/* MI Command Set. Copyright (C) 2000-2014 Free Software Foundation, Inc. Contributed by Cygnus Solutions (a Red Hat company). This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "defs.h" #include "arch-utils.h" #include "target.h" #include "inferior.h" #include <string.h> #include "exceptions.h" #include "top.h" #include "gdbthread.h" #include "mi-cmds.h" #include "mi-parse.h" #include "mi-getopt.h" #include "mi-console.h" #include "ui-out.h" #include "mi-out.h" #include "interps.h" #include "event-loop.h" #include "event-top.h" #include "gdbcore.h" /* For write_memory(). */ #include "value.h" #include "regcache.h" #include "gdb.h" #include "frame.h" #include "mi-main.h" #include "mi-common.h" #include "language.h" #include "valprint.h" #include "inferior.h" #include "osdata.h" #include "splay-tree.h" #include "tracepoint.h" #include "ctf.h" #include "ada-lang.h" #include "linespec.h" #ifdef HAVE_PYTHON #include "python/python-internal.h" #endif #include <ctype.h> #include <sys/time.h> #if defined HAVE_SYS_RESOURCE_H #include <sys/resource.h> #endif #ifdef HAVE_GETRUSAGE struct rusage rusage; #endif enum { FROM_TTY = 0 }; int mi_debug_p; struct ui_file *raw_stdout; /* This is used to pass the current command timestamp down to continuation routines. */ static struct mi_timestamp *current_command_ts; static int do_timings = 0; char *current_token; /* Few commands would like to know if options like --thread-group were explicitly specified. This variable keeps the current parsed command including all option, and make it possible. */ static struct mi_parse *current_context; int running_result_record_printed = 1; /* Flag indicating that the target has proceeded since the last command was issued. */ int mi_proceeded; extern void _initialize_mi_main (void); static void mi_cmd_execute (struct mi_parse *parse); static void mi_execute_cli_command (const char *cmd, int args_p, const char *args); static void mi_execute_async_cli_command (char *cli_command, char **argv, int argc); static int register_changed_p (int regnum, struct regcache *, struct regcache *); static void output_register (struct frame_info *, int regnum, int format, int skip_unavailable); /* Command implementations. FIXME: Is this libgdb? No. This is the MI layer that calls libgdb. Any operation used in the below should be formalized. */ static void timestamp (struct mi_timestamp *tv); static void print_diff_now (struct mi_timestamp *start); static void print_diff (struct mi_timestamp *start, struct mi_timestamp *end); void mi_cmd_gdb_exit (char *command, char **argv, int argc) { /* We have to print everything right here because we never return. */ if (current_token) fputs_unfiltered (current_token, raw_stdout); fputs_unfiltered ("^exit\n", raw_stdout); mi_out_put (current_uiout, raw_stdout); gdb_flush (raw_stdout); /* FIXME: The function called is not yet a formal libgdb function. */ quit_force (NULL, FROM_TTY); } void mi_cmd_exec_next (char *command, char **argv, int argc) { /* FIXME: Should call a libgdb function, not a cli wrapper. */ if (argc > 0 && strcmp(argv[0], "--reverse") == 0) mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1); else mi_execute_async_cli_command ("next", argv, argc); } void mi_cmd_exec_next_instruction (char *command, char **argv, int argc) { /* FIXME: Should call a libgdb function, not a cli wrapper. */ if (argc > 0 && strcmp(argv[0], "--reverse") == 0) mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1); else mi_execute_async_cli_command ("nexti", argv, argc); } void mi_cmd_exec_step (char *command, char **argv, int argc) { /* FIXME: Should call a libgdb function, not a cli wrapper. */ if (argc > 0 && strcmp(argv[0], "--reverse") == 0) mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1); else mi_execute_async_cli_command ("step", argv, argc); } void mi_cmd_exec_step_instruction (char *command, char **argv, int argc) { /* FIXME: Should call a libgdb function, not a cli wrapper. */ if (argc > 0 && strcmp(argv[0], "--reverse") == 0) mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1); else mi_execute_async_cli_command ("stepi", argv, argc); } void mi_cmd_exec_finish (char *command, char **argv, int argc) { /* FIXME: Should call a libgdb function, not a cli wrapper. */ if (argc > 0 && strcmp(argv[0], "--reverse") == 0) mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1); else mi_execute_async_cli_command ("finish", argv, argc); } void mi_cmd_exec_return (char *command, char **argv, int argc) { /* This command doesn't really execute the target, it just pops the specified number of frames. */ if (argc) /* Call return_command with from_tty argument equal to 0 so as to avoid being queried. */ return_command (*argv, 0); else /* Call return_command with from_tty argument equal to 0 so as to avoid being queried. */ return_command (NULL, 0); /* Because we have called return_command with from_tty = 0, we need to print the frame here. */ print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1); } void mi_cmd_exec_jump (char *args, char **argv, int argc) { /* FIXME: Should call a libgdb function, not a cli wrapper. */ mi_execute_async_cli_command ("jump", argv, argc); } static void proceed_thread (struct thread_info *thread, int pid) { if (!is_stopped (thread->ptid)) return; if (pid != 0 && ptid_get_pid (thread->ptid) != pid) return; switch_to_thread (thread->ptid); clear_proceed_status (); proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0); } static int proceed_thread_callback (struct thread_info *thread, void *arg) { int pid = *(int *)arg; proceed_thread (thread, pid); return 0; } static void exec_continue (char **argv, int argc) { if (non_stop) { /* In non-stop mode, 'resume' always resumes a single thread. Therefore, to resume all threads of the current inferior, or all threads in all inferiors, we need to iterate over threads. See comment on infcmd.c:proceed_thread_callback for rationale. */ if (current_context->all || current_context->thread_group != -1) { int pid = 0; struct cleanup *back_to = make_cleanup_restore_current_thread (); if (!current_context->all) { struct inferior *inf = find_inferior_id (current_context->thread_group); pid = inf->pid; } iterate_over_threads (proceed_thread_callback, &pid); do_cleanups (back_to); } else { continue_1 (0); } } else { struct cleanup *back_to = make_cleanup_restore_integer (&sched_multi); if (current_context->all) { sched_multi = 1; continue_1 (0); } else { /* In all-stop mode, -exec-continue traditionally resumed either all threads, or one thread, depending on the 'scheduler-locking' variable. Let's continue to do the same. */ continue_1 (1); } do_cleanups (back_to); } } static void exec_direction_forward (void *notused) { execution_direction = EXEC_FORWARD; } static void exec_reverse_continue (char **argv, int argc) { enum exec_direction_kind dir = execution_direction; struct cleanup *old_chain; if (dir == EXEC_REVERSE) error (_("Already in reverse mode.")); if (!target_can_execute_reverse) error (_("Target %s does not support this command."), target_shortname); old_chain = make_cleanup (exec_direction_forward, NULL); execution_direction = EXEC_REVERSE; exec_continue (argv, argc); do_cleanups (old_chain); } void mi_cmd_exec_continue (char *command, char **argv, int argc) { if (argc > 0 && strcmp (argv[0], "--reverse") == 0) exec_reverse_continue (argv + 1, argc - 1); else exec_continue (argv, argc); } static int interrupt_thread_callback (struct thread_info *thread, void *arg) { int pid = *(int *)arg; if (!is_running (thread->ptid)) return 0; if (ptid_get_pid (thread->ptid) != pid) return 0; target_stop (thread->ptid); return 0; } /* Interrupt the execution of the target. Note how we must play around with the token variables, in order to display the current token in the result of the interrupt command, and the previous execution token when the target finally stops. See comments in mi_cmd_execute. */ void mi_cmd_exec_interrupt (char *command, char **argv, int argc) { /* In all-stop mode, everything stops, so we don't need to try anything specific. */ if (!non_stop) { interrupt_target_1 (0); return; } if (current_context->all) { /* This will interrupt all threads in all inferiors. */ interrupt_target_1 (1); } else if (current_context->thread_group != -1) { struct inferior *inf = find_inferior_id (current_context->thread_group); iterate_over_threads (interrupt_thread_callback, &inf->pid); } else { /* Interrupt just the current thread -- either explicitly specified via --thread or