/* MI Command Set.
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
Free Software Foundation, Inc.
Contributed by Cygnus Solutions (a Red Hat company).
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
/* Work in progress. */
#include "defs.h"
#include "arch-utils.h"
#include "target.h"
#include "inferior.h"
#include "gdb_string.h"
#include "exceptions.h"
#include "top.h"
#include "gdbthread.h"
#include "mi-cmds.h"
#include "mi-parse.h"
#include "mi-getopt.h"
#include "mi-console.h"
#include "ui-out.h"
#include "mi-out.h"
#include "interps.h"
#include "event-loop.h"
#include "event-top.h"
#include "gdbcore.h" /* For write_memory(). */
#include "value.h"
#include "regcache.h"
#include "gdb.h"
#include "frame.h"
#include "mi-main.h"
#include "mi-common.h"
#include "language.h"
#include "valprint.h"
#include "inferior.h"
#include "osdata.h"
#include "splay-tree.h"
#include "tracepoint.h"
#include
#include
#if defined HAVE_SYS_RESOURCE_H
#include
#endif
#ifdef HAVE_GETRUSAGE
struct rusage rusage;
#endif
enum
{
FROM_TTY = 0
};
int mi_debug_p;
struct ui_file *raw_stdout;
/* This is used to pass the current command timestamp
down to continuation routines. */
static struct mi_timestamp *current_command_ts;
static int do_timings = 0;
char *current_token;
/* Few commands would like to know if options like --thread-group
were explicitly specified. This variable keeps the current
parsed command including all option, and make it possible. */
static struct mi_parse *current_context;
int running_result_record_printed = 1;
/* Flag indicating that the target has proceeded since the last
command was issued. */
int mi_proceeded;
extern void _initialize_mi_main (void);
static void mi_cmd_execute (struct mi_parse *parse);
static void mi_execute_cli_command (const char *cmd, int args_p,
const char *args);
static void mi_execute_async_cli_command (char *cli_command,
char **argv, int argc);
static int register_changed_p (int regnum, struct regcache *,
struct regcache *);
static void get_register (struct frame_info *, int regnum, int format);
/* Command implementations. FIXME: Is this libgdb? No. This is the MI
layer that calls libgdb. Any operation used in the below should be
formalized. */
static void timestamp (struct mi_timestamp *tv);
static void print_diff_now (struct mi_timestamp *start);
static void print_diff (struct mi_timestamp *start, struct mi_timestamp *end);
void
mi_cmd_gdb_exit (char *command, char **argv, int argc)
{
/* We have to print everything right here because we never return. */
if (current_token)
fputs_unfiltered (current_token, raw_stdout);
fputs_unfiltered ("^exit\n", raw_stdout);
mi_out_put (uiout, raw_stdout);
gdb_flush (raw_stdout);
/* FIXME: The function called is not yet a formal libgdb function. */
quit_force (NULL, FROM_TTY);
}
void
mi_cmd_exec_next (char *command, char **argv, int argc)
{
/* FIXME: Should call a libgdb function, not a cli wrapper. */
if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
else
mi_execute_async_cli_command ("next", argv, argc);
}
void
mi_cmd_exec_next_instruction (char *command, char **argv, int argc)
{
/* FIXME: Should call a libgdb function, not a cli wrapper. */
if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
else
mi_execute_async_cli_command ("nexti", argv, argc);
}
void
mi_cmd_exec_step (char *command, char **argv, int argc)
{
/* FIXME: Should call a libgdb function, not a cli wrapper. */
if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
else
mi_execute_async_cli_command ("step", argv, argc);
}
void
mi_cmd_exec_step_instruction (char *command, char **argv, int argc)
{
/* FIXME: Should call a libgdb function, not a cli wrapper. */
if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
else
mi_execute_async_cli_command ("stepi", argv, argc);
}
void
mi_cmd_exec_finish (char *command, char **argv, int argc)
{
/* FIXME: Should call a libgdb function, not a cli wrapper. */
if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
else
mi_execute_async_cli_command ("finish", argv, argc);
}
void
mi_cmd_exec_return (char *command, char **argv, int argc)
{
/* This command doesn't really execute the target, it just pops the
specified number of frames. */
if (argc)
/* Call return_command with from_tty argument equal to 0 so as to
avoid being queried. */
return_command (*argv, 0);
else
/* Call return_command with from_tty argument equal to 0 so as to
avoid being queried. */
return_command (NULL, 0);
/* Because we have called return_command with from_tty = 0, we need
to print the frame here. */
print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS);
}
void
mi_cmd_exec_jump (char *args, char **argv, int argc)
{
/* FIXME: Should call a libgdb function, not a cli wrapper. */
mi_execute_async_cli_command ("jump", argv, argc);
}
static void
proceed_thread (struct thread_info *thread, int pid)
{
if (!is_stopped (thread->ptid))
return;
if (pid != 0 && PIDGET (thread->ptid) != pid)
return;
switch_to_thread (thread->ptid);
clear_proceed_status ();
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
}
static int
proceed_thread_callback (struct thread_info *thread, void *arg)
{
int pid = *(int *)arg;
proceed_thread (thread, pid);
return 0;
}
static void
exec_continue (char **argv, int argc)
{
if (non_stop)
{
/* In non-stop mode, 'resume' always resumes a single thread. Therefore,
to resume all threads of the current inferior, or all threads in all
inferiors, we need to iterate over threads.
