/* GDB routines for manipulating the minimal symbol tables. Copyright 1992 Free Software Foundation, Inc. Contributed by Cygnus Support, using pieces from other GDB modules. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* This file contains support routines for creating, manipulating, and destroying minimal symbol tables. Minimal symbol tables are used to hold some very basic information about all defined global symbols (text, data, bss, abs, etc). The only two required pieces of information are the symbol's name and the address associated with that symbol. In many cases, even if a file was compiled with no special options for debugging at all, as long as was not stripped it will contain sufficient information to build useful minimal symbol tables using this structure. Even when a file contains enough debugging information to build a full symbol table, these minimal symbols are still useful for quickly mapping between names and addresses, and vice versa. They are also sometimes used to figure out what full symbol table entries need to be read in. */ #include "defs.h" #include "symtab.h" #include "bfd.h" #include "symfile.h" #include "objfiles.h" #include "demangle.h" /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE. At the end, copy them all into one newly allocated location on an objfile's symbol obstack. */ #define BUNCH_SIZE 127 struct msym_bunch { struct msym_bunch *next; struct minimal_symbol contents[BUNCH_SIZE]; }; /* Bunch currently being filled up. The next field points to chain of filled bunches. */ static struct msym_bunch *msym_bunch; /* Number of slots filled in current bunch. */ static int msym_bunch_index; /* Total number of minimal symbols recorded so far for the objfile. */ static int msym_count; /* Prototypes for local functions. */ static int compare_minimal_symbols PARAMS ((const void *, const void *)); static int compact_minimal_symbols PARAMS ((struct minimal_symbol *, int)); /* Look through all the current minimal symbol tables and find the first minimal symbol that matches NAME. If OBJF is non-NULL, it specifies a particular objfile and the search is limited to that objfile. Returns a pointer to the minimal symbol that matches, or NULL if no match is found. Note: One instance where there may be duplicate minimal symbols with the same name is when the symbol tables for a shared library and the symbol tables for an executable contain global symbols with the same names (the dynamic linker deals with the duplication). */ struct minimal_symbol * lookup_minimal_symbol (name, objf) register const char *name; struct objfile *objf; { struct objfile *objfile; struct minimal_symbol *msymbol; struct minimal_symbol *found_symbol = NULL; struct minimal_symbol *found_file_symbol = NULL; #ifdef IBM6000_TARGET struct minimal_symbol *trampoline_symbol = NULL; #endif for (objfile = object_files; objfile != NULL && found_symbol == NULL; objfile = objfile -> next) { if (objf == NULL || objf == objfile) { for (msymbol = objfile -> msymbols; msymbol != NULL && SYMBOL_NAME (msymbol) != NULL && found_symbol == NULL; msymbol++) { if (SYMBOL_MATCHES_NAME (msymbol, name)) { switch (MSYMBOL_TYPE (msymbol)) { case mst_file_text: case mst_file_data: case mst_file_bss: /* It is file-local. If we find more than one, just return the latest one (the user can't expect useful behavior in that case). */ found_file_symbol = msymbol; break; case mst_unknown: #ifdef IBM6000_TARGET /* I *think* all platforms using shared libraries (and trampoline code) will suffer this problem. Consider a case where there are 5 shared libraries, each referencing `foo' with a trampoline entry. When someone wants to put a breakpoint on `foo' and the only info we have is minimal symbol vector, we want to use the real `foo', rather than one of those trampoline entries. MGO */ /* If a trampoline symbol is found, we prefer to keep looking for the *real* symbol. If the actual symbol not found, then we'll use the trampoline entry. Sorry for the machine dependent code here, but I hope this will benefit other platforms as well. For trampoline entries, we used mst_unknown earlier. Perhaps we should define a `mst_trampoline' type?? */ if (trampoline_symbol == NULL) trampoline_symbol = msymbol; break; #else /* FALLTHROUGH */ #endif default: found_symbol = msymbol; break; } } } } } /* External symbols are best. */ if (found_symbol) return found_symbol; /* File-local symbols are next best. */ if (found_file_symbol) return found_file_symbol; /* Symbols for IBM shared library trampolines are next best. */ #ifdef IBM6000_TARGET if (trampoline_symbol) return