inst & 0x001f0000) >> 16); float_save_found |= (1 << reg); } } gen_mask = gen_save_found; float_mask = float_save_found; } /* Fill in the offsets for the registers which gen_mask says were saved. */ reg_position = fci->frame + PROC_REG_OFFSET (proc_desc); for (ireg= MIPS_NUMREGS-1; gen_mask; --ireg, gen_mask <<= 1) if (gen_mask & 0x80000000) { fci->saved_regs->regs[ireg] = reg_position; reg_position -= MIPS_REGSIZE; } /* Fill in the offsets for the registers which float_mask says were saved. */ reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc); /* The freg_offset points to where the first *double* register is saved. So skip to the high-order word. */ if (! GDB_TARGET_IS_MIPS64) reg_position += 4; /* FIXME! this code looks scary... * Looks like it's trying to do stuff with a register, * but .... ??? */ for (ireg = MIPS_NUMREGS-1; float_mask; --ireg, float_mask <<= 1) if (float_mask & 0x80000000) { fci->saved_regs->regs[FP0_REGNUM+ireg] = reg_position; reg_position -= MIPS_REGSIZE; } fci->saved_regs->regs[PC_REGNUM] = fci->saved_regs->regs[RA_REGNUM]; } static CORE_ADDR read_next_frame_reg(fi, regno) struct frame_info *fi; int regno; { for (; fi; fi = fi->next) { /* We have to get the saved sp from the sigcontext if it is a signal handler frame. */ if (regno == SP_REGNUM && !fi->signal_handler_caller) return fi->frame; else { if (fi->saved_regs == NULL) mips_find_saved_regs (fi); if (fi->saved_regs->regs[regno]) return read_memory_integer(fi->saved_regs->regs[regno], MIPS_REGSIZE); } } return read_register (regno); } /* mips_addr_bits_remove - remove useless address bits */ CORE_ADDR mips_addr_bits_remove (addr) CORE_ADDR addr; { if (GDB_TARGET_IS_MIPS64 && (addr >> 32 == (CORE_ADDR)0xffffffff) && (strcmp(target_shortname,"pmon")==0 || strcmp(target_shortname,"ddb")==0 || strcmp(target_shortname,"sim")==0)) { /* This hack is a work-around for existing boards using PMON, the simulator, and any other 64-bit targets that doesn't have true 64-bit addressing. On these targets, the upper 32 bits of addresses are ignored by the hardware. Thus, the PC or SP are likely to have been sign extended to all 1s by instruction sequences that load 32-bit addresses. For example, a typical piece of code that loads an address is this: lui $r2, ori $r2, But the lui sign-extends the value such that the upper 32 bits may be all 1s. The workaround is simply to mask off these bits. In the future, gcc may be changed to support true 64-bit addressing, and this masking will have to be disabled. */ addr &= (CORE_ADDR)0xffffffff; } return addr; } CORE_ADDR mips_frame_saved_pc(frame) struct frame_info *frame; { CORE_ADDR saved_pc; mips_extra_func_info_t proc_desc = frame->proc_desc; /* We have to get the saved pc from the sigcontext if it is a signal handler frame. */ int pcreg = frame->signal_handler_caller ? PC_REGNUM : (proc_desc ? PROC_PC_REG(proc_desc) : RA_REGNUM); if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc)) saved_pc = read_memory_integer(frame->frame - MIPS_REGSIZE, MIPS_REGSIZE); else saved_pc = read_next_frame_reg(frame, pcreg); return ADDR_BITS_REMOVE (saved_pc); } static struct mips_extra_func_info temp_proc_desc; static struct frame_saved_regs temp_saved_regs; /* This fencepost looks highly suspicious to me. Removing it also seems suspicious as it could affect remote debugging across serial lines. */ static CORE_ADDR heuristic_proc_start(pc) CORE_ADDR pc; { CORE_ADDR start_pc = pc; CORE_ADDR fence = start_pc - heuristic_fence_post; if (start_pc == 0) return 0; if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS) fence = VM_MIN_ADDRESS; /* search back for previous return */ for (start_pc -= MIPS_INSTLEN; ; start_pc -= MIPS_INSTLEN) /* FIXME!! */ if (start_pc < fence) { /* It's not clear to me why we reach this point when stop_soon_quietly, but with this test, at least we don't print out warnings for every child forked (eg, on decstation). 22apr93 rich@cygnus.com. */ if (!stop_soon_quietly) { static int blurb_printed = 0; if (fence == VM_MIN_ADDRESS) warning("Hit beginning of text section without finding"); else warning("Hit heuristic-fence-post without finding"); warning("enclosing function for address 0x%s", paddr (pc)); if (!blurb_printed) { printf_filtered ("\ This warning occurs if you are debugging a function without any symbols\n\ (for example, in a stripped executable). In that case, you may wish to\n\ increase the size of the search with the `set heuristic-fence-post' command.