See comment on infcmd.c:proceed_thread_callback for rationale. */
if (current_context->all || current_context->thread_group != -1)
{
int pid = 0;
struct cleanup *back_to = make_cleanup_restore_current_thread ();
if (!current_context->all)
{
struct inferior *inf = find_inferior_id (current_context->thread_group);
pid = inf->pid;
}
iterate_over_threads (proceed_thread_callback, &pid);
do_cleanups (back_to);
}
else
{
continue_1 (0);
}
}
else
{
struct cleanup *back_to = make_cleanup_restore_integer (&sched_multi);
if (current_context->all)
{
sched_multi = 1;
continue_1 (0);
}
else
{
/* In all-stop mode, -exec-continue traditionally resumed either
all threads, or one thread, depending on the 'scheduler-locking'
variable. Let's continue to do the same. */
continue_1 (1);
}
do_cleanups (back_to);
}
}
static void
exec_direction_forward (void *notused)
{
execution_direction = EXEC_FORWARD;
}
static void
exec_reverse_continue (char **argv, int argc)
{
enum exec_direction_kind dir = execution_direction;
struct cleanup *old_chain;
if (dir == EXEC_ERROR)
error (_("Target %s does not support this command."), target_shortname);
if (dir == EXEC_REVERSE)
error (_("Already in reverse mode."));
if (!target_can_execute_reverse)
error (_("Target %s does not support this command."), target_shortname);
old_chain = make_cleanup (exec_direction_forward, NULL);
execution_direction = EXEC_REVERSE;
exec_continue (argv, argc);
do_cleanups (old_chain);
}
void
mi_cmd_exec_continue (char *command, char **argv, int argc)
{
if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
exec_reverse_continue (argv + 1, argc - 1);
else
exec_continue (argv, argc);
}
static int
interrupt_thread_callback (struct thread_info *thread, void *arg)
{
int pid = *(int *)arg;
if (!is_running (thread->ptid))
return 0;
if (PIDGET (thread->ptid) != pid)
return 0;
target_stop (thread->ptid);
return 0;
}
/* Interrupt the execution of the target. Note how we must play around
with the token variables, in order to display the current token in
the result of the interrupt command, and the previous execution
token when the target finally stops. See comments in
mi_cmd_execute. */
void
mi_cmd_exec_interrupt (char *command, char **argv, int argc)
{
/* In all-stop mode, everything stops, so we don't need to try
anything specific. */
if (!non_stop)
{
interrupt_target_1 (0);
return;
}
if (current_context->all)
{
/* This will interrupt all threads in all inferiors. */
interrupt_target_1 (1);
}
else if (current_context->thread_group != -1)
{
struct inferior *inf = find_inferior_id (current_context->thread_group);
iterate_over_threads (interrupt_thread_callback, &inf->pid);
}
else
{
/* Interrupt just the current thread -- either explicitly
specified via --thread or whatever was current before
MI command was sent. */
interrupt_target_1 (0);
}
}
static int
run_one_inferior (struct inferior *inf, void *arg)
{
if (inf->pid != 0)
{
if (inf->pid != ptid_get_pid (inferior_ptid))
{
struct thread_info *tp;
tp = any_thread_of_process (inf->pid);
if (!tp)
error (_("Inferior has no threads."));
switch_to_thread (tp->ptid);
}
}
else
{
set_current_inferior (inf);
switch_to_thread (null_ptid);
set_current_program_space (inf->pspace);
}
mi_execute_cli_command ("run", target_can_async_p (),
target_can_async_p () ? "&" : NULL);
return 0;
}
void
mi_cmd_exec_run (char *command, char **argv, int argc)
{
if (current_context->all)
{
struct cleanup *back_to = save_current_space_and_thread ();
iterate_over_inferiors (run_one_inferior, NULL);
do_cleanups (back_to);
}
else
{
mi_execute_cli_command ("run", target_can_async_p (),
target_can_async_p () ? "&" : NULL);
}
}
static int
find_thread_of_process (struct thread_info *ti, void *p)
{
int pid = *(int *)p;
if (PIDGET (ti->ptid) == pid && !is_exited (ti->ptid))
return 1;
return 0;
}
void
mi_cmd_target_detach (char *command, char **argv, int argc)
{
if (argc != 0 && argc != 1)
error ("Usage: -target-detach [pid | thread-group]");
if (argc == 1)
{
struct thread_info *tp;
char *end = argv[0];
int pid;
/* First see if we are dealing with a thread-group id. */
if (*argv[0] == 'i')
{
struct inferior *inf;
int id = strtoul (argv[0] + 1, &end, 0);
if (*end != '\0')
error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
inf = find_inferior_id (id);
if (!inf)
error (_("Non-existent thread-group id '%d'"), id);
pid = inf->pid;
}
else
{
/* We must be dealing with a pid. */