trampoline_symbol; #endif return NULL; } /* Search through the minimal symbol table for each objfile and find the symbol whose address is the largest address that is still less than or equal to PC. Returns a pointer to the minimal symbol if such a symbol is found, or NULL if PC is not in a suitable range. Note that we need to look through ALL the minimal symbol tables before deciding on the symbol that comes closest to the specified PC. This is because objfiles can overlap, for example objfile A has .text at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and .data at 0x40048. */ struct minimal_symbol * lookup_minimal_symbol_by_pc (pc) register CORE_ADDR pc; { register int lo; register int hi; register int new; register struct objfile *objfile; register struct minimal_symbol *msymbol; register struct minimal_symbol *best_symbol = NULL; for (objfile = object_files; objfile != NULL; objfile = objfile -> next) { /* If this objfile has a minimal symbol table, go search it using a binary search. Note that a minimal symbol table always consists of at least two symbols, a "real" symbol and the terminating "null symbol". If there are no real symbols, then there is no minimal symbol table at all. */ if ((msymbol = objfile -> msymbols) != NULL) { lo = 0; hi = objfile -> minimal_symbol_count - 1; /* This code assumes that the minimal symbols are sorted by ascending address values. If the pc value is greater than or equal to the first symbol's address, then some symbol in this minimal symbol table is a suitable candidate for being the "best" symbol. This includes the last real symbol, for cases where the pc value is larger than any address in this vector. By iterating until the address associated with the current hi index (the endpoint of the test interval) is less than or equal to the desired pc value, we accomplish two things: (1) the case where the pc value is larger than any minimal symbol address is trivially solved, (2) the address associated with the hi index is always the one we want when the interation terminates. In essence, we are iterating the test interval down until the pc value is pushed out of it from the high end. Warning: this code is trickier than it would appear at first. */ /* Should also requires that pc is <= end of objfile. FIXME! */ if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo])) { while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc) { /* pc is still strictly less than highest address */ /* Note "new" will always be >= lo */ new = (lo + hi) / 2; if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) || (lo == new)) { hi = new; } else { lo = new; } } /* The minimal symbol indexed by hi now is the best one in this objfile's minimal symbol table. See if it is the best one overall. */ /* Skip any absolute symbols. This is apparently what adb and dbx do, and is needed for the CM-5. There are two known possible problems: (1) on ELF, apparently end, edata, etc. are absolute. Not sure ignoring them here is a big deal, but if we want to use them, the fix would go in elfread.c. (2) I think shared library entry points on the NeXT are absolute. If we want special handling for this it probably should be triggered by a special mst_abs_or_lib or some such. */ while (hi >= 0 && msymbol[hi].type == mst_abs) --hi; if (hi >= 0 && ((best_symbol == NULL) || (SYMBOL_VALUE_ADDRESS (best_symbol) < SYMBOL_VALUE_ADDRESS (&msymbol[hi])))) { best_symbol = &msymbol[hi]; } } } } return (best_symbol); } /* Prepare to start collecting minimal symbols. Note that presetting msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal symbol to allocate the memory for the first bunch. */ void init_minimal_symbol_collection () { msym_count = 0; msym_bunch = NULL; msym_bunch_index = BUNCH_SIZE; } void prim_record_minimal_symbol (name, address, ms_type) const char *name; CORE_ADDR address; enum minimal_symbol_type ms_type; { prim_record_minimal_symbol (name, address, ms_type, NULL, -1); } void prim_record_minimal_symbol_and_info (name, address, ms_type, info, section) const char *name; CORE_ADDR address; enum minimal_symbol_type ms_type; char *info; int section; { register struct msym_bunch *new; register struct minimal_symbol *msymbol; if (ms_type == mst_file_text) { /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into the minimal symbols, because if there is also another symbol at the same address (e.g. the first function of the file), lookup_minimal_symbol_by_pc would have no way of getting the right one. */ if (name[0] == 'g' && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0)) return; { char *tempstring = name; if (tempstring[0] == bfd_get_symbol_leading_char (objfile->obfd)) ++tempstring; if (STREQN (tempstring, "__gnu_compiled", 14)) return; } } if (msym_bunch_index == BUNCH_SIZE) { new = (struct msym_bunch *) xmalloc (sizeof (struct msym_bunch)); msym_bunch_index = 0; new -> next = msym_bunch; msym_bunch = new; } msymbol = &msym_bunch -> contents[msym_bunch_index]; SYMBOL_NAME (msymbol) = (char *) name; SYMBOL_INIT_LANGUAGE_SPECIFIC (msymbol, language_unknown); SYMBOL_VALUE_ADDRESS (msymbol) = address; SYMBOL_SECTION (msymbol) = section; MSYMBOL_TYPE (msymbol) = ms_type; /* FIXME: This info, if it remains, needs its own field. */ MSYMBOL_INFO (msymbol) = info; /* FIXME! */ msym_bunch_index++; msym_count++; } /* Compare two minimal symbols by address and return a signed result based on unsigned comparisons, so that we sort into unsigned numeric order. */ static int compare_minimal_symbols (fn1p, fn2p) const PTR fn1p; const PTR fn2p; { register const struct minimal_symbol *fn1; register const struct minimal_symbol *fn2; fn1 = (const struct minimal_symbol *) fn1p; fn2 = (const struct minimal_symbol *) fn2p; if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2)) { return (-1); } else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2)) { return (1); } else { return (0); } } /* Discard the currently collected minimal symbols, if any. If we wish to save them for later use, we must have already copied them somewhere else before calling this function. FIXME: We could allocate the minimal symbol bunches on their own obstack and then simply blow the obstack away when we are done with it. Is it worth the extra trouble though? */ /* ARGSUSED */ void discard_minimal_symbols (foo) int foo; { register struct msym_bunch *next; while (msym_bunch != NULL) { next = msym_bunch -> next; free ((PTR)msym_bunch); msym_bunch = next; } } /* Compact duplicate entries out of a minimal symbol table by walking through the table and compacting out entries with duplicate addresses and matching names. Return the number of entries remaining. On entry, the table resides between msymbol[0] and msymbol[mcount]. On exit, it resides between msymbol[0] and msymbol[result_count]. When files contain multiple sources of symbol information, it is possible for the minimal symbol table to contain many duplicate entries. As an example, SVR4 systems use ELF formatted object files, which usually contain at least two different types of symbol tables (a standard ELF one and a smaller dynamic linking table), as well as DWARF debugging information for files compiled with -g. Without compacting, the minimal symbol table for gdb itself contains over a 1000 duplicates, about a third of the total table size. Aside from the potential trap of not noticing that two successive entries identify the same location, this duplication impacts the time required to linearly scan the table, which is done in a number of places. So we just do one linear scan here and toss out the duplicates. Note that we are not concerned here about recovering the space that is potentially freed up, because the strings themselves are allocated on the symbol_obstack, and will get automatically freed when the symbol table is freed. The caller can free up the unused minimal symbols at the end of the compacted region if their allocation strategy allows it. Also note we only go up to the next to last entry within the loop and then copy the last entry explicitly after the loop terminates. Since the different sources of information for each symbol may have different levels of "completeness", we may have duplicates that have one entry with type "mst_unknown" and the other with a known type. So if the one we are leaving alone has type mst_unknown, overwrite its type with the type from the one we are compacting out. */ static int compact_minimal_symbols (msymbol, mcount) struct minimal_symbol *msymbol; int mcount; { struct minimal_symbol *copyfrom; struct minimal_symbol *copyto; if (mcount > 0) { copyfrom = copyto = msymbol; while (copyfrom < msymbol + mcount - 1) { if (SYMBOL_VALUE_ADDRESS (copyfrom) == SYMBOL_VALUE_ADDRESS ((copyfrom + 1)) && (STREQ (SYMBOL_NAME (copyfrom), SYMBOL_NAME ((copyfrom + 1))))) { if (MSYMBOL_TYPE((copyfrom + 1)) == mst_unknown) { MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom); } copyfrom++; } else { *copyto++ = *copyfrom++; } } *copyto++ = *copyfrom++; mcount = copyto - msymbol; } return (mcount); } /* Add the minimal symbols in the existing bunches to the objfile's official minimal symbol table. In most cases there is no minimal symbol table yet for