\n\ \n\ Otherwise, you told GDB there was a function where there isn't one, or\n\ (more likely) you have encountered a bug in GDB.\n"); blurb_printed = 1; } } return 0; } else if (ABOUT_TO_RETURN(start_pc)) break; start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */ #if 0 /* skip nops (usually 1) 0 - is this */ while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0) start_pc += MIPS_INSTLEN; #endif return start_pc; } static mips_extra_func_info_t heuristic_proc_desc(start_pc, limit_pc, next_frame) CORE_ADDR start_pc, limit_pc; struct frame_info *next_frame; { CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM); CORE_ADDR cur_pc; unsigned long frame_size; int has_frame_reg = 0; CORE_ADDR reg30 = 0; /* Value of $r30. Used by gcc for frame-pointer */ unsigned long reg_mask = 0; if (start_pc == 0) return NULL; memset (&temp_proc_desc, '\0', sizeof(temp_proc_desc)); memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs)); PROC_LOW_ADDR (&temp_proc_desc) = start_pc; if (start_pc + 200 < limit_pc) limit_pc = start_pc + 200; restart: frame_size = 0; for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN) { char buf[MIPS_INSTLEN]; unsigned long word; int status; status = (unsigned long) read_memory_nobpt (cur_pc, buf, MIPS_INSTLEN); /* FIXME!! */ if (status) memory_error (status, cur_pc); word = (unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN); /* FIXME!! */ if ((word & 0xFFFF0000) == 0x27bd0000 /* addiu $sp,$sp,-i */ || (word & 0xFFFF0000) == 0x23bd0000 /* addi $sp,$sp,-i */ || (word & 0xFFFF0000) == 0x67bd0000) /* daddiu $sp,$sp,-i */ frame_size += (-word) & 0xFFFF; else if ((word & 0xFFE00000) == 0xafa00000 /* sw reg,offset($sp) */ || (word & 0xFFE00000) == 0xffa00000) { /* sd reg,offset($sp) */ int reg = (word & 0x001F0000) >> 16; reg_mask |= 1 << reg; temp_saved_regs.regs[reg] = sp + (word & 0xffff); } else if ((word & 0xFFFF0000) == 0x27be0000) { /* addiu $30,$sp,size */ if ((word & 0xffff) != frame_size) reg30 = sp + (word & 0xffff); else if (!has_frame_reg) { unsigned alloca_adjust; has_frame_reg = 1; reg30 = read_next_frame_reg(next_frame, 30); alloca_adjust = (unsigned)(reg30 - (sp + (word & 0xffff))); if (alloca_adjust > 0) { /* FP > SP + frame_size. This may be because * of an alloca or somethings similar. * Fix sp to "pre-alloca" value, and try again. */ sp += alloca_adjust; goto restart; } } } else if ((word & 0xFFE00000) == 0xafc00000) { /* sw reg,offset($30) */ int reg = (word & 0x001F0000) >> 16; reg_mask |= 1 << reg; temp_saved_regs.regs[reg] = reg30 + (word & 0xffff); } } if (has_frame_reg) { PROC_FRAME_REG(&temp_proc_desc) = 30; PROC_FRAME_OFFSET(&temp_proc_desc) = 0; } else { PROC_FRAME_REG(&temp_proc_desc) = SP_REGNUM; PROC_FRAME_OFFSET(&temp_proc_desc) = frame_size; } PROC_REG_MASK(&temp_proc_desc) = reg_mask; PROC_PC_REG(&temp_proc_desc) = RA_REGNUM; return &temp_proc_desc; } static mips_extra_func_info_t find_proc_desc (pc, next_frame) CORE_ADDR pc; struct frame_info *next_frame; { mips_extra_func_info_t proc_desc; struct block *b = block_for_pc(pc); struct symbol *sym; CORE_ADDR startaddr; find_pc_partial_function (pc, NULL, &startaddr, NULL); if (b == NULL) sym = NULL; else { if (startaddr > BLOCK_START (b)) /* This is the "pathological" case referred to in a comment in print_frame_info. It might be better to move this check into symbol reading. */ sym = NULL; else sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL); } /* If we never found a PDR for this function in symbol reading, then examine prologues to find the information. */ if (sym && ((mips_extra_func_info_t) SYMBOL_VALUE (sym))->pdr.framereg == -1) sym = NULL; if (sym) { /* IF this is the topmost frame AND * (this proc does not have debugging information OR * the PC is in the procedure prologue) * THEN create a "heuristic" proc_desc (by analyzing * the actual code) to replace the "official" proc_desc. */ proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym); if (next_frame == NULL) { struct symtab_and_line val; struct symbol *proc_symbol = PROC_DESC_IS_DUMMY(proc_desc) ? 