whatever was current before MI command was sent. */ interrupt_target_1 (0); } } /* Callback for iterate_over_inferiors which starts the execution of the given inferior. ARG is a pointer to an integer whose value, if non-zero, indicates that the program should be stopped when reaching the main subprogram (similar to what the CLI "start" command does). */ static int run_one_inferior (struct inferior *inf, void *arg) { int start_p = *(int *) arg; const char *run_cmd = start_p ? "start" : "run"; if (inf->pid != 0) { if (inf->pid != ptid_get_pid (inferior_ptid)) { struct thread_info *tp; tp = any_thread_of_process (inf->pid); if (!tp) error (_("Inferior has no threads.")); switch_to_thread (tp->ptid); } } else { set_current_inferior (inf); switch_to_thread (null_ptid); set_current_program_space (inf->pspace); } mi_execute_cli_command (run_cmd, target_can_async_p (), target_can_async_p () ? "&" : NULL); return 0; } void mi_cmd_exec_run (char *command, char **argv, int argc) { int i; int start_p = 0; /* Parse the command options. */ enum opt { START_OPT, }; static const struct mi_opt opts[] = { {"-start", START_OPT, 0}, {NULL, 0, 0}, }; int oind = 0; char *oarg; while (1) { int opt = mi_getopt ("-exec-run", argc, argv, opts, &oind, &oarg); if (opt < 0) break; switch ((enum opt) opt) { case START_OPT: start_p = 1; break; } } /* This command does not accept any argument. Make sure the user did not provide any. */ if (oind != argc) error (_("Invalid argument: %s"), argv[oind]); if (current_context->all) { struct cleanup *back_to = save_current_space_and_thread (); iterate_over_inferiors (run_one_inferior, &start_p); do_cleanups (back_to); } else { const char *run_cmd = start_p ? "start" : "run"; mi_execute_cli_command (run_cmd, target_can_async_p (), target_can_async_p () ? "&" : NULL); } } static int find_thread_of_process (struct thread_info *ti, void *p) { int pid = *(int *)p; if (ptid_get_pid (ti->ptid) == pid && !is_exited (ti->ptid)) return 1; return 0; } void mi_cmd_target_detach (char *command, char **argv, int argc) { if (argc != 0 && argc != 1) error (_("Usage: -target-detach [pid | thread-group]")); if (argc == 1) { struct thread_info *tp; char *end = argv[0]; int pid; /* First see if we are dealing with a thread-group id. */ if (*argv[0] == 'i') { struct inferior *inf; int id = strtoul (argv[0] + 1, &end, 0); if (*end != '\0') error (_("Invalid syntax of thread-group id '%s'"), argv[0]); inf = find_inferior_id (id); if (!inf) error (_("Non-existent thread-group id '%d'"), id); pid = inf->pid; } else { /* We must be dealing with a pid. */ pid = strtol (argv[0], &end, 10); if (*end != '\0') error (_("Invalid identifier '%s'"), argv[0]); } /* Pick any thread in the desired process. Current target_detach detaches from the parent of inferior_ptid. */ tp = iterate_over_threads (find_thread_of_process, &pid); if (!tp) error (_("Thread group is empty")); switch_to_thread (tp->ptid); } detach_command (NULL, 0); } void mi_cmd_thread_select (char *command, char **argv, int argc) { enum gdb_rc rc; char *mi_error_message; if (argc != 1) error (_("-thread-select: USAGE: threadnum.")); rc = gdb_thread_select (current_uiout, argv[0], &mi_error_message); if (rc == GDB_RC_FAIL) { make_cleanup (xfree, mi_error_message); error ("%s", mi_error_message); } } void mi_cmd_thread_list_ids (char *command, char **argv, int argc) { enum gdb_rc rc; char *mi_error_message; if (argc != 0) error (_("-thread-list-ids: No arguments required.")); rc = gdb_list_thread_ids (current_uiout, &mi_error_message); if (rc == GDB_RC_FAIL) { make_cleanup (xfree, mi_error_message); error ("%s", mi_error_message); } } void mi_cmd_thread_info (char *command, char **argv, int argc) { if (argc != 0 && argc != 1) error (_("Invalid MI command")); print_thread_info (current_uiout, argv[0], -1); } struct collect_cores_data { int pid; VEC (int) *cores; }; static int collect_cores (struct thread_info *ti, void *xdata) { struct collect_cores_data *data = xdata; if (ptid_get_pid (ti->ptid) == data->pid) { int core = target_core_of_thread (ti->ptid); if (core != -1) VEC_safe_push (int, data->cores, core); } return 0; } static int * unique (int *b, int *e) { int *d = b; while (++b != e) if (*d != *b) *++d = *b; return ++d; } struct print_one_inferior_data { int recurse; VEC (int) *inferiors; }; static int print_one_inferior (struct inferior *inferior, void *xdata) { struct print_one_inferior_data *top_data = xdata; struct ui_out *uiout = current_uiout; if (VEC_empty (int, top_data->inferiors) || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors), VEC_length (int, top_data->inferiors), sizeof (int), compare_positive_ints)) { struct collect_cores_data data; struct cleanup *back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL); ui_out_field_fmt (uiout, "id", "i%d", inferior->num); ui_out_field_string (uiout, "type", "process"); if (inferior->pid != 0) ui_out_field_int (uiout, "pid", inferior->pid); if (inferior->pspace->pspace_exec_filename != NULL) { ui_out_field_string (uiout, "executable", inferior->pspace->pspace_exec_filename); } data.cores = 0; if (inferior->pid != 0) { data.pid = inferior->pid; iterate_over_threads (collect_cores, &data); } if (!VEC_empty (int, data.cores)) { int *b, *e; struct cleanup *back_to_2 = make_cleanup_ui_out_list_begin_end (uiout, "cores"); qsort (VEC_address (int, data.cores), VEC_length (int, data.cores), sizeof (int), compare_positive_ints); b = VEC_address (int, data.cores); e = b + VEC_length (int, data.cores); e = unique (b, e); for (; b != e; ++b) ui_out_field_int (uiout, NULL, *b); do_cleanups (back_to_2); } if (top_data->recurse) print_thread_info (uiout, NULL, inferior->pid); do_cleanups (back_to); } return 0; } /* Output a field named 'cores' with a list as the value. The elements of the list are obtained by splitting 'cores' on comma. */ static void output_cores (struct ui_out *uiout, const char *field_name, const char *xcores) { struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name); char *cores = xstrdup (xcores); char *p = cores; make_cleanup (xfree, cores); for (p = strtok (p, ","); p; p = strtok (NULL, ",")) ui_out_field_string (uiout, NULL, p); do_cleanups (back_to); } static void free_vector_of_ints (void *xvector) { VEC (int) **vector = xvector; VEC_free (int, *vector); } static void do_nothing (splay_tree_key k) { } static void free_vector_of_osdata_items (splay_tree_value xvalue) { VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue; /* We don't free the items itself, it will be done separately. */ VEC_free (osdata_item_s, value); } static int splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb) { int a = xa; int b = xb; return a - b; } static void free_splay_tree (void *xt) { splay_tree t = xt; splay_tree_delete (t); } static void list_available_thread_groups (VEC (int) *ids, int recurse) { struct osdata *data; struct osdata_item *item; int ix_items; struct ui_out *uiout = current_uiout; struct cleanup *cleanup; /* This keeps a map from integer (pid) to VEC (struct osdata_item *)* The vector contains information about all threads for the given pid. This is assigned an initial value to avoid "may be used uninitialized" warning from gcc. */ splay_tree tree = NULL; /* get_osdata will throw if it cannot return data. */ data = get_osdata ("processes"); cleanup = make_cleanup_osdata_free (data); if (recurse) { struct osdata *threads = get_osdata ("threads"); make_cleanup_osdata_free (threads); tree = splay_tree_new (splay_tree_int_comparator, do_nothing, free_vector_of_osdata_items); make_cleanup (free_splay_tree, tree); for (ix_items = 0; VEC_iterate (osdata_item_s, threads->items, ix_items, item); ix_items++) { const char *pid = get_osdata_column (item, "pid"); int pid_i = strtoul (pid, NULL, 0); VEC (osdata_item_s) *vec = 0; splay_tree_node n = splay_tree_lookup (tree, pid_i); if (!n) { VEC_safe_push (osdata_item_s, vec, item); splay_tree_insert (tree, pid_i, (splay_tree_value)vec); } else { vec = (VEC (osdata_item_s) *) n->value; VEC_safe_push (osdata_item_s, vec, item); n->value = (splay_tree_value) vec; } } } make_cleanup_ui_out_list_begin_end (uiout, "groups"); for (ix_items = 0; VEC_iterate (osdata_item_s, data->items, ix_items, item); ix_items++) { struct cleanup *back_to; const char *pid = get_osdata_column (item, "pid"); const char *cmd = get_osdata_column (item, "command"); const char *user = get_osdata_column (item, "user"); const char *cores = get_osdata_column (item, "cores"); int pid_i = strtoul (pid, NULL, 