pid = strtol (argv[0], &end, 10);
if (*end != '\0')
error (_("Invalid identifier '%s'"), argv[0]);
}
/* Pick any thread in the desired process. Current
target_detach detaches from the parent of inferior_ptid. */
tp = iterate_over_threads (find_thread_of_process, &pid);
if (!tp)
error (_("Thread group is empty"));
switch_to_thread (tp->ptid);
}
detach_command (NULL, 0);
}
void
mi_cmd_thread_select (char *command, char **argv, int argc)
{
enum gdb_rc rc;
char *mi_error_message;
if (argc != 1)
error ("mi_cmd_thread_select: USAGE: threadnum.");
rc = gdb_thread_select (uiout, argv[0], &mi_error_message);
if (rc == GDB_RC_FAIL)
{
make_cleanup (xfree, mi_error_message);
error ("%s", mi_error_message);
}
}
void
mi_cmd_thread_list_ids (char *command, char **argv, int argc)
{
enum gdb_rc rc;
char *mi_error_message;
if (argc != 0)
error ("mi_cmd_thread_list_ids: No arguments required.");
rc = gdb_list_thread_ids (uiout, &mi_error_message);
if (rc == GDB_RC_FAIL)
{
make_cleanup (xfree, mi_error_message);
error ("%s", mi_error_message);
}
}
void
mi_cmd_thread_info (char *command, char **argv, int argc)
{
int thread = -1;
if (argc != 0 && argc != 1)
error ("Invalid MI command");
if (argc == 1)
thread = atoi (argv[0]);
print_thread_info (uiout, thread, -1);
}
struct collect_cores_data
{
int pid;
VEC (int) *cores;
};
static int
collect_cores (struct thread_info *ti, void *xdata)
{
struct collect_cores_data *data = xdata;
if (ptid_get_pid (ti->ptid) == data->pid)
{
int core = target_core_of_thread (ti->ptid);
if (core != -1)
VEC_safe_push (int, data->cores, core);
}
return 0;
}
static int *
unique (int *b, int *e)
{
int *d = b;
while (++b != e)
if (*d != *b)
*++d = *b;
return ++d;
}
struct print_one_inferior_data
{
int recurse;
VEC (int) *inferiors;
};
static int
print_one_inferior (struct inferior *inferior, void *xdata)
{
struct print_one_inferior_data *top_data = xdata;
if (VEC_empty (int, top_data->inferiors)
|| bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
VEC_length (int, top_data->inferiors), sizeof (int),
compare_positive_ints))
{
struct collect_cores_data data;
struct cleanup *back_to
= make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
ui_out_field_fmt (uiout, "id", "i%d", inferior->num);
ui_out_field_string (uiout, "type", "process");
if (inferior->pid != 0)
ui_out_field_int (uiout, "pid", inferior->pid);
if (inferior->pspace->ebfd)
{
ui_out_field_string (uiout, "executable",
bfd_get_filename (inferior->pspace->ebfd));
}
data.cores = 0;
if (inferior->pid != 0)
{
data.pid = inferior->pid;
iterate_over_threads (collect_cores, &data);
}
if (!VEC_empty (int, data.cores))
{
int *b, *e;
struct cleanup *back_to_2 =
make_cleanup_ui_out_list_begin_end (uiout, "cores");
qsort (VEC_address (int, data.cores),
VEC_length (int, data.cores), sizeof (int),
compare_positive_ints);
b = VEC_address (int, data.cores);
e = b + VEC_length (int, data.cores);
e = unique (b, e);
for (; b != e; ++b)
ui_out_field_int (uiout, NULL, *b);
do_cleanups (back_to_2);
}
if (top_data->recurse)
print_thread_info (uiout, -1, inferior->pid);
do_cleanups (back_to);
}
return 0;
}
/* Output a field named 'cores' with a list as the value. The elements of
the list are obtained by splitting 'cores' on comma. */
static void
output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
{
struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
field_name);
char *cores = xstrdup (xcores);
char *p = cores;
make_cleanup (xfree, cores);
for (p = strtok (p, ","); p; p = strtok (NULL, ","))
ui_out_field_string (uiout, NULL, p);
do_cleanups (back_to);
}
static void
free_vector_of_ints (void *xvector)
{
VEC (int) **vector = xvector;
VEC_free (int, *vector);
}
static void
do_nothing (splay_tree_key k)
{
}
static void
free_vector_of_osdata_items (splay_tree_value xvalue)
{
VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
/* We don't free the items itself, it will be done separately. */
VEC_free (osdata_item_s, value);
}
static int
splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
{
int a = xa;
int b = xb;
return a - b;
}
static void
free_splay_tree (void *xt)
{
splay_tree t = xt;
splay_tree_delete (t);
}
static void
list_available_thread_groups (VEC (int) *ids, int recurse)
{
struct osdata *data;
struct osdata_item *item;
int ix_items;
/* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
The vector contains information about all threads for the given pid.