0 : PROC_SYMBOL(proc_desc); if (proc_symbol) { val = find_pc_line (BLOCK_START (SYMBOL_BLOCK_VALUE(proc_symbol)), 0); val.pc = val.end ? val.end : pc; } if (!proc_symbol || pc < val.pc) { mips_extra_func_info_t found_heuristic = heuristic_proc_desc (PROC_LOW_ADDR (proc_desc), pc, next_frame); if (found_heuristic) proc_desc = found_heuristic; } } } else { /* Is linked_proc_desc_table really necessary? It only seems to be used by procedure call dummys. However, the procedures being called ought to have their own proc_descs, and even if they don't, heuristic_proc_desc knows how to create them! */ register struct linked_proc_info *link; for (link = linked_proc_desc_table; link; link = link->next) if (PROC_LOW_ADDR(&link->info) <= pc && PROC_HIGH_ADDR(&link->info) > pc) return &link->info; if (startaddr == 0) startaddr = heuristic_proc_start (pc); proc_desc = heuristic_proc_desc (startaddr, pc, next_frame); } return proc_desc; } static CORE_ADDR get_frame_pointer(frame, proc_desc) struct frame_info *frame; mips_extra_func_info_t proc_desc; { return ADDR_BITS_REMOVE (read_next_frame_reg (frame, PROC_FRAME_REG(proc_desc)) + PROC_FRAME_OFFSET(proc_desc)); } mips_extra_func_info_t cached_proc_desc; CORE_ADDR mips_frame_chain(frame) struct frame_info *frame; { mips_extra_func_info_t proc_desc; CORE_ADDR saved_pc = FRAME_SAVED_PC(frame); if (saved_pc == 0 || inside_entry_file (saved_pc)) return 0; proc_desc = find_proc_desc(saved_pc, frame); if (!proc_desc) return 0; cached_proc_desc = proc_desc; /* If no frame pointer and frame size is zero, we must be at end of stack (or otherwise hosed). If we don't check frame size, we loop forever if we see a zero size frame. */ if (PROC_FRAME_REG (proc_desc) == SP_REGNUM && PROC_FRAME_OFFSET (proc_desc) == 0 /* The previous frame from a sigtramp frame might be frameless and have frame size zero. */ && !frame->signal_handler_caller) return 0; else return get_frame_pointer (frame, proc_desc); } void init_extra_frame_info(fci) struct frame_info *fci; { int regnum; /* Use proc_desc calculated in frame_chain */ mips_extra_func_info_t proc_desc = fci->next ? cached_proc_desc : find_proc_desc(fci->pc, fci->next); fci->saved_regs = NULL; fci->proc_desc = proc_desc == &temp_proc_desc ? 0 : proc_desc; if (proc_desc) { /* Fixup frame-pointer - only needed for top frame */ /* This may not be quite right, if proc has a real frame register. Get the value of the frame relative sp, procedure might have been interrupted by a signal at it's very start. */ if (fci->pc == PROC_LOW_ADDR (proc_desc) && !PROC_DESC_IS_DUMMY (proc_desc)) fci->frame = read_next_frame_reg (fci->next, SP_REGNUM); else fci->frame = get_frame_pointer (fci->next, proc_desc); if (proc_desc == &temp_proc_desc) { char *name; /* Do not set the saved registers for a sigtramp frame, mips_find_saved_registers will do that for us. We can't use fci->signal_handler_caller, it is not yet set. */ find_pc_partial_function (fci->pc, &name, (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); if (!IN_SIGTRAMP (fci->pc, name)) { fci->saved_regs = (struct frame_saved_regs*) obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs)); *fci->saved_regs = temp_saved_regs; fci->saved_regs->regs[PC_REGNUM] = fci->saved_regs->regs[RA_REGNUM]; } } /* hack: if argument regs are saved, guess these contain args */ fci->num_args = -1; /* assume we can't tell how many args for now */ for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--) { if (PROC_REG_MASK(proc_desc) & (1 << regnum)) { fci->num_args = regnum - A0_REGNUM + 1; break; } } } } /* MIPS stack frames are almost impenetrable. When execution stops, we basically have to look at symbol information for the function that we stopped in, which tells us *which* register (if any) is the base of the frame pointer, and what offset from that register the frame itself is at. This presents a problem when trying to examine a stack in memory (that isn't executing at the moment), using the "frame" command. We don't have a PC, nor do we have any registers except SP. This routine takes two arguments, SP and PC, and tries to make the cached frames look as if these two arguments defined a frame on the cache. This allows the rest of info frame to extract the important arguments without difficulty. */ struct frame_info * setup_arbitrary_frame (argc, argv) int argc; CORE_ADDR *argv; { if (argc != 2) error ("MIPS frame specifications require two arguments: sp and pc"); return create_new_frame (argv[0], argv[1]); } CORE_ADDR mips_push_arguments(nargs, args, sp, struct_return, struct_addr) int nargs; value_ptr *args; CORE_ADDR sp; int struct_return; CORE_ADDR struct_addr; { register i; int accumulate_size; struct mips_arg { char *contents; int len; int offset; }; struct mips_arg *mips_args; register struct mips_arg *m_arg; int fake_args = 0; int len; /* Macro to round n up to the next a boundary (a must be a power of two) */ #define ALIGN(n,a) (((n)+(a)-1) & ~((a)-1)) /* First ensure that the stack and structure return address (if any) are properly aligned. */ sp = ALIGN (sp, MIPS_REGSIZE); struct_addr = ALIGN (struct_addr, MIPS_REGSIZE); accumulate_size = struct_return ? MIPS_REGSIZE : 0; /* Allocate descriptors for each argument, plus some extras for the dummies we will create to zero-fill the holes left when we align arguments passed in registers that are smaller than a register. */ mips_args = (struct mips_arg*) alloca ((nargs + MIPS_NUM_ARG_REGS) * sizeof (struct mips_arg)); /* Build up the list of argument descriptors. */ for (i = 0, m_arg = mips_args; i < nargs; i++, m_arg++) { value_ptr arg = args[i]; len = m_arg->len = TYPE_LENGTH (VALUE_TYPE (arg)); /* This entire mips-specific routine is because doubles must be aligned * on 8-byte boundaries. It still isn't quite right, because MIPS decided * to align 'struct {int a, b}' on 4-byte boundaries (even though this * breaks their varargs implementation...). A correct solution * requires a simulation of gcc's 'alignof' (and use of 'alignof' * in stdarg.h/varargs.h). * On the 64 bit r4000 we always pass the first four arguments * using eight bytes each, so that we can load them up correctly * in CALL_DUMMY. */ if (len > 4) /* FIXME? */ accumulate_size = ALIGN (accumulate_size, 8); m_arg->offset = accumulate_size; m_arg->contents = VALUE_CONTENTS(arg); if (! GDB_TARGET_IS_MIPS64) /* For 32-bit targets, align the next argument on a 32-bit boundary. */ accumulate_size = ALIGN (accumulate_size + len, 4); else { /* The following test attempts to determine if the argument is being passed on the stack. But it fails account for floating point arguments in the EABI, which should have their own accumulated size separate from that for integer arguments. FIXME!! */ if (accumulate_size >= MIPS_NUM_ARG_REGS * MIPS_REGSIZE) /* The argument is being passed on the stack, not a register, so adjust the size of the argument upward to account for stack alignment. But shouldn't we be right-aligning small arguments as we do below for the args-in-registers case? FIXME!! */ accumulate_size = ALIGN (accumulate_size + len, 8); else { if (len < MIPS_REGSIZE) { /* The argument is being passed in a register, but is smaller than a register. So it it must be right-aligned in the register image being placed in the stack, and the rest of the register image must be zero-filled. */ static char zeroes[MIPS_REGSIZE] = { 0 }; /* Align the arg in the rightmost part of the 64-bit word. */ if (TARGET_BYTE_ORDER == BIG_ENDIAN) m_arg->offset += MIPS_REGSIZE - len; /* Create a fake argument to zero-fill the unsused part of the 64-bit word. */ ++m_arg; m_arg->len = MIPS_REGSIZE - len; m_arg->contents = zeroes; if (TARGET_BYTE_ORDER == BIG_ENDIAN) m_arg->offset = accumulate_size; else m_arg->offset = accumulate_size + len; ++fake_args; } accumulate_size = ALIGN (accumulate_size + len, MIPS_REGSIZE); } } } accumulate_size = ALIGN (accumulate_size, 8); if (accumulate_size < 4 * MIPS_REGSIZE) accumulate_size = 4 * MIPS_REGSIZE; sp -= accumulate_size; for (i = nargs + fake_args; m_arg--, --i >= 0; ) write_memory(sp + m_arg->offset, m_arg->contents, m_arg->len); if (struct_return) { char buf[TARGET_PTR_BIT / HOST_CHAR_BIT]; store_address (buf, sizeof buf, struct_addr); write_memory (sp, buf, sizeof buf); } return sp; } void mips_push_register(CORE_ADDR *sp, int regno) { char buffer[MAX_REGISTER_RAW_SIZE]; int regsize = REGISTER_RAW_SIZE (regno); *sp -= regsize; read_register_gen (regno, buffer); write_memory (*sp, buffer, regsize); } /* MASK(i,j) == (1<info; CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM)); CORE_ADDR old_sp = sp; link->next = linked_proc_desc_table; linked_proc_desc_table = link; /* FIXME! are these correct ? */ #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */ #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1)) #define FLOAT_REG_SAVE_MASK MASK(0,19) #define FLOAT_SINGLE_REG_SAVE_MASK \ ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0)) /* * The registers we must save are all those not preserved across * procedure calls. Dest_Reg (see tm-mips.h) must also be saved. * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI * and FP Control/Status registers. * * * Dummy frame layout: * (high memory) * Saved PC * Saved MMHI, MMLO, FPC_CSR * Saved R31 * Saved