0); /* At present, the target will return all available processes and if information about specific ones was required, we filter undesired processes here. */ if (ids && bsearch (&pid_i, VEC_address (int, ids), VEC_length (int, ids), sizeof (int), compare_positive_ints) == NULL) continue; back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL); ui_out_field_fmt (uiout, "id", "%s", pid); ui_out_field_string (uiout, "type", "process"); if (cmd) ui_out_field_string (uiout, "description", cmd); if (user) ui_out_field_string (uiout, "user", user); if (cores) output_cores (uiout, "cores", cores); if (recurse) { splay_tree_node n = splay_tree_lookup (tree, pid_i); if (n) { VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value; struct osdata_item *child; int ix_child; make_cleanup_ui_out_list_begin_end (uiout, "threads"); for (ix_child = 0; VEC_iterate (osdata_item_s, children, ix_child, child); ++ix_child) { struct cleanup *back_to_2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL); const char *tid = get_osdata_column (child, "tid"); const char *tcore = get_osdata_column (child, "core"); ui_out_field_string (uiout, "id", tid); if (tcore) ui_out_field_string (uiout, "core", tcore); do_cleanups (back_to_2); } } } do_cleanups (back_to); } do_cleanups (cleanup); } void mi_cmd_list_thread_groups (char *command, char **argv, int argc) { struct ui_out *uiout = current_uiout; struct cleanup *back_to; int available = 0; int recurse = 0; VEC (int) *ids = 0; enum opt { AVAILABLE_OPT, RECURSE_OPT }; static const struct mi_opt opts[] = { {"-available", AVAILABLE_OPT, 0}, {"-recurse", RECURSE_OPT, 1}, { 0, 0, 0 } }; int oind = 0; char *oarg; while (1) { int opt = mi_getopt ("-list-thread-groups", argc, argv, opts, &oind, &oarg); if (opt < 0) break; switch ((enum opt) opt) { case AVAILABLE_OPT: available = 1; break; case RECURSE_OPT: if (strcmp (oarg, "0") == 0) ; else if (strcmp (oarg, "1") == 0) recurse = 1; else error (_("only '0' and '1' are valid values " "for the '--recurse' option")); break; } } for (; oind < argc; ++oind) { char *end; int inf; if (*(argv[oind]) != 'i') error (_("invalid syntax of group id '%s'"), argv[oind]); inf = strtoul (argv[oind] + 1, &end, 0); if (*end != '\0') error (_("invalid syntax of group id '%s'"), argv[oind]); VEC_safe_push (int, ids, inf); } if (VEC_length (int, ids) > 1) qsort (VEC_address (int, ids), VEC_length (int, ids), sizeof (int), compare_positive_ints); back_to = make_cleanup (free_vector_of_ints, &ids); if (available) { list_available_thread_groups (ids, recurse); } else if (VEC_length (int, ids) == 1) { /* Local thread groups, single id. */ int id = *VEC_address (int, ids); struct inferior *inf = find_inferior_id (id); if (!inf) error (_("Non-existent thread group id '%d'"), id); print_thread_info (uiout, NULL, inf->pid); } else { struct print_one_inferior_data data; data.recurse = recurse; data.inferiors = ids; /* Local thread groups. Either no explicit ids -- and we print everything, or several explicit ids. In both cases, we print more than one group, and have to use 'groups' as the top-level element. */ make_cleanup_ui_out_list_begin_end (uiout, "groups"); update_thread_list (); iterate_over_inferiors (print_one_inferior, &data); } do_cleanups (back_to); } void mi_cmd_data_list_register_names (char *command, char **argv, int argc) { struct gdbarch *gdbarch; struct ui_out *uiout = current_uiout; int regnum, numregs; int i; struct cleanup *cleanup; /* Note that the test for a valid register must include checking the gdbarch_register_name because gdbarch_num_regs may be allocated for the union of the register sets within a family of related processors. In this case, some entries of gdbarch_register_name will change depending upon the particular processor being debugged. */ gdbarch = get_current_arch (); numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch); cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names"); if (argc == 0) /* No args, just do all the regs. */ { for (regnum = 0; regnum < numregs; regnum++) { if (gdbarch_register_name (gdbarch, regnum) == NULL || *(gdbarch_register_name (gdbarch, regnum)) == '\0') ui_out_field_string (uiout, NULL, ""); else ui_out_field_string (uiout, NULL, gdbarch_register_name (gdbarch, regnum)); } } /* Else, list of register #s, just do listed regs. */ for (i = 0; i < argc; i++) { regnum = atoi (argv[i]); if (regnum < 0 || regnum >= numregs) error (_("bad register number")); if (gdbarch_register_name (gdbarch, regnum) == NULL || *(gdbarch_register_name (gdbarch, regnum)) == '\0') ui_out_field_string (uiout, NULL, ""); else ui_out_field_string (uiout, NULL, gdbarch_register_name (gdbarch, regnum)); } do_cleanups (cleanup); } void mi_cmd_data_list_changed_registers (char *command, char **argv, int argc) { static struct regcache *this_regs = NULL; struct ui_out *uiout = current_uiout; struct regcache *prev_regs; struct gdbarch *gdbarch; int regnum, numregs, changed; int i; struct cleanup *cleanup; /* The last time we visited this function, the current frame's register contents were saved in THIS_REGS. Move THIS_REGS over to PREV_REGS, and refresh THIS_REGS with the now-current register contents. */ prev_regs = this_regs; this_regs = frame_save_as_regcache (get_selected_frame (NULL)); cleanup = make_cleanup_regcache_xfree (prev_regs); /* Note that the test for a valid register must include checking the gdbarch_register_name because gdbarch_num_regs may be allocated for the union of the register sets within a family of related processors. In this case, some entries of gdbarch_register_name will change depending upon the particular processor being debugged. */ gdbarch = get_regcache_arch (this_regs); numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch); make_cleanup_ui_out_list_begin_end (uiout, "changed-registers"); if (argc == 0) { /* No args, just do all the regs. */ for (regnum = 0; regnum < numregs; regnum++) { if (gdbarch_register_name (gdbarch, regnum) == NULL || *(gdbarch_register_name (gdbarch, regnum)) == '\0') continue; changed = register_changed_p (regnum, prev_regs, this_regs); if (changed < 0) error (_("-data-list-changed-registers: " "Unable to read register contents.")); else if (changed) ui_out_field_int (uiout, NULL, regnum); } } /* Else, list of register #s, just do listed regs. */ for (i = 0; i < argc; i++) { regnum = atoi (argv[i]); if (regnum >= 0 && regnum < numregs && gdbarch_register_name (gdbarch, regnum) != NULL && *gdbarch_register_name (gdbarch, regnum) != '\000') { changed = register_changed_p (regnum, prev_regs, this_regs); if (changed < 0) error (_("-data-list-changed-registers: " "Unable to read register contents.")); else if (changed) ui_out_field_int (uiout, NULL, regnum); } else error (_("bad register number")); } do_cleanups (cleanup); } static int register_changed_p (int regnum, struct regcache *prev_regs, struct regcache *this_regs) { struct gdbarch *gdbarch = get_regcache_arch (this_regs); gdb_byte prev_buffer[MAX_REGISTER_SIZE]; gdb_byte this_buffer[MAX_REGISTER_SIZE]; enum register_status prev_status; enum register_status this_status; /* First time through or after gdbarch change consider all registers as changed. */ if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch) return 1; /* Get register contents and compare. */ prev_status = regcache_cooked_read (prev_regs, regnum, prev_buffer); this_status = regcache_cooked_read (this_regs, regnum, this_buffer); if (this_status != prev_status) return 1; else if (this_status == REG_VALID) return memcmp (prev_buffer, this_buffer, register_size (gdbarch, regnum)) != 0; else return 0; } /* Return a list of register number and value pairs. The valid arguments expected are: a letter indicating the format in which to display the registers contents. This can be one of: x (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r (raw). After the format argument there can be a sequence of numbers, indicating which registers to fetch the content of. If the format is the only argument, a list of all the registers with their values is returned. */ void mi_cmd_data_list_register_values (char *command, char **argv, int argc) { struct ui_out *uiout = current_uiout; struct frame_info *frame; struct gdbarch *gdbarch; int regnum, numregs, format; int i; struct cleanup *list_cleanup; int skip_unavailable = 0; int oind = 0; enum opt { SKIP_UNAVAILABLE, }; static const struct mi_opt opts[] = { {"-skip-unavailable", SKIP_UNAVAILABLE, 0}, { 0, 0, 0 } }; /* Note that the test for a valid register must include checking the gdbarch_register_name because gdbarch_num_regs may be allocated for the union of the register sets within a family of related processors. In this case, some entries of gdbarch_register_name will change depending upon the particular processor being debugged. */ while (1) { char *oarg; int opt = mi_getopt ("-data-list-register-values", argc, argv, opts, &oind, &oarg); if (opt < 0) break; switch ((enum opt) opt) { case SKIP_UNAVAILABLE: skip_unavailable = 1; break; } } if (argc - oind < 1) error (_("-data-list-register-values: Usage: " "-data-list-register-values [--skip-unavailable] <format>" " [<regnum1>...