This is assigned an initial value to avoid "may be used uninitialized"
warning from gcc. */
splay_tree tree = NULL;
/* get_osdata will throw if it cannot return data. */
data = get_osdata ("processes");
make_cleanup_osdata_free (data);
if (recurse)
{
struct osdata *threads = get_osdata ("threads");
make_cleanup_osdata_free (threads);
tree = splay_tree_new (splay_tree_int_comparator,
do_nothing,
free_vector_of_osdata_items);
make_cleanup (free_splay_tree, tree);
for (ix_items = 0;
VEC_iterate (osdata_item_s, threads->items,
ix_items, item);
ix_items++)
{
const char *pid = get_osdata_column (item, "pid");
int pid_i = strtoul (pid, NULL, 0);
VEC (osdata_item_s) *vec = 0;
splay_tree_node n = splay_tree_lookup (tree, pid_i);
if (!n)
{
VEC_safe_push (osdata_item_s, vec, item);
splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
}
else
{
vec = (VEC (osdata_item_s) *) n->value;
VEC_safe_push (osdata_item_s, vec, item);
n->value = (splay_tree_value) vec;
}
}
}
make_cleanup_ui_out_list_begin_end (uiout, "groups");
for (ix_items = 0;
VEC_iterate (osdata_item_s, data->items,
ix_items, item);
ix_items++)
{
struct cleanup *back_to;
const char *pid = get_osdata_column (item, "pid");
const char *cmd = get_osdata_column (item, "command");
const char *user = get_osdata_column (item, "user");
const char *cores = get_osdata_column (item, "cores");
int pid_i = strtoul (pid, NULL, 0);
/* At present, the target will return all available processes
and if information about specific ones was required, we filter
undesired processes here. */
if (ids && bsearch (&pid_i, VEC_address (int, ids),
VEC_length (int, ids),
sizeof (int), compare_positive_ints) == NULL)
continue;
back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
ui_out_field_fmt (uiout, "id", "%s", pid);
ui_out_field_string (uiout, "type", "process");
if (cmd)
ui_out_field_string (uiout, "description", cmd);
if (user)
ui_out_field_string (uiout, "user", user);
if (cores)
output_cores (uiout, "cores", cores);
if (recurse)
{
splay_tree_node n = splay_tree_lookup (tree, pid_i);
if (n)
{
VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
struct osdata_item *child;
int ix_child;
make_cleanup_ui_out_list_begin_end (uiout, "threads");
for (ix_child = 0;
VEC_iterate (osdata_item_s, children, ix_child, child);
++ix_child)
{
struct cleanup *back_to_2 =
make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
const char *tid = get_osdata_column (child, "tid");
const char *tcore = get_osdata_column (child, "core");
ui_out_field_string (uiout, "id", tid);
if (tcore)
ui_out_field_string (uiout, "core", tcore);
do_cleanups (back_to_2);
}
}
}
do_cleanups (back_to);
}
}
void
mi_cmd_list_thread_groups (char *command, char **argv, int argc)
{
struct cleanup *back_to;
int available = 0;
int recurse = 0;
VEC (int) *ids = 0;
enum opt
{
AVAILABLE_OPT, RECURSE_OPT
};
static struct mi_opt opts[] =
{
{"-available", AVAILABLE_OPT, 0},
{"-recurse", RECURSE_OPT, 1},
{ 0, 0, 0 }
};
int optind = 0;
char *optarg;
while (1)
{
int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
&optind, &optarg);
if (opt < 0)
break;
switch ((enum opt) opt)
{
case AVAILABLE_OPT:
available = 1;
break;
case RECURSE_OPT:
if (strcmp (optarg, "0") == 0)
;
else if (strcmp (optarg, "1") == 0)
recurse = 1;
else
error ("only '0' and '1' are valid values for the '--recurse' option");
break;