R28 * ... * Saved R1 * Saved D18 (i.e. F19, F18) * ... * Saved D0 (i.e. F1, F0) * CALL_DUMMY (subroutine stub; see tm-mips.h) * Parameter build area (not yet implemented) * (low memory) */ /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */ write_register (PUSH_FP_REGNUM, sp); PROC_FRAME_REG(proc_desc) = PUSH_FP_REGNUM; PROC_FRAME_OFFSET(proc_desc) = 0; mips_push_register (&sp, PC_REGNUM); mips_push_register (&sp, HI_REGNUM); mips_push_register (&sp, LO_REGNUM); mips_push_register (&sp, mips_fpu == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM); /* Save general CPU registers */ PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK; PROC_REG_OFFSET(proc_desc) = sp - old_sp; /* offset of (Saved R31) from FP */ for (ireg = 32; --ireg >= 0; ) if (PROC_REG_MASK(proc_desc) & (1 << ireg)) mips_push_register (&sp, ireg); /* Save floating point registers starting with high order word */ PROC_FREG_MASK(proc_desc) = mips_fpu == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK : mips_fpu == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0; PROC_FREG_OFFSET(proc_desc) = sp - old_sp; /* offset of (Saved D18) from FP */ for (ireg = 32; --ireg >= 0; ) if (PROC_FREG_MASK(proc_desc) & (1 << ireg)) mips_push_register (&sp, ireg + FP0_REGNUM); /* Update the stack pointer. Set the procedure's starting and ending addresses to point to the place on the stack where we'll be writing the dummy code (in mips_push_arguments). */ write_register (SP_REGNUM, sp); PROC_LOW_ADDR(proc_desc) = sp - CALL_DUMMY_SIZE + CALL_DUMMY_START_OFFSET; PROC_HIGH_ADDR(proc_desc) = sp; SET_PROC_DESC_IS_DUMMY(proc_desc); PROC_PC_REG(proc_desc) = RA_REGNUM; } void mips_pop_frame() { register int regnum; struct frame_info *frame = get_current_frame (); CORE_ADDR new_sp = FRAME_FP (frame); mips_extra_func_info_t proc_desc = frame->proc_desc; write_register (PC_REGNUM, FRAME_SAVED_PC(frame)); if (frame->saved_regs == NULL) mips_find_saved_regs (frame); if (proc_desc) { for (regnum = MIPS_NUMREGS; --regnum >= 0; ) if (PROC_REG_MASK(proc_desc) & (1 << regnum)) write_register (regnum, read_memory_integer (frame->saved_regs->regs[regnum], MIPS_REGSIZE)); for (regnum = MIPS_NUMREGS; --regnum >= 0; ) if (PROC_FREG_MASK(proc_desc) & (1 << regnum)) write_register (regnum + FP0_REGNUM, read_memory_integer (frame->saved_regs->regs[regnum + FP0_REGNUM], MIPS_REGSIZE)); } write_register (SP_REGNUM, new_sp); flush_cached_frames (); if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc)) { struct linked_proc_info *pi_ptr, *prev_ptr; for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL; pi_ptr != NULL; prev_ptr = pi_ptr, pi_ptr = pi_ptr->next) { if (&pi_ptr->info == proc_desc) break; } if (pi_ptr == NULL) error ("Can't locate dummy extra frame info\n"); if (prev_ptr != NULL) prev_ptr->next = pi_ptr->next; else linked_proc_desc_table = pi_ptr->next; free (pi_ptr); write_register (HI_REGNUM, read_memory_integer (new_sp - 2*MIPS_REGSIZE, MIPS_REGSIZE)); write_register (LO_REGNUM, read_memory_integer (new_sp - 3*MIPS_REGSIZE, MIPS_REGSIZE)); if (mips_fpu != MIPS_FPU_NONE) write_register (FCRCS_REGNUM, read_memory_integer (new_sp - 4*MIPS_REGSIZE, MIPS_REGSIZE)); } } static void mips_print_register (regnum, all) int regnum, all; { char raw_buffer[MAX_REGISTER_RAW_SIZE]; /* Get the data in raw format. */ if (read_relative_register_raw_bytes (regnum, raw_buffer)) { printf_filtered ("%s: [Invalid]", reg_names[regnum]); return; } /* If an even floating pointer register, also print as double. */ if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM+MIPS_NUMREGS && !((regnum-FP0_REGNUM) & 1)) { char dbuffer[MAX_REGISTER_RAW_SIZE]; read_relative_register_raw_bytes (regnum, dbuffer); read_relative_register_raw_bytes (regnum+1, dbuffer+4); /* FIXME!! */ #ifdef REGISTER_CONVERT_TO_TYPE REGISTER_CONVERT_TO_TYPE(regnum, builtin_type_double, dbuffer); #endif printf_filtered ("(d%d: ", regnum-FP0_REGNUM); val_print (builtin_type_double, dbuffer, 0, gdb_stdout, 0, 1, 0, Val_pretty_default); printf_filtered ("); "); } fputs_filtered (reg_names[regnum], gdb_stdout); /* The problem with printing numeric register names (r26, etc.) is that the user can't use them on input. Probably the best solution is to fix it so that either the numeric or the funky (a2, etc.) names are accepted on input. */ if (regnum < MIPS_NUMREGS) printf_filtered ("(r%d): ", regnum); else printf_filtered (": "); /* If virtual format is floating, print