this objfile, and the existing bunches are used to create one. Once in a while (for shared libraries for example), we add symbols (e.g. common symbols) to an existing objfile. Because of the way minimal symbols are collected, we generally have no way of knowing what source language applies to any particular minimal symbol. Specifically, we have no way of knowing if the minimal symbol comes from a C++ compilation unit or not. So for the sake of supporting cached demangled C++ names, we have no choice but to try and demangle each new one that comes in. If the demangling succeeds, then we assume it is a C++ symbol and set the symbol's language and demangled name fields appropriately. Note that in order to avoid unnecessary demanglings, and allocating obstack space that subsequently can't be freed for the demangled names, we mark all newly added symbols with language_auto. After compaction of the minimal symbols, we go back and scan the entire minimal symbol table looking for these new symbols. For each new symbol we attempt to demangle it, and if successful, record it as a language_cplus symbol and cache the demangled form on the symbol obstack. Symbols which don't demangle are marked as language_unknown symbols, which inhibits future attempts to demangle them if we later add more minimal symbols. */ void install_minimal_symbols (objfile) struct objfile *objfile; { register int bindex; register int mcount; register struct msym_bunch *bunch; register struct minimal_symbol *msymbols; int alloc_count; register char leading_char; if (msym_count > 0) { /* Allocate enough space in the obstack, into which we will gather the bunches of new and existing minimal symbols, sort them, and then compact out the duplicate entries. Once we have a final table, we will give back the excess space. */ alloc_count = msym_count + objfile->minimal_symbol_count + 1; obstack_blank (&objfile->symbol_obstack, alloc_count * sizeof (struct minimal_symbol)); msymbols = (struct minimal_symbol *) obstack_base (&objfile->symbol_obstack); /* Copy in the existing minimal symbols, if there are any. */ if (objfile->minimal_symbol_count) memcpy ((char *)msymbols, (char *)objfile->msymbols, objfile->minimal_symbol_count * sizeof (struct minimal_symbol)); /* Walk through the list of minimal symbol bunches, adding each symbol to the new contiguous array of symbols. Note that we start with the current, possibly partially filled bunch (thus we use the current msym_bunch_index for the first bunch we copy over), and thereafter each bunch is full. */ mcount = objfile->minimal_symbol_count; leading_char = bfd_get_symbol_leading_char (objfile->obfd); for (bunch = msym_bunch; bunch != NULL; bunch = bunch -> next) { for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++) { msymbols[mcount] = bunch -> contents[bindex]; SYMBOL_LANGUAGE (&msymbols[mcount]) = language_auto; if (SYMBOL_NAME (&msymbols[mcount])[0] == leading_char) { SYMBOL_NAME(&msymbols[mcount])++; } } msym_bunch_index = BUNCH_SIZE; } /* Sort the minimal symbols by address. */ qsort (msymbols, mcount, sizeof (struct minimal_symbol), compare_minimal_symbols); /* Compact out any duplicates, and free up whatever space we are no longer using. */ mcount = compact_minimal_symbols (msymbols, mcount); obstack_blank (&objfile->symbol_obstack, (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol)); msymbols = (struct minimal_symbol *) obstack_finish (&objfile->symbol_obstack); /* We also terminate the minimal symbol table with a "null symbol", which is *not* included in the size of the table. This makes it easier to find the end of the table when we are handed a pointer to some symbol in the middle of it. Zero out the fields in the "null symbol" allocated at the end of the array. Note that the symbol count does *not* include this null symbol, which is why it is indexed by mcount and not mcount-1. */ SYMBOL_NAME (&msymbols[mcount]) = NULL; SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0; MSYMBOL_INFO (&msymbols[mcount]) = NULL; MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown; SYMBOL_INIT_LANGUAGE_SPECIFIC (&msymbols[mcount], language_unknown); /* Attach the minimal symbol table to the specified objfile. The strings themselves are also located in the symbol_obstack of this objfile. */ objfile -> minimal_symbol_count = mcount; objfile -> msymbols = msymbols; /* Now walk through all the minimal symbols, selecting the newly added ones and attempting to cache their C++ demangled names. */ for ( ; mcount-- > 0 ; msymbols++) { SYMBOL_INIT_DEMANGLED_NAME (msymbols, &objfile->symbol_obstack); } } }