}
}
for (; optind < argc; ++optind)
{
char *end;
int inf;
if (*(argv[optind]) != 'i')
error ("invalid syntax of group id '%s'", argv[optind]);
inf = strtoul (argv[optind] + 1, &end, 0);
if (*end != '\0')
error ("invalid syntax of group id '%s'", argv[optind]);
VEC_safe_push (int, ids, inf);
}
if (VEC_length (int, ids) > 1)
qsort (VEC_address (int, ids),
VEC_length (int, ids),
sizeof (int), compare_positive_ints);
back_to = make_cleanup (free_vector_of_ints, &ids);
if (available)
{
list_available_thread_groups (ids, recurse);
}
else if (VEC_length (int, ids) == 1)
{
/* Local thread groups, single id. */
int id = *VEC_address (int, ids);
struct inferior *inf = find_inferior_id (id);
if (!inf)
error ("Non-existent thread group id '%d'", id);
print_thread_info (uiout, -1, inf->pid);
}
else
{
struct print_one_inferior_data data;
data.recurse = recurse;
data.inferiors = ids;
/* Local thread groups. Either no explicit ids -- and we
print everything, or several explicit ids. In both cases,
we print more than one group, and have to use 'groups'
as the top-level element. */
make_cleanup_ui_out_list_begin_end (uiout, "groups");
update_thread_list ();
iterate_over_inferiors (print_one_inferior, &data);
}
do_cleanups (back_to);
}
void
mi_cmd_data_list_register_names (char *command, char **argv, int argc)
{
struct gdbarch *gdbarch;
int regnum, numregs;
int i;
struct cleanup *cleanup;
/* Note that the test for a valid register must include checking the
gdbarch_register_name because gdbarch_num_regs may be allocated for
the union of the register sets within a family of related processors.
In this case, some entries of gdbarch_register_name will change depending
upon the particular processor being debugged. */
gdbarch = get_current_arch ();
numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
if (argc == 0) /* No args, just do all the regs. */
{
for (regnum = 0;
regnum < numregs;
regnum++)
{
if (gdbarch_register_name (gdbarch, regnum) == NULL
|| *(gdbarch_register_name (gdbarch, regnum)) == '\0')
ui_out_field_string (uiout, NULL, "");
else
ui_out_field_string (uiout, NULL,
gdbarch_register_name (gdbarch, regnum));
}
}
/* Else, list of register #s, just do listed regs. */
for (i = 0; i < argc; i++)
{
regnum = atoi (argv[i]);
if (regnum < 0 || regnum >= numregs)
error ("bad register number");
if (gdbarch_register_name (gdbarch, regnum) == NULL
|| *(gdbarch_register_name (gdbarch, regnum)) == '\0')
ui_out_field_string (uiout, NULL, "");
else
ui_out_field_string (uiout, NULL,
gdbarch_register_name (gdbarch, regnum));
}
do_cleanups (cleanup);
}
void
mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
{
static struct regcache *this_regs = NULL;
struct regcache *prev_regs;
struct gdbarch *gdbarch;
int regnum, numregs, changed;
int i;
struct cleanup *cleanup;
/* The last time we visited this function, the current frame's register
contents were saved in THIS_REGS. Move THIS_REGS over to PREV_REGS,
and refresh THIS_REGS with the now-current register contents. */
prev_regs = this_regs;
this_regs = frame_save_as_regcache (get_selected_frame (NULL));
cleanup = make_cleanup_regcache_xfree (prev_regs);
/* Note that the test for a valid register must include checking the
gdbarch_register_name because gdbarch_num_regs may be allocated for
the union of the register sets within a family of related processors.