<regnumN>]")); format = (int) argv[oind][0]; frame = get_selected_frame (NULL); gdbarch = get_frame_arch (frame); numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch); list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values"); if (argc - oind == 1) { /* No args, beside the format: do all the regs. */ for (regnum = 0; regnum < numregs; regnum++) { if (gdbarch_register_name (gdbarch, regnum) == NULL || *(gdbarch_register_name (gdbarch, regnum)) == '\0') continue; output_register (frame, regnum, format, skip_unavailable); } } /* Else, list of register #s, just do listed regs. */ for (i = 1 + oind; i < argc; i++) { regnum = atoi (argv[i]); if (regnum >= 0 && regnum < numregs && gdbarch_register_name (gdbarch, regnum) != NULL && *gdbarch_register_name (gdbarch, regnum) != '\000') output_register (frame, regnum, format, skip_unavailable); else error (_("bad register number")); } do_cleanups (list_cleanup); } /* Output one register REGNUM's contents in the desired FORMAT. If SKIP_UNAVAILABLE is true, skip the register if it is unavailable. */ static void output_register (struct frame_info *frame, int regnum, int format, int skip_unavailable) { struct gdbarch *gdbarch = get_frame_arch (frame); struct ui_out *uiout = current_uiout; struct value *val = value_of_register (regnum, frame); struct cleanup *tuple_cleanup; struct value_print_options opts; struct ui_file *stb; if (skip_unavailable && !value_entirely_available (val)) return; tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL); ui_out_field_int (uiout, "number", regnum); if (format == 'N') format = 0; if (format == 'r') format = 'z'; stb = mem_fileopen (); make_cleanup_ui_file_delete (stb); get_formatted_print_options (&opts, format); opts.deref_ref = 1; val_print (value_type (val), value_contents_for_printing (val), value_embedded_offset (val), 0, stb, 0, val, &opts, current_language); ui_out_field_stream (uiout, "value", stb); do_cleanups (tuple_cleanup); } /* Write given values into registers. The registers and values are given as pairs. The corresponding MI command is -data-write-register-values <format> [<regnum1> <value1>...<regnumN> <valueN>] */ void mi_cmd_data_write_register_values (char *command, char **argv, int argc) { struct regcache *regcache; struct gdbarch *gdbarch; int numregs, i; /* Note that the test for a valid register must include checking the gdbarch_register_name because gdbarch_num_regs may be allocated for the union of the register sets within a family of related processors. In this case, some entries of gdbarch_register_name will change depending upon the particular processor being debugged. */ regcache = get_current_regcache (); gdbarch = get_regcache_arch (regcache); numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch); if (argc == 0) error (_("-data-write-register-values: Usage: -data-write-register-" "values <format> [<regnum1> <value1>...<regnumN> <valueN>]")); if (!target_has_registers) error (_("-data-write-register-values: No registers.")); if (!(argc - 1)) error (_("-data-write-register-values: No regs and values specified.")); if ((argc - 1) % 2) error (_("-data-write-register-values: " "Regs and vals are not in pairs.")); for (i = 1; i < argc; i = i + 2) { int regnum = atoi (argv[i]); if (regnum >= 0 && regnum < numregs && gdbarch_register_name (gdbarch, regnum) && *gdbarch_register_name (gdbarch, regnum)) { LONGEST value; /* Get the value as a number. */ value = parse_and_eval_address (argv[i + 1]); /* Write it down. */ regcache_cooked_write_signed (regcache, regnum, value); } else error (_("bad register number")); } } /* Evaluate the value of the argument. The argument is an expression. If the expression contains spaces it needs to be included in double quotes. */ void mi_cmd_data_evaluate_expression (char *command, char **argv, int argc) { struct expression *expr; struct cleanup *old_chain; struct value *val; struct ui_file *stb; struct value_print_options opts; struct ui_out *uiout = current_uiout; stb = mem_fileopen (); old_chain = make_cleanup_ui_file_delete (stb); if (argc != 1) error (_("-data-evaluate-expression: " "Usage: -data-evaluate-expression expression")); expr = parse_expression (argv[0]); make_cleanup (free_current_contents, &expr); val = evaluate_expression (expr); /* Print the result of the expression evaluation. */ get_user_print_options (&opts); opts.deref_ref = 0; common_val_print (val, stb, 0, &opts, current_language); ui_out_field_stream (uiout, "value", stb); do_cleanups (old_chain); } /* This is the -data-read-memory command. ADDR: start address of data to be dumped. WORD-FORMAT: a char indicating format for the ``word''. See the ``x'' command. WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes. NR_ROW: Number of rows. NR_COL: The number of colums (words per row). ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use ASCHAR for unprintable characters. Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and displayes them. Returns: {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...} Returns: The number of bytes read is SIZE*ROW*COL. */ void mi_cmd_data_read_memory (char *command, char **argv, int argc) { struct gdbarch *gdbarch = get_current_arch (); struct ui_out *uiout = current_uiout; struct cleanup *cleanups = make_cleanup (null_cleanup, NULL); CORE_ADDR addr; long total_bytes, nr_cols, nr_rows; char word_format; struct type *word_type; long word_size; char word_asize; char aschar; gdb_byte *mbuf; int nr_bytes; long offset = 0; int oind = 0; char *oarg; enum opt { OFFSET_OPT }; static const struct mi_opt opts[] = { {"o", OFFSET_OPT, 1}, { 0, 0, 0 } }; while (1) { int opt = mi_getopt ("-data-read-memory", argc, argv, opts, &oind, &oarg); if (opt < 0) break; switch ((enum opt) opt) { case OFFSET_OPT: offset = atol (oarg); break; } } argv += oind; argc -= oind; if (argc < 5 || argc > 6) error (_("-data-read-memory: Usage: " "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR].")); /* Extract all the arguments. */ /* Start address of the memory dump. */ addr = parse_and_eval_address (argv[0]) + offset; /* The format character to use when displaying a memory word. See the ``x'' command. */ word_format = argv[1][0]; /* The size of the memory word. */ word_size = atol (argv[2]); switch (word_size) { case 1: word_type = builtin_type (gdbarch)->builtin_int8; word_asize = 'b'; break; case 2: word_type = builtin_type (gdbarch)->builtin_int16; word_asize = 'h'; break; case 4: word_type = builtin_type (gdbarch)->builtin_int32; word_asize = 'w'; break; case 8: word_type = builtin_type (gdbarch)->builtin_int64; word_asize = 'g'; break; default: word_type = builtin_type (gdbarch)->builtin_int8; word_asize = 'b'; } /* The number of rows. */ nr_rows = atol (argv[3]); if (nr_rows <= 0) error (_("-data-read-memory: invalid number of rows.")); /* Number of bytes per row. */ nr_cols = atol (argv[4]); if (nr_cols <= 0) error (_("-data-read-memory: invalid number of columns.")); /* The un-printable character when printing ascii. */ if (argc == 6) aschar = *argv[5]; else aschar = 0; /* Create a buffer and read it in. */ total_bytes = word_size * nr_rows * nr_cols; mbuf = xcalloc (total_bytes, 1); make_cleanup (xfree, mbuf); /* Dispatch memory reads to the topmost target, not the flattened current_target. */ nr_bytes = target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL, mbuf, addr, total_bytes); if (nr_bytes <= 0) error (_("Unable to read memory.")); /* Output the header information. */ ui_out_field_core_addr (uiout, "addr", gdbarch, addr); ui_out_field_int (uiout, "nr-bytes", nr_bytes); ui_out_field_int (uiout, "total-bytes", total_bytes); ui_out_field_core_addr (uiout, "next-row", gdbarch, addr + word_size * nr_cols); ui_out_field_core_addr (uiout, "prev-row", gdbarch, addr - word_size * nr_cols); ui_out_field_core_addr (uiout, "next-page", gdbarch, addr + total_bytes); ui_out_field_core_addr (uiout, "prev-page", gdbarch, addr - total_bytes); /* Build the result as a two dimentional table. */ { struct ui_file *stream; struct cleanup *cleanup_stream; int row; int row_byte; stream = mem_fileopen (); cleanup_stream = make_cleanup_ui_file_delete (stream); make_cleanup_ui_out_list_begin_end (uiout, "memory"); for (row = 0, row_byte = 0; row < nr_rows; row++, row_byte += nr_cols * word_size) { int col; int col_byte; struct cleanup *cleanup_tuple; struct cleanup *cleanup_list_data; struct value_print_options opts; cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL); ui_out_field_core_addr (uiout, "addr", gdbarch, addr + row_byte); /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr + row_byte); */ cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data"); get_formatted_print_options (&opts, word_format); for (col = 0, col_byte = row_byte; col < nr_cols; col++, col_byte += word_size) { if (col_byte + word_size > nr_bytes) { ui_out_field_string (uiout, NULL, "N/A"); } else { ui_file_rewind (stream); print_scalar_formatted (mbuf + col_byte, word_type, &opts, word_asize, stream); ui_out_field_stream (uiout, NULL, stream); } } do_cleanups (cleanup_list_data); if (aschar) { int byte; ui_file_rewind (stream); for (byte = row_byte; byte < row_byte + word_size * nr_cols; byte++) { if (byte >= nr_bytes) fputc_unfiltered ('X', stream); else if (mbuf[byte] < 32 || mbuf[byte] > 126) fputc_unfiltered (aschar, stream); else fputc_unfiltered (mbuf[byte], stream); } ui_out_field_stream (uiout, "ascii", stream); } do_cleanups (cleanup_tuple); } do_cleanups (cleanup_stream); } do_cleanups (cleanups); } void mi_cmd_data_read_memory_bytes (char *command, char **argv, int argc) { struct gdbarch *gdbarch = get_current_arch (); struct ui_out *uiout = current_uiout; struct cleanup *cleanups; CORE_ADDR addr; LONGEST length; memory_read_result_s *read_result; int ix; VEC(memory_read_result_s) *result; long offset = 0; int oind = 0; char *oarg; enum opt { OFFSET_OPT }; static const struct mi_opt opts[] = { {"o", OFFSET_OPT, 1}, { 0, 0, 0 } }; while (1) { int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts, &oind, &oarg); if (opt < 0) break; switch ((enum opt) opt) { case OFFSET_OPT: offset = atol (oarg); break; } } argv += oind; argc -= oind; if (argc != 2) error (_("Usage: [ -o OFFSET ] ADDR LENGTH.")); addr = parse_and_eval_address (argv[0]) + offset; length = atol (argv[1]); result = read_memory_robust (current_target.beneath, addr, length); cleanups = make_cleanup (free_memory_read_result_vector, result); if (VEC_length (memory_read_result_s, result) == 0) error (_("Unable to read memory.")); make_cleanup_ui_out_list_begin_end (uiout, "memory"); for (ix = 0; VEC_iterate (memory_read_result_s, result, ix, read_result); ++ix) { struct cleanup *t = make_cleanup_ui_out_tuple_begin_end (uiout, NULL); char *data, *p; int i; ui_out_field_core_addr (uiout, "begin", gdbarch, read_result->begin); ui_out_field_core_addr (uiout, "offset", gdbarch, read_result->begin - addr); ui_out_field_core_addr (uiout, "end", gdbarch, read_result->end); data = xmalloc ((read_result->end - read_result->begin) * 2 + 1); for (i = 0, p = data; i < (read_result->end - read_result->begin); ++i, p += 2) { sprintf (p, "%02x", read_result->data[i]); } ui_out_field_string (uiout, "contents", data); xfree (data); do_cleanups (t); } do_cleanups (cleanups); } /* Implementation of the -data-write_memory command. COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The offset from the beginning of the memory grid row where the cell to be written is. ADDR: start address of the row in the memory grid where the memory cell is, if OFFSET_COLUMN is specified. Otherwise, the address of the location to write to. FORMAT: a char indicating format for the ``word''. See the ``x'' command. WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes VALUE: value to be written into the memory address. Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE). Prints nothing. */ void mi_cmd_data_write_memory (char *command, char **argv, int argc) { struct gdbarch *gdbarch = get_current_arch (); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); CORE_ADDR addr; long word_size; /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big enough when using a compiler other than GCC. */ LONGEST value; void *buffer; struct cleanup *old_chain; long offset = 0; int oind = 0; char *oarg; enum opt { OFFSET_OPT }; static const struct mi_opt opts[] = { {"o", OFFSET_OPT, 1}, { 0, 0, 0 } }; while (1) { int opt = mi_getopt ("-data-write-memory", argc, argv, opts, &oind, &oarg); if (opt < 0) break; switch ((enum opt) opt) { case OFFSET_OPT: offset = atol (oarg); break; } } argv += oind; argc -= oind; if (argc != 4) error (_("-data-write-memory: Usage: " "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE.")); /* Extract all the arguments. */ /* Start address of the memory dump. */ addr = parse_and_eval_address (argv[0]); /* The size of the memory word. */ word_size = atol (argv[2]); /* Calculate the real address of the write destination. */ addr += (offset * word_size); /* Get the value as a number. */ value = parse_and_eval_address (argv[3]); /* Get the value into an array. */ buffer = xmalloc (word_size); old_chain = make_cleanup (xfree, buffer); store_signed_integer (buffer, word_size, byte_order, value); /* Write it down to memory. */ write_memory_with_notification (addr, buffer, word_size); /* Free the buffer. */ do_cleanups (old_chain); } /* Implementation of the -data-write-memory-bytes command. ADDR: start address DATA: string of bytes to write at that address COUNT: number of bytes to be filled (decimal integer). */ void mi_cmd_data_write_memory_bytes (char *command, char **argv, int argc) { CORE_ADDR addr; char *cdata; gdb_byte *data; gdb_byte *databuf; size_t len, i, steps, remainder; long int count, j; struct cleanup *back_to; if (argc != 2 && argc != 3) error (_("Usage: ADDR DATA [COUNT].")); addr = parse_and_eval_address (argv[0]); cdata = argv[1]; if (strlen (cdata) % 2) error (_("Hex-encoded '%s' must have an even number of characters."), cdata); len = strlen (cdata)/2; if (argc == 3) count = strtoul (argv[2], NULL, 10); else count = len; databuf = xmalloc (len * sizeof (gdb_byte)); back_to = make_cleanup (xfree, databuf); for (i = 0; i < len; ++i) { int x; if (sscanf (cdata + i * 2, "%02x", &x) != 1) error (_("Invalid argument")); databuf[i] = (gdb_byte) x; } if (len < count) { /* Pattern is made of less bytes than count: repeat pattern to fill memory. */ data = xmalloc (count); make_cleanup (xfree, data); steps = count / len; remainder = count % len; for (j = 0; j < steps; j++) memcpy (data + j * len, databuf, len); if (remainder > 0) memcpy (data + steps * len, databuf, remainder); } else { /* Pattern is longer than or equal to count: just copy len bytes. */ data = databuf; } write_memory_with_notification (addr, data, count); do_cleanups (back_to); } void mi_cmd_enable_timings (char *command, char **argv, int argc) { if (argc == 0) do_timings = 1; else if (argc == 1) { if (strcmp (argv[0], "yes") == 0) do_timings = 1; else if (strcmp (argv[0], "no") == 0) do_timings = 0; else goto usage_error; } else goto usage_error; return; usage_error: error (_("-enable-timings: Usage: %s {yes|no}"), command); } void mi_cmd_list_features (char *command, char **argv, int argc) { if (argc == 0) { struct cleanup *cleanup = NULL; struct ui_out *uiout = current_uiout; cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features"); ui_out_field_string (uiout, NULL, "frozen-varobjs"); ui_out_field_string (uiout, NULL, "pending-breakpoints"); ui_out_field_string (uiout, NULL, "thread-info"); ui_out_field_string (uiout, NULL, "data-read-memory-bytes"); ui_out_field_string (uiout, NULL, "breakpoint-notifications"); ui_out_field_string (uiout, NULL, "ada-task-info"); ui_out_field_string (uiout, NULL, "language-option"); ui_out_field_string (uiout, NULL, "info-gdb-mi-command"); ui_out_field_string (uiout, NULL, "undefined-command-error-code"); ui_out_field_string (uiout, NULL, "exec-run-start-option"); #if HAVE_PYTHON if (gdb_python_initialized) ui_out_field_string (uiout, NULL, "python"); #endif do_cleanups (cleanup); return; } error (_("-list-features should be passed no arguments")); } void mi_cmd_list_target_features (char *command, char **argv, int argc) { if (argc == 0) { struct cleanup *cleanup = NULL; struct ui_out *uiout = current_uiout; cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features"); if (target_can_async_p ()) ui_out_field_string (uiout, NULL, "async"); if (target_can_execute_reverse) ui_out_field_string (uiout, NULL, "reverse"); do_cleanups (cleanup); return; } error (_("-list-target-features should be passed no arguments")); } void mi_cmd_add_inferior (char *command, char **argv, int argc) { struct inferior *inf; if (argc != 0) error (_("-add-inferior should be passed no arguments")); inf = add_inferior_with_spaces (); ui_out_field_fmt (current_uiout, "inferior", "i%d", inf->num); } /* Callback used to find the first inferior other than the current one. */ static int get_other_inferior (struct inferior *inf, void *arg) { if (inf == current_inferior ()) return 0; return 1; } void mi_cmd_remove_inferior (char *command, char **argv, int argc) { int id; struct inferior *inf; if (argc != 1) error (_("-remove-inferior should be passed a single argument")); if (sscanf (argv[0], "i%d", &id) != 1) error (_("the thread group id is syntactically invalid")); inf = find_inferior_id (id); if (!inf) error (_("the specified thread group does not exist")); if (inf->pid != 0) error (_("cannot remove an active inferior")); if (inf == current_inferior ()) { struct thread_info *tp = 0; struct inferior *new_inferior = iterate_over_inferiors (get_other_inferior, NULL); if (new_inferior == NULL) error (_("Cannot remove last inferior")); set_current_inferior (new_inferior); if (new_inferior->pid != 0) tp = any_thread_of_process (new_inferior->pid); switch_to_thread (tp ? tp->ptid : null_ptid); set_current_program_space (new_inferior->pspace); } delete_inferior_1 (inf, 1 /* silent */); } /* Execute a command within a safe environment. Return <0 for error; >=0 for ok. args->action will tell mi_execute_command what action to perfrom after the given command has executed (display/suppress prompt, display error). */ static void captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context) { struct cleanup *cleanup; if (do_timings) current_command_ts = context->cmd_start; current_token = xstrdup (context->token); cleanup = make_cleanup (free_current_contents, ¤t_token); running_result_record_printed = 0; mi_proceeded = 0; switch (context->op) { case MI_COMMAND: /* A MI command was read from the input stream. */ if (mi_debug_p) /* FIXME: gdb_???? */ fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n", context->token, context->command, context->args); mi_cmd_execute (context); /* Print the result if there were no errors. Remember that on the way out of executing a command, you have to directly use the mi_interp's uiout, since the command could have reset the interpreter, in which case the current uiout will most likely crash in the mi_out_* routines. */ if (!running_result_record_printed) { fputs_unfiltered (context->token, raw_stdout); /* There's no particularly good reason why target-connect results in not ^done. Should kill ^connected for MI3. */ fputs_unfiltered (strcmp (context->command, "target-select") == 0 ? "^connected" : "^done", raw_stdout); mi_out_put (uiout, raw_stdout); mi_out_rewind (uiout); mi_print_timing_maybe (); fputs_unfiltered ("\n", raw_stdout); } else /* The command does not want anything to be printed. In that case, the command probably should not have written anything to uiout, but in case it has written something, discard it. */ mi_out_rewind (uiout); break; case CLI_COMMAND: { char *argv[2]; /* A CLI command was read from the input stream. */ /* This "feature" will be removed as soon as we have a complete set of mi commands. */ /* Echo the command on the console. */ fprintf_unfiltered (gdb_stdlog, "%s\n", context->command); /* Call the "console" interpreter. */ argv[0] = "console"; argv[1] = context->command; mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2); /* If we changed interpreters, DON'T print out anything. */ if (current_interp_named_p (INTERP_MI) || current_interp_named_p (INTERP_MI1) || current_interp_named_p (INTERP_MI2) || current_interp_named_p (INTERP_MI3)) { if (!running_result_record_printed) { fputs_unfiltered (context->token, raw_stdout); fputs_unfiltered ("^done", raw_stdout); mi_out_put (uiout, raw_stdout); mi_out_rewind (uiout); mi_print_timing_maybe (); fputs_unfiltered ("\n", raw_stdout); } else mi_out_rewind (uiout); } break; } } do_cleanups (cleanup); } /* Print a gdb exception to the MI output stream. */ static void mi_print_exception (const char *token, struct gdb_exception exception) { fputs_unfiltered (token, raw_stdout); fputs_unfiltered ("^error,msg=\"", raw_stdout); if (exception.message == NULL) fputs_unfiltered ("unknown error", raw_stdout); else fputstr_unfiltered (exception.message, '"', raw_stdout); fputs_unfiltered ("\"", raw_stdout); switch (exception.error) { case UNDEFINED_COMMAND_ERROR: fputs_unfiltered (",code=\"undefined-command\"", raw_stdout); break; } fputs_unfiltered ("\n", raw_stdout); } void mi_execute_command (const char *cmd, int from_tty) { char *token; struct mi_parse *command = NULL; volatile struct gdb_exception exception; /* This is to handle EOF (^D). We just quit gdb. */ /* FIXME: we should call some API function here. */ if (cmd == 0) quit_force (NULL, from_tty); target_log_command (cmd); TRY_CATCH (exception, RETURN_MASK_ALL) { command = mi_parse (cmd, &token); } if (exception.reason < 0) { mi_print_exception (token, exception); xfree (token); } else { volatile struct gdb_exception result; ptid_t previous_ptid = inferior_ptid; command->token = token; if (do_timings) { command->cmd_start = (struct mi_timestamp *) xmalloc (sizeof (struct mi_timestamp)); timestamp (command->cmd_start); } TRY_CATCH (result, RETURN_MASK_ALL) { captured_mi_execute_command (current_uiout, command); } if (result.reason < 0) { /* The command execution failed and error() was called somewhere. */ mi_print_exception (command->token, result); mi_out_rewind (current_uiout); } bpstat_do_actions (); if (/* The notifications are only output when the top-level interpreter (specified on the command line) is MI. */ ui_out_is_mi_like_p (interp_ui_out (top_level_interpreter ())) /* Don't try report anything if there are no threads -- the program is dead. */ && thread_count () != 0 /* -thread-select explicitly changes thread. If frontend uses that internally, we don't want to emit =thread-selected, since =thread-selected is supposed to indicate user's intentions. */ && strcmp (command->command, "thread-select") != 0) { struct mi_interp *mi = top_level_interpreter_data (); int report_change = 0; if (command->thread == -1) { report_change = (!ptid_equal (previous_ptid, null_ptid) && !ptid_equal (inferior_ptid, previous_ptid) && !ptid_equal (inferior_ptid, null_ptid)); } else if (!ptid_equal (inferior_ptid, null_ptid)) { struct thread_info *ti = inferior_thread (); report_change = (ti->num != command->thread); } if (report_change) { struct thread_info *ti = inferior_thread (); target_terminal_ours (); fprintf_unfiltered (mi->event_channel, "thread-selected,id=\"%d\"", ti->num); gdb_flush (mi->event_channel); } } mi_parse_free (command); } } static void mi_cmd_execute (struct mi_parse *parse) { struct cleanup *cleanup; enum language saved_language; cleanup = prepare_execute_command (); if (parse->all && parse->thread_group != -1) error (_("Cannot specify --thread-group together with --all")); if (parse->all && parse->thread != -1) error (_("Cannot specify --thread together with --all")); if (parse->thread_group != -1 && parse->thread != -1) error (_("Cannot specify --thread together with --thread-group")); if (parse->frame != -1 && parse->thread == -1) error (_("Cannot specify --frame without --thread")); if (parse->thread_group != -1) { struct inferior *inf = find_inferior_id (parse->thread_group); struct thread_info *tp = 0; if (!inf) error (_("Invalid thread group for the --thread-group option")); set_current_inferior (inf); /* This behaviour means that if --thread-group option identifies an inferior with multiple threads, then a random one will be picked. This is not a problem -- frontend should always provide --thread if it wishes to operate on a specific thread. */ if (inf->pid != 0) tp = any_live_thread_of_process (inf->pid); switch_to_thread (tp ? tp->ptid : null_ptid); set_current_program_space (inf->pspace); } if (parse->thread != -1) { struct thread_info *tp = find_thread_id (parse->thread); if (!tp) error (_("Invalid thread id: %d"), parse->thread); if (is_exited (tp->ptid)) error (_("Thread id: %d has terminated"), parse->thread); switch_to_thread (tp->ptid); } if (parse->frame != -1) { struct frame_info *fid; int frame = parse->frame; fid = find_relative_frame (get_current_frame (), &frame); if (frame == 0) /* find_relative_frame was successful */ select_frame (fid); else error (_("Invalid frame id: %d"), frame); } if (parse->language != language_unknown) { make_cleanup_restore_current_language (); set_language (parse->language); } current_context = parse; if (parse->cmd->suppress_notification != NULL) { make_cleanup_restore_integer (parse->cmd->suppress_notification); *parse->cmd->suppress_notification = 1; } if (parse->cmd->argv_func != NULL) { parse->cmd->argv_func (parse->command, parse->argv, parse->argc); } else if (parse->cmd->cli.cmd != 0) { /* FIXME: DELETE THIS. */ /* The operation is still implemented by a cli command. */ /* Must be a synchronous one. */ mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p, parse->args); } else { /* FIXME: DELETE THIS. */ struct ui_file *stb; stb = mem_fileopen (); fputs_unfiltered ("Undefined mi command: ", stb); fputstr_unfiltered (parse->command, '"', stb); fputs_unfiltered (" (missing implementation)", stb); make_cleanup_ui_file_delete (stb); error_stream (stb); } do_cleanups (cleanup); } /* FIXME: This is just a hack so we can get some extra commands going. We don't want to channel things through the CLI, but call libgdb directly. Use only for synchronous commands. */ void mi_execute_cli_command (const char *cmd, int args_p, const char *args) { if (cmd != 0) { struct cleanup *old_cleanups; char *run; if (args_p) run = xstrprintf ("%s %s", cmd, args); else run = xstrdup (cmd); if (mi_debug_p) /* FIXME: gdb_???? */ fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n", cmd, run); old_cleanups = make_cleanup (xfree, run); execute_command (run, 0 /* from_tty */ ); do_cleanups (old_cleanups); return; } } void mi_execute_async_cli_command (char *cli_command, char **argv, int argc) { struct cleanup *old_cleanups; char *run; if (target_can_async_p ()) run = xstrprintf ("%s %s&", cli_command, argc ? *argv : ""); else run = xstrprintf ("%s %s", cli_command, argc ? *argv : ""); old_cleanups = make_cleanup (xfree, run); execute_command (run, 0 /* from_tty */ ); /* Do this before doing any printing. It would appear that some print code leaves garbage around in the buffer. */ do_cleanups (old_cleanups); } void mi_load_progress (const char *section_name, unsigned long sent_so_far, unsigned long total_section, unsigned long total_sent, unsigned long grand_total) { struct timeval time_now, delta, update_threshold; static struct timeval last_update; static char *previous_sect_name = NULL; int new_section; struct ui_out *saved_uiout; struct ui_out *uiout; /* This function is called through deprecated_show_load_progress which means uiout may not be correct. Fix it for the duration of this function. */ saved_uiout = current_uiout; if (current_interp_named_p (INTERP_MI) || current_interp_named_p (INTERP_MI2)) current_uiout = mi_out_new (2); else if (current_interp_named_p (INTERP_MI1)) current_uiout = mi_out_new (1); else if (current_interp_named_p (INTERP_MI3)) current_uiout = mi_out_new (3); else return; uiout = current_uiout; update_threshold.tv_sec = 0; update_threshold.tv_usec = 500000; gettimeofday (&time_now, NULL); delta.tv_usec = time_now.tv_usec - last_update.tv_usec; delta.tv_sec = time_now.tv_sec - last_update.tv_sec; if (delta.tv_usec < 0) { delta.tv_sec -= 1; delta.tv_usec += 1000000L; } new_section = (previous_sect_name ? strcmp (previous_sect_name, section_name) : 1); if (new_section) { struct cleanup *cleanup_tuple; xfree (previous_sect_name); previous_sect_name = xstrdup (section_name); if (current_token) fputs_unfiltered (current_token, raw_stdout); fputs_unfiltered ("+download", raw_stdout); cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL); ui_out_field_string (uiout, "section", section_name); ui_out_field_int (uiout, "section-size", total_section); ui_out_field_int (uiout, "total-size", grand_total); do_cleanups (cleanup_tuple); mi_out_put (uiout, raw_stdout); fputs_unfiltered ("\n", raw_stdout); gdb_flush (raw_stdout); } if (delta.tv_sec >= update_threshold.tv_sec && delta.tv_usec >= update_threshold.tv_usec) { struct cleanup *cleanup_tuple; last_update.tv_sec = time_now.tv_sec; last_update.tv_usec = time_now.tv_usec; if (current_token) fputs_unfiltered (current_token, raw_stdout); fputs_unfiltered ("+download", raw_stdout); cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL); ui_out_field_string (uiout, "section", section_name); ui_out_field_int (uiout, "section-sent", sent_so_far); ui_out_field_int (uiout, "section-size", total_section); ui_out_field_int (uiout, "total-sent", total_sent); ui_out_field_int (uiout, "total-size", grand_total); do_cleanups (cleanup_tuple); mi_out_put (uiout, raw_stdout); fputs_unfiltered ("\n", raw_stdout); gdb_flush (raw_stdout); } xfree (uiout); current_uiout = saved_uiout; } static void timestamp (struct mi_timestamp *tv) { gettimeofday (&tv->wallclock, NULL); #ifdef HAVE_GETRUSAGE getrusage (RUSAGE_SELF, &rusage); tv->utime.tv_sec = rusage.ru_utime.tv_sec; tv->utime.tv_usec = rusage.ru_utime.tv_usec; tv->stime.tv_sec = rusage.ru_stime.tv_sec; tv->stime.tv_usec = rusage.ru_stime.tv_usec; #else { long usec = get_run_time (); tv->utime.tv_sec = usec/1000000L; tv->utime.tv_usec = usec - 1000000L*tv->utime.tv_sec; tv->stime.tv_sec = 0; tv->stime.tv_usec = 0; } #endif } static void print_diff_now (struct mi_timestamp *start) { struct mi_timestamp now; timestamp (&now); print_diff (start, &now); } void mi_print_timing_maybe (void) { /* If the command is -enable-timing then do_timings may be true whilst current_command_ts is not initialized. */ if (do_timings && current_command_ts) print_diff_now (current_command_ts); } static long timeval_diff (struct timeval start, struct timeval end) { return ((end.tv_sec - start.tv_sec) * 1000000L) + (end.tv_usec - start.tv_usec); } static void print_diff (struct mi_timestamp *start, struct mi_timestamp *end) { fprintf_unfiltered (raw_stdout, ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}", timeval_diff (start->wallclock, end->wallclock) / 1000000.0, timeval_diff (start->utime, end->utime) / 1000000.0, timeval_diff (start->stime, end->stime) / 1000000.0); } void mi_cmd_trace_define_variable (char *command, char **argv, int argc) { struct expression *expr; LONGEST initval = 0; struct trace_state_variable *tsv; char *name = 0; if (argc != 1 && argc != 2) error (_("Usage: -trace-define-variable VARIABLE [VALUE]")); name = argv[0]; if (*name++ != '$') error (_("Name of trace variable should start with '$'")); validate_trace_state_variable_name (name); tsv = find_trace_state_variable (name); if (!tsv) tsv = create_trace_state_variable (name); if (argc == 2) initval = value_as_long (parse_and_eval (argv[1])); tsv->initial_value = initval; } void mi_cmd_trace_list_variables (char *command, char **argv, int argc) { if (argc != 0) error (_("-trace-list-variables: no arguments allowed")); tvariables_info_1 (); } void mi_cmd_trace_find (char *command, char **argv, int argc) { char *mode; if (argc == 0) error (_("trace selection mode is required")); mode = argv[0]; if (strcmp (mode, "none") == 0) { tfind_1 (tfind_number, -1, 0, 0, 0); return; } if (current_trace_status ()->running) error (_("May not look at trace frames while trace is running.")); if (strcmp (mode, "frame-number") == 0) { if (argc != 2) error (_("frame number is required")); tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0); } else if (strcmp (mode, "tracepoint-number") == 0) { if (argc != 2) error (_("tracepoint number is required")); tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0); } else if (strcmp (mode, "pc") == 0) { if (argc != 2) error (_("PC is required")); tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0); } else if (strcmp (mode, "pc-inside-range") == 0) { if (argc != 3) error (_("Start and end PC are required")); tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]), parse_and_eval_address (argv[2]), 0); } else if (strcmp (mode, "pc-outside-range") == 0) { if (argc != 3) error (_("Start and end PC are required")); tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]), parse_and_eval_address (argv[2]), 0); } else if (strcmp (mode, "line") == 0) { struct symtabs_and_lines sals; struct symtab_and_line sal; static CORE_ADDR start_pc, end_pc; struct cleanup *back_to; if (argc != 2) error (_("Line is required")); sals = decode_line_with_current_source (argv[1], DECODE_LINE_FUNFIRSTLINE); back_to = make_cleanup (xfree, sals.sals); sal = sals.sals[0]; if (sal.symtab == 0) error (_("Could not find the specified line")); if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc)) tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0); else error (_("Could not find the specified line")); do_cleanups (back_to); } else error (_("Invalid mode '%s'"), mode); if (has_stack_frames () || get_traceframe_number () >= 0) print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1); } void mi_cmd_trace_save (char *command, char **argv, int argc) { int target_saves = 0; int generate_ctf = 0; char *filename; int oind = 0; char *oarg; enum opt { TARGET_SAVE_OPT, CTF_OPT }; static const struct mi_opt opts[] = { {"r", TARGET_SAVE_OPT, 0}, {"ctf", CTF_OPT, 0}, { 0, 0, 0 } }; while (1) { int opt = mi_getopt ("-trace-save", argc, argv, opts, &oind, &oarg); if (opt < 0) break; switch ((enum opt) opt) { case TARGET_SAVE_OPT: target_saves = 1; break; case CTF_OPT: generate_ctf = 1; break; } } filename = argv[oind]; if (generate_ctf) trace_save_ctf (filename, target_saves); else trace_save_tfile (filename, target_saves); } void mi_cmd_trace_start (char *command, char **argv, int argc) { start_tracing (NULL); } void mi_cmd_trace_status (char *command, char **argv, int argc) { trace_status_mi (0); } void mi_cmd_trace_stop (char *command, char **argv, int argc) { stop_tracing (NULL); trace_status_mi (1); } /* Implement the "-ada-task-info" command. */ void mi_cmd_ada_task_info (char *command, char **argv, int argc) { if (argc != 0 && argc != 1) error (_("Invalid MI command")); print_ada_task_info (current_uiout, argv[0], current_inferior ()); } /* Print EXPRESSION according to VALUES. */ static void print_variable_or_computed (char *expression, enum print_values values) { struct expression *expr; struct cleanup *old_chain; struct value *val; struct ui_file *stb; struct value_print_options opts; struct type *type; struct ui_out *uiout = current_uiout; stb = mem_fileopen (); old_chain = make_cleanup_ui_file_delete (stb); expr = parse_expression (expression); make_cleanup (free_current_contents, &expr); if (values == PRINT_SIMPLE_VALUES) val = evaluate_type (expr); else val = evaluate_expression (expr); if (values != PRINT_NO_VALUES) make_cleanup_ui_out_tuple_begin_end (uiout, NULL); ui_out_field_string (uiout, "name", expression); switch (values) { case PRINT_SIMPLE_VALUES: type = check_typedef (value_type (val)); type_print (value_type (val), "", stb, -1); ui_out_field_stream (uiout, "type", stb); if (TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_CODE (type) != TYPE_CODE_STRUCT && TYPE_CODE (type) != TYPE_CODE_UNION) { struct value_print_options opts; get_no_prettyformat_print_options (&opts); opts.deref_ref = 1; common_val_print (val, stb, 0, &opts, current_language); ui_out_field_stream (uiout, "value", stb); } break; case PRINT_ALL_VALUES: { struct value_print_options opts; get_no_prettyformat_print_options (&opts); opts.deref_ref = 1; common_val_print (val, stb, 0, &opts, current_language); ui_out_field_stream (uiout, "value", stb); } break; } do_cleanups (old_chain); } /* Implement the "-trace-frame-collected" command. */ void mi_cmd_trace_frame_collected (char *command, char **argv, int argc) { struct cleanup *old_chain; struct bp_location *tloc; int stepping_frame; struct collection_list *clist; struct collection_list tracepoint_list, stepping_list; struct traceframe_info *tinfo; int oind = 0; int var_print_values = PRINT_ALL_VALUES; int comp_print_values = PRINT_ALL_VALUES; int registers_format = 'x'; int memory_contents = 0; struct ui_out *uiout = current_uiout; enum opt { VAR_PRINT_VALUES, COMP_PRINT_VALUES, REGISTERS_FORMAT, MEMORY_CONTENTS, }; static const struct mi_opt opts[] = { {"-var-print-values", VAR_PRINT_VALUES, 1}, {"-comp-print-values", COMP_PRINT_VALUES, 1}, {"-registers-format", REGISTERS_FORMAT, 1}, {"-memory-contents", MEMORY_CONTENTS, 0}, { 0, 0, 0 } }; while (1) { char *oarg; int opt = mi_getopt ("-trace-frame-collected", argc, argv, opts, &oind, &oarg); if (opt < 0) break; switch ((enum opt) opt) { case VAR_PRINT_VALUES: var_print_values = mi_parse_print_values (oarg); break; case COMP_PRINT_VALUES: comp_print_values = mi_parse_print_values (oarg); break; case REGISTERS_FORMAT: registers_format = oarg[0]; case MEMORY_CONTENTS: memory_contents = 1; break; } } if (oind != argc) error (_("Usage: -trace-frame-collected " "[--var-print-values PRINT_VALUES] " "[--comp-print-values PRINT_VALUES] " "[--registers-format FORMAT]" "[--memory-contents]")); /* This throws an error is not inspecting a trace frame. */ tloc = get_traceframe_location (&stepping_frame); /* This command only makes sense for the current frame, not the selected frame. */ old_chain = make_cleanup_restore_current_thread (); select_frame (get_current_frame ()); encode_actions_and_make_cleanup (tloc, &tracepoint_list, &stepping_list); if (stepping_frame) clist = &stepping_list; else clist = &tracepoint_list; tinfo = get_traceframe_info (); /* Explicitly wholly collected variables. */ { struct cleanup *list_cleanup; char *p; int i; list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "explicit-variables"); for (i = 0; VEC_iterate (char_ptr, clist->wholly_collected, i, p); i++) print_variable_or_computed (p, var_print_values); do_cleanups (list_cleanup); } /* Computed expressions. */ { struct cleanup *list_cleanup; char *p; int i; list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "computed-expressions"); for (i = 0; VEC_iterate (char_ptr, clist->computed, i, p); i++) print_variable_or_computed (p, comp_print_values); do_cleanups (list_cleanup); } /* Registers. Given pseudo-registers, and that some architectures (like MIPS) actually hide the raw registers, we don't go through the trace frame info, but instead consult the register cache for register availability. */ { struct cleanup *list_cleanup; struct frame_info *frame; struct gdbarch *gdbarch; int regnum; int numregs; list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "registers"); frame = get_selected_frame (NULL); gdbarch = get_frame_arch (frame); numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch); for (regnum = 0; regnum < numregs; regnum++) { if (gdbarch_register_name (gdbarch, regnum) == NULL || *(gdbarch_register_name (gdbarch, regnum)) == '\0') continue; output_register (frame, regnum, registers_format, 1); } do_cleanups (list_cleanup); } /* Trace state variables. */ { struct cleanup *list_cleanup; int tvar; char *tsvname; int i; list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "tvars"); tsvname = NULL; make_cleanup (free_current_contents, &tsvname); for (i = 0; VEC_iterate (int, tinfo->tvars, i, tvar); i++) { struct cleanup *cleanup_child; struct trace_state_variable *tsv; tsv = find_trace_state_variable_by_number (tvar); cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL); if (tsv != NULL) { tsvname = xrealloc (tsvname, strlen (tsv->name) + 2); tsvname[0] = '$'; strcpy (tsvname + 1, tsv->name); ui_out_field_string (uiout, "name", tsvname); tsv->value_known = target_get_trace_state_variable_value (tsv->number, &tsv->value); ui_out_field_int (uiout, "current", tsv->value); } else { ui_out_field_skip (uiout, "name"); ui_out_field_skip (uiout, "current"); } do_cleanups (cleanup_child); } do_cleanups (list_cleanup); } /* Memory. */ { struct cleanup *list_cleanup; VEC(mem_range_s) *available_memory = NULL; struct mem_range *r; int i; traceframe_available_memory (&available_memory, 0, ULONGEST_MAX); make_cleanup (VEC_cleanup(mem_range_s), &available_memory); list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "memory"); for (i = 0; VEC_iterate (mem_range_s, available_memory, i, r); i++) { struct cleanup *cleanup_child; gdb_byte *data; struct gdbarch *gdbarch = target_gdbarch (); cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL); ui_out_field_core_addr (uiout, "address", gdbarch, r->start); ui_out_field_int (uiout, "length", r->length); data = xmalloc (r->length); make_cleanup (xfree, data); if (memory_contents) { if (target_read_memory (r->start, data, r->length) == 0) { int m; char *data_str, *p; data_str = xmalloc (r->length * 2 + 1); make_cleanup (xfree, data_str); for (m = 0, p = data_str; m < r->length; ++m, p += 2) sprintf (p, "%02x", data[m]); ui_out_field_string (uiout, "contents", data_str); } else ui_out_field_skip (uiout, "contents"); } do_cleanups (cleanup_child); } do_cleanups (list_cleanup); } do_cleanups (old_chain); }