it that way. */ if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, gdb_stdout, 0, 1, 0, Val_pretty_default); /* Else print as integer in hex. */ else print_scalar_formatted (raw_buffer, REGISTER_VIRTUAL_TYPE (regnum), 'x', 0, gdb_stdout); } /* Replacement for generic do_registers_info. */ void mips_do_registers_info (regnum, fpregs) int regnum; int fpregs; { if (regnum != -1) { if (*(reg_names[regnum]) == '\0') error ("Not a valid register for the current processor type"); mips_print_register (regnum, 0); printf_filtered ("\n"); } else { int did_newline = 0; for (regnum = 0; regnum < NUM_REGS; ) { if (((!fpregs) && regnum >= FP0_REGNUM && regnum <= FCRIR_REGNUM) || *(reg_names[regnum]) == '\0') { regnum++; continue; } mips_print_register (regnum, 1); regnum++; printf_filtered ("; "); did_newline = 0; if ((regnum & 3) == 0) { printf_filtered ("\n"); did_newline = 1; } } if (!did_newline) printf_filtered ("\n"); } } /* Return number of args passed to a frame. described by FIP. Can return -1, meaning no way to tell. */ int mips_frame_num_args (frame) struct frame_info *frame; { #if 0 /* FIXME Use or lose this! */ struct chain_info_t *p; p = mips_find_cached_frame (FRAME_FP (frame)); if (p->valid) return p->the_info.numargs; #endif return -1; } /* Is this a branch with a delay slot? */ static int is_delayed PARAMS ((unsigned long)); static int is_delayed (insn) unsigned long insn; { int i; for (i = 0; i < NUMOPCODES; ++i) if (mips_opcodes[i].pinfo != INSN_MACRO && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match) break; return (i < NUMOPCODES && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY | INSN_COND_BRANCH_DELAY | INSN_COND_BRANCH_LIKELY))); } int mips_step_skips_delay (pc) CORE_ADDR pc; { char buf[MIPS_INSTLEN]; if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0) /* If error reading memory, guess that it is not a delayed branch. */ return 0; return is_delayed ((unsigned long)extract_unsigned_integer (buf, MIPS_INSTLEN)); } /* To skip prologues, I use this predicate. Returns either PC itself if the code at PC does not look like a function prologue; otherwise returns an address that (if we're lucky) follows the prologue. If LENIENT, then we must skip everything which is involved in setting up the frame (it's OK to skip more, just so long as we don't skip anything which might clobber the registers which are being saved. We must skip more in the case where part of the prologue is in the delay slot of a non-prologue instruction). */ CORE_ADDR mips_skip_prologue (pc, lenient) CORE_ADDR pc; int lenient; { t_inst inst; unsigned offset; int seen_sp_adjust = 0; int load_immediate_bytes = 0; CORE_ADDR post_prologue_pc; /* See if we can determine the end of the prologue via the symbol table. If so, then return either PC, or the PC after the prologue, whichever is greater. */ post_prologue_pc = after_prologue (pc, NULL); if (post_prologue_pc != 0) return max (pc, post_prologue_pc); /* Can't determine prologue from the symbol table, need to examine instructions. */ /* Skip the typical prologue instructions. These are the stack adjustment instruction and the instructions that save registers on the stack or in the gcc frame. */ for (offset = 0; offset < 100; offset += MIPS_INSTLEN) { char buf[MIPS_INSTLEN]; int status; status = read_memory_nobpt (pc + offset, buf, MIPS_INSTLEN); if (status) memory_error (status, pc + offset); inst = (unsigned long)extract_unsigned_integer (buf, MIPS_INSTLEN); #if 0 if (lenient && is_delayed (inst)) continue; #endif /* Must add cases for 64-bit operations. FIXME!! */ if ((inst & 0xffff0000) == 0x27bd0000) /* addiu $sp,$sp,offset */ seen_sp_adjust = 1; else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */ inst == 0x03a8e823) /* subu $sp,$sp,$t0 */ seen_sp_adjust = 1; else if ((inst & 0xFFE00000) == 0xAFA00000 && (inst & 0x001F0000)) continue; /* sw reg,n($sp) */ /* reg != $zero */ else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */ continue; else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000)) /* sx reg,n($s8) */ continue; /* reg != $zero */ /* move $s8,$sp. With different versions of gas this will be either `addu $s8,$sp,$zero' or `or $s8,$sp,$zero'. Accept either. */ else if (inst == 0x03A0F021 || inst == 0x03a0f025) continue; else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */ continue; else if ((inst & 0xffff0000) == 0x3c1c0000) /* lui $gp,n */ continue; else if ((inst & 0xffff0000) == 