In this case, some entries of gdbarch_register_name will change depending
upon the particular processor being debugged. */
gdbarch = get_regcache_arch (this_regs);
numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
if (argc == 0) /* No args, just do all the regs. */
{
for (regnum = 0;
regnum < numregs;
regnum++)
{
if (gdbarch_register_name (gdbarch, regnum) == NULL
|| *(gdbarch_register_name (gdbarch, regnum)) == '\0')
continue;
changed = register_changed_p (regnum, prev_regs, this_regs);
if (changed < 0)
error ("mi_cmd_data_list_changed_registers: Unable to read register contents.");
else if (changed)
ui_out_field_int (uiout, NULL, regnum);
}
}
/* Else, list of register #s, just do listed regs. */
for (i = 0; i < argc; i++)
{
regnum = atoi (argv[i]);
if (regnum >= 0
&& regnum < numregs
&& gdbarch_register_name (gdbarch, regnum) != NULL
&& *gdbarch_register_name (gdbarch, regnum) != '\000')
{
changed = register_changed_p (regnum, prev_regs, this_regs);
if (changed < 0)
error ("mi_cmd_data_list_register_change: Unable to read register contents.");
else if (changed)
ui_out_field_int (uiout, NULL, regnum);
}
else
error ("bad register number");
}
do_cleanups (cleanup);
}
static int
register_changed_p (int regnum, struct regcache *prev_regs,
struct regcache *this_regs)
{
struct gdbarch *gdbarch = get_regcache_arch (this_regs);
gdb_byte prev_buffer[MAX_REGISTER_SIZE];
gdb_byte this_buffer[MAX_REGISTER_SIZE];
/* Registers not valid in this frame return count as unchanged. */
if (!regcache_valid_p (this_regs, regnum))
return 0;
/* First time through or after gdbarch change consider all registers as
changed. Same for registers not valid in the previous frame. */
if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch
|| !regcache_valid_p (prev_regs, regnum))
return 1;
/* Get register contents and compare. */
regcache_cooked_read (prev_regs, regnum, prev_buffer);
regcache_cooked_read (this_regs, regnum, this_buffer);
return memcmp (prev_buffer, this_buffer,
register_size (gdbarch, regnum)) != 0;
}
/* Return a list of register number and value pairs. The valid
arguments expected are: a letter indicating the format in which to
display the registers contents. This can be one of: x (hexadecimal), d
(decimal), N (natural), t (binary), o (octal), r (raw). After the
format argumetn there can be a sequence of numbers, indicating which
registers to fetch the content of. If the format is the only argument,
a list of all the registers with their values is returned. */
void
mi_cmd_data_list_register_values (char *command, char **argv, int argc)
{
struct frame_info *frame;
struct gdbarch *gdbarch;
int regnum, numregs, format;
int i;
struct cleanup *list_cleanup, *tuple_cleanup;
/* Note that the test for a valid register must include checking the
gdbarch_register_name because gdbarch_num_regs may be allocated for
the union of the register sets within a family of related processors.
In this case, some entries of gdbarch_register_name will change depending
upon the particular processor being debugged. */
if (argc == 0)
error ("mi_cmd_data_list_register_values: Usage: -data-list-register-values [...]");
format = (int) argv[0][0];
frame = get_selected_frame (NULL);
gdbarch = get_frame_arch (frame);
numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
if (argc == 1) /* No args, beside the format: do all the regs. */
{
for (regnum = 0;
regnum < numregs;
regnum++)
{
if (gdbarch_register_name (gdbarch, regnum) == NULL
|| *(gdbarch_register_name (gdbarch, regnum)) == '\0')
continue;
tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
ui_out_field_int (uiout, "number", regnum);
get_register (frame, regnum, format);
do_cleanups (tuple_cleanup);
}
}
/* Else, list of register #s, just do listed regs. */
for (i = 1; i < argc; i++)
{
regnum = atoi (argv[i]);
if (regnum >= 0
&& regnum < numregs
&& gdbarch_register_name (gdbarch, regnum) != NULL
&& *gdbarch_register_name (gdbarch, regnum) != '\000')
{
tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
ui_out_field_int (uiout, "number", regnum);
get_register (frame, regnum, format);
do_cleanups (tuple_cleanup);
}
else
error ("bad register number");
}
do_cleanups (list_cleanup);
}
/* Output one register's contents in the desired format. */
static void
get_register (struct frame_info *frame, int regnum, int format)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
gdb_byte buffer[MAX_REGISTER_SIZE];
int optim;
int realnum;
CORE_ADDR addr;
enum lval_type lval;
static struct ui_stream *stb = NULL;
stb = ui_out_stream_new (uiout);
if (format == 'N')
format = 0;
frame_register (frame, regnum, &optim, &lval, &addr, &realnum, buffer);
if (optim)
error ("Optimized out");
if (format == 'r')
{
int j;
char *ptr, buf[1024];
strcpy (buf, "0x");
ptr = buf + 2;
for (j = 0; j < register_size (gdbarch, regnum); j++)
{
int idx = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ?
j : register_size (gdbarch, regnum) - 1 - j;
sprintf (ptr, "%02x", (unsigned char) buffer[idx]);
ptr += 2;
}
ui_out_field_string (uiout, "value", buf);
/*fputs_filtered (buf, gdb_stdout); */
}
else
{
struct value_print_options opts;
get_formatted_print_options (&opts, format);
opts.deref_ref = 1;
val_print (register_type (gdbarch, regnum), buffer, 0, 0,
stb->stream, 0, NULL, &opts, current_language);
ui_out_field_stream (uiout, "value", stb);
ui_out_stream_delete (stb);
}
}
/* Write given values into registers. The registers and values are
given as pairs. The corresponding MI command is
-data-write-register-values [ ... ]*/
void
mi_cmd_data_write_register_values (char *command, char **argv, int argc)
{
struct regcache *regcache;
struct gdbarch *gdbarch;
int numregs, i;
char format;
/* Note that the test for a valid register must include checking the
gdbarch_register_name because gdbarch_num_regs may be allocated for
the union of the register sets within a family of related processors.