0x279c0000) /* addiu $gp,$gp,n */ continue; else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */ || inst == 0x033ce021) /* addu $gp,$t9,$gp */ continue; /* The following instructions load $at or $t0 with an immediate value in preparation for a stack adjustment via subu $sp,$sp,[$at,$t0]. These instructions could also initialize a local variable, so we accept them only before a stack adjustment instruction was seen. */ else if (!seen_sp_adjust) { if ((inst & 0xffff0000) == 0x3c010000 || /* lui $at,n */ (inst & 0xffff0000) == 0x3c080000) /* lui $t0,n */ { load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ continue; } else if ((inst & 0xffff0000) == 0x34210000 || /* ori $at,$at,n */ (inst & 0xffff0000) == 0x35080000 || /* ori $t0,$t0,n */ (inst & 0xffff0000) == 0x34010000 || /* ori $at,$zero,n */ (inst & 0xffff0000) == 0x34080000) /* ori $t0,$zero,n */ { load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ continue; } else break; } else break; } /* In a frameless function, we might have incorrectly skipped some load immediate instructions. Undo the skipping if the load immediate was not followed by a stack adjustment. */ if (load_immediate_bytes && !seen_sp_adjust) offset -= load_immediate_bytes; return pc + offset; } #if 0 /* The lenient prologue stuff should be superceded by the code in init_extra_frame_info which looks to see whether the stores mentioned in the proc_desc have actually taken place. */ /* Is address PC in the prologue (loosely defined) for function at STARTADDR? */ static int mips_in_lenient_prologue (startaddr, pc) CORE_ADDR startaddr; CORE_ADDR pc; { CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1); return pc >= startaddr && pc < end_prologue; } #endif /* Given a return value in `regbuf' with a type `valtype', extract and copy its value into `valbuf'. */ void mips_extract_return_value (valtype, regbuf, valbuf) struct type *valtype; char regbuf[REGISTER_BYTES]; char *valbuf; { int regnum; int offset = 0; regnum = 2; if (TYPE_CODE (valtype) == TYPE_CODE_FLT && (mips_fpu == MIPS_FPU_DOUBLE || (mips_fpu == MIPS_FPU_SINGLE && TYPE_LENGTH (valtype) <= 4))) /* FIXME!! */ regnum = FP0_REGNUM; if (TARGET_BYTE_ORDER == BIG_ENDIAN && TYPE_CODE (valtype) != TYPE_CODE_FLT && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (regnum)) offset = REGISTER_RAW_SIZE (regnum) - TYPE_LENGTH (valtype); memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, TYPE_LENGTH (valtype)); #ifdef REGISTER_CONVERT_TO_TYPE REGISTER_CONVERT_TO_TYPE(regnum, valtype, valbuf); #endif } /* Given a return value in `regbuf' with a type `valtype', write it's value into the appropriate register. */ void mips_store_return_value (valtype, valbuf) struct type *valtype; char *valbuf; { int regnum; char raw_buffer[MAX_REGISTER_RAW_SIZE]; regnum = 2; if (TYPE_CODE (valtype) == TYPE_CODE_FLT && (mips_fpu == MIPS_FPU_DOUBLE || (mips_fpu == MIPS_FPU_SINGLE && TYPE_LENGTH (valtype) <= 4))) /* FIXME!! */ regnum = FP0_REGNUM; memcpy(raw_buffer, valbuf, TYPE_LENGTH (valtype)); #ifdef REGISTER_CONVERT_FROM_TYPE REGISTER_CONVERT_FROM_TYPE(regnum, valtype, raw_buffer); #endif write_register_bytes(REGISTER_BYTE (regnum), raw_buffer, TYPE_LENGTH (valtype)); } /* Exported procedure: Is PC in the signal trampoline code */ int in_sigtramp (pc, ignore) CORE_ADDR pc; char *ignore; /* function name */ { if (sigtramp_address == 0) fixup_sigtramp (); return (pc >= sigtramp_address && pc < sigtramp_end); } /* Command to set FPU type. mips_fpu_string will have been set to the user's argument. Set mips_fpu based on mips_fpu_string, and then canonicalize mips_fpu_string. */ /*ARGSUSED*/ static void mips_set_fpu_command (args, from_tty, c) char *args; int from_tty; struct cmd_list_element *c; { char *err = NULL; if (mips_fpu_string == NULL || *mips_fpu_string == '\0') mips_fpu = MIPS_FPU_DOUBLE; else if (strcasecmp (mips_fpu_string, "double") == 0 || strcasecmp (mips_fpu_string, "on") == 0 || strcasecmp (mips_fpu_string, "1") == 0 || strcasecmp (mips_fpu_string, "yes") == 0) mips_fpu = MIPS_FPU_DOUBLE; else if (strcasecmp (mips_fpu_string, "none") == 0 || strcasecmp (mips_fpu_string, "off") == 0 || strcasecmp (mips_fpu_string, "0") == 0 || strcasecmp (mips_fpu_string, "no") == 0) mips_fpu = MIPS_FPU_NONE; else if (strcasecmp (mips_fpu_string, "single") == 0) mips_fpu = MIPS_FPU_SINGLE; else err = strsave (mips_fpu_string); if (mips_fpu_string != NULL) free (mips_fpu_string); switch (mips_fpu) { case