In this case, some entries of gdbarch_register_name will change depending
upon the particular processor being debugged. */
regcache = get_current_regcache ();
gdbarch = get_regcache_arch (regcache);
numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
if (argc == 0)
error ("mi_cmd_data_write_register_values: Usage: -data-write-register-values [ ... ]");
format = (int) argv[0][0];
if (!target_has_registers)
error ("mi_cmd_data_write_register_values: No registers.");
if (!(argc - 1))
error ("mi_cmd_data_write_register_values: No regs and values specified.");
if ((argc - 1) % 2)
error ("mi_cmd_data_write_register_values: Regs and vals are not in pairs.");
for (i = 1; i < argc; i = i + 2)
{
int regnum = atoi (argv[i]);
if (regnum >= 0 && regnum < numregs
&& gdbarch_register_name (gdbarch, regnum)
&& *gdbarch_register_name (gdbarch, regnum))
{
LONGEST value;
/* Get the value as a number. */
value = parse_and_eval_address (argv[i + 1]);
/* Write it down. */
regcache_cooked_write_signed (regcache, regnum, value);
}
else
error ("bad register number");
}
}
/* Evaluate the value of the argument. The argument is an
expression. If the expression contains spaces it needs to be
included in double quotes. */
void
mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
{
struct expression *expr;
struct cleanup *old_chain = NULL;
struct value *val;
struct ui_stream *stb = NULL;
struct value_print_options opts;
stb = ui_out_stream_new (uiout);
if (argc != 1)
{
ui_out_stream_delete (stb);
error ("mi_cmd_data_evaluate_expression: Usage: -data-evaluate-expression expression");
}
expr = parse_expression (argv[0]);
old_chain = make_cleanup (free_current_contents, &expr);
val = evaluate_expression (expr);
/* Print the result of the expression evaluation. */
get_user_print_options (&opts);
opts.deref_ref = 0;
common_val_print (val, stb->stream, 0, &opts, current_language);
ui_out_field_stream (uiout, "value", stb);
ui_out_stream_delete (stb);
do_cleanups (old_chain);
}
/* DATA-MEMORY-READ:
ADDR: start address of data to be dumped.
WORD-FORMAT: a char indicating format for the ``word''. See
the ``x'' command.
WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
NR_ROW: Number of rows.
NR_COL: The number of colums (words per row).
ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
ASCHAR for unprintable characters.
Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
displayes them. Returns:
{addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
Returns:
The number of bytes read is SIZE*ROW*COL. */
void
mi_cmd_data_read_memory (char *command, char **argv, int argc)
{
struct gdbarch *gdbarch = get_current_arch ();
struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
CORE_ADDR addr;
long total_bytes;
long nr_cols;
long nr_rows;
char word_format;
struct type *word_type;
long word_size;
char word_asize;
char aschar;
gdb_byte *mbuf;
int nr_bytes;
long offset = 0;
int optind = 0;
char *optarg;
enum opt
{
OFFSET_OPT
};
static struct mi_opt opts[] =
{
{"o", OFFSET_OPT, 1},
{ 0, 0, 0 }
};
while (1)
{
int opt = mi_getopt ("mi_cmd_data_read_memory", argc, argv, opts,
&optind, &optarg);
if (opt < 0)
break;
switch ((enum opt) opt)
{
case OFFSET_OPT:
offset = atol (optarg);
break;
}
}
argv += optind;
argc -= optind;
if (argc < 5 || argc > 6)
error ("mi_cmd_data_read_memory: Usage: ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR].");
/* Extract all the arguments. */
/* Start address of the memory dump. */
addr = parse_and_eval_address (argv[0]) + offset;
/* The format character to use when displaying a memory word. See
the ``x'' command. */
word_format = argv[1][0];
/* The size of the memory word. */
word_size = atol (argv[2]);
switch (word_size)
{
case 1:
word_type = builtin_type (gdbarch)->builtin_int8;
word_asize = 'b';
break;
case 2:
word_type = builtin_type (gdbarch)->builtin_int16;
word_asize = 'h';
break;
case 4:
word_type = builtin_type (gdbarch)->builtin_int32;
word_asize = 'w';
break;
case 8:
word_type = builtin_type (gdbarch)->builtin_int64;
word_asize = 'g';
break;
default:
word_type = builtin_type (gdbarch)->builtin_int8;
word_asize = 'b';
}
/* The number of rows. */
nr_rows = atol (argv[3]);
if (nr_rows <= 0)