MIPS_FPU_DOUBLE: mips_fpu_string = strsave ("double"); break; case MIPS_FPU_SINGLE: mips_fpu_string = strsave ("single"); break; case MIPS_FPU_NONE: mips_fpu_string = strsave ("none"); break; } if (err != NULL) { struct cleanup *cleanups = make_cleanup (free, err); error ("Unknown FPU type `%s'. Use `double', `none', or `single'.", err); do_cleanups (cleanups); } } static void mips_show_fpu_command (args, from_tty, c) char *args; int from_tty; struct cmd_list_element *c; { } /* Command to set the processor type. */ void mips_set_processor_type_command (args, from_tty) char *args; int from_tty; { int i; if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0') { printf_unfiltered ("The known MIPS processor types are as follows:\n\n"); for (i = 0; mips_processor_type_table[i].name != NULL; ++i) printf_unfiltered ("%s\n", mips_processor_type_table[i].name); /* Restore the value. */ tmp_mips_processor_type = strsave (mips_processor_type); return; } if (!mips_set_processor_type (tmp_mips_processor_type)) { error ("Unknown processor type `%s'.", tmp_mips_processor_type); /* Restore its value. */ tmp_mips_processor_type = strsave (mips_processor_type); } } static void mips_show_processor_type_command (args, from_tty) char *args; int from_tty; { } /* Modify the actual processor type. */ int mips_set_processor_type (str) char *str; { int i, j; if (str == NULL) return 0; for (i = 0; mips_processor_type_table[i].name != NULL; ++i) { if (strcasecmp (str, mips_processor_type_table[i].name) == 0) { mips_processor_type = str; for (j = 0; j < NUM_REGS; ++j) reg_names[j] = mips_processor_type_table[i].regnames[j]; return 1; /* FIXME tweak fpu flag too */ } } return 0; } /* Attempt to identify the particular processor model by reading the processor id. */ char * mips_read_processor_type () { CORE_ADDR prid; prid = read_register (PRID_REGNUM); if ((prid & ~0xf) == 0x700) return savestring ("r3041", strlen("r3041")); return NULL; } /* Just like reinit_frame_cache, but with the right arguments to be callable as an sfunc. */ static void reinit_frame_cache_sfunc (args, from_tty, c) char *args; int from_tty; struct cmd_list_element *c; { reinit_frame_cache (); } static int gdb_print_insn_mips (memaddr, info) bfd_vma memaddr; disassemble_info *info; { if (TARGET_BYTE_ORDER == BIG_ENDIAN) return print_insn_big_mips (memaddr, info); else return print_insn_little_mips (memaddr, info); } void _initialize_mips_tdep () { struct cmd_list_element *c; tm_print_insn = gdb_print_insn_mips; /* Let the user turn off floating point and set the fence post for heuristic_proc_start. */ c = add_set_cmd ("mipsfpu", class_support, var_string_noescape, (char *) &mips_fpu_string, "Set use of floating point coprocessor.\n\ Set to `none' to avoid using floating point instructions when calling\n\ functions or dealing with return values. Set to `single' to use only\n\ single precision floating point as on the R4650. Set to `double' for\n\ normal floating point support.", &setlist); c->function.sfunc = mips_set_fpu_command; c = add_show_from_set (c, &showlist); c->function.sfunc = mips_show_fpu_command; mips_fpu = MIPS_FPU_DOUBLE; mips_fpu_string = strsave ("double"); c = add_set_cmd ("processor", class_support, var_string_noescape, (char *) &tmp_mips_processor_type, "Set the type of MIPS processor in use.\n\ Set this to be able to access processor-type-specific registers.\n\ ", &setlist); c->function.cfunc = mips_set_processor_type_command; c = add_show_from_set (c, &showlist); c->function.cfunc = mips_show_processor_type_command; tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE); mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0); /* We really would like to have both "0" and "unlimited" work, but command.c doesn't deal with that. So make it a var_zinteger because the user can always use "999999" or some such for unlimited. */ c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger, (char *) &heuristic_fence_post, "\ Set the distance searched for the start of a function.\n\ If you are debugging a stripped executable, GDB needs to search through the\n\ program for the start of a function. This command sets the distance of the\n\ search. The only need to set it is when debugging a stripped executable.", &setlist); /* We need to throw away the frame cache when we set this, since it might change our ability to get backtraces. */ c->function.sfunc = reinit_frame_cache_sfunc; add_show_from_set (c, &showlist); }