error ("mi_cmd_data_read_memory: invalid number of rows.");
/* Number of bytes per row. */
nr_cols = atol (argv[4]);
if (nr_cols <= 0)
error ("mi_cmd_data_read_memory: invalid number of columns.");
/* The un-printable character when printing ascii. */
if (argc == 6)
aschar = *argv[5];
else
aschar = 0;
/* Create a buffer and read it in. */
total_bytes = word_size * nr_rows * nr_cols;
mbuf = xcalloc (total_bytes, 1);
make_cleanup (xfree, mbuf);
/* Dispatch memory reads to the topmost target, not the flattened
current_target. */
nr_bytes = target_read (current_target.beneath,
TARGET_OBJECT_MEMORY, NULL, mbuf,
addr, total_bytes);
if (nr_bytes <= 0)
error ("Unable to read memory.");
/* Output the header information. */
ui_out_field_core_addr (uiout, "addr", gdbarch, addr);
ui_out_field_int (uiout, "nr-bytes", nr_bytes);
ui_out_field_int (uiout, "total-bytes", total_bytes);
ui_out_field_core_addr (uiout, "next-row",
gdbarch, addr + word_size * nr_cols);
ui_out_field_core_addr (uiout, "prev-row",
gdbarch, addr - word_size * nr_cols);
ui_out_field_core_addr (uiout, "next-page", gdbarch, addr + total_bytes);
ui_out_field_core_addr (uiout, "prev-page", gdbarch, addr - total_bytes);
/* Build the result as a two dimentional table. */
{
struct ui_stream *stream = ui_out_stream_new (uiout);
struct cleanup *cleanup_list_memory;
int row;
int row_byte;
cleanup_list_memory = make_cleanup_ui_out_list_begin_end (uiout, "memory");
for (row = 0, row_byte = 0;
row < nr_rows;
row++, row_byte += nr_cols * word_size)
{
int col;
int col_byte;
struct cleanup *cleanup_tuple;
struct cleanup *cleanup_list_data;
struct value_print_options opts;
cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
ui_out_field_core_addr (uiout, "addr", gdbarch, addr + row_byte);
/* ui_out_field_core_addr_symbolic (uiout, "saddr", addr + row_byte); */
cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
get_formatted_print_options (&opts, word_format);
for (col = 0, col_byte = row_byte;
col < nr_cols;
col++, col_byte += word_size)
{
if (col_byte + word_size > nr_bytes)
{
ui_out_field_string (uiout, NULL, "N/A");
}
else
{
ui_file_rewind (stream->stream);
print_scalar_formatted (mbuf + col_byte, word_type, &opts,
word_asize, stream->stream);
ui_out_field_stream (uiout, NULL, stream);
}
}
do_cleanups (cleanup_list_data);
if (aschar)
{
int byte;
ui_file_rewind (stream->stream);
for (byte = row_byte; byte < row_byte + word_size * nr_cols; byte++)
{
if (byte >= nr_bytes)
{
fputc_unfiltered ('X', stream->stream);
}
else if (mbuf[byte] < 32 || mbuf[byte] > 126)
{
fputc_unfiltered (aschar, stream->stream);
}
else
fputc_unfiltered (mbuf[byte], stream->stream);
}
ui_out_field_stream (uiout, "ascii", stream);
}
do_cleanups (cleanup_tuple);
}
ui_out_stream_delete (stream);
do_cleanups (cleanup_list_memory);
}
do_cleanups (cleanups);
}
void
mi_cmd_data_read_memory_bytes (char *command, char **argv, int argc)
{
struct gdbarch *gdbarch = get_current_arch ();
struct cleanup *cleanups;
CORE_ADDR addr;
LONGEST length;
memory_read_result_s *read_result;
int ix;
VEC(memory_read_result_s) *result;
long offset = 0;
int optind = 0;
char *optarg;
enum opt
{
OFFSET_OPT
};
static struct mi_opt opts[] =
{
{"o", OFFSET_OPT, 1},
{ 0, 0, 0 }
};
while (1)
{
int opt = mi_getopt ("mi_cmd_data_read_memory_bytes", argc, argv, opts,
&optind, &optarg);
if (opt < 0)
break;
switch ((enum opt) opt)
{
case OFFSET_OPT:
offset = atol (optarg);
break;
}
}
argv += optind;
argc -= optind;
if (argc != 2)
error ("Usage: [ -o OFFSET ] ADDR LENGTH.");
addr = parse_and_eval_address (argv[0]) + offset;
length = atol (argv[1]);
result = read_memory_robust (current_target.beneath, addr, length);
cleanups = make_cleanup (free_memory_read_result_vector, result);
if (VEC_length (memory_read_result_s, result) == 0)
error ("Unable to read memory.");
make_cleanup_ui_out_list_begin_end (uiout, "memory");
for (ix = 0;
VEC_iterate (memory_read_result_s, result, ix, read_result);
++ix)
{
struct cleanup *t = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
char *data, *p;
int i;
ui_out_field_core_addr (uiout, "begin", gdbarch, read_result->begin);
ui_out_field_core_addr (uiout, "offset", gdbarch, read_result->begin
- addr);
ui_out_field_core_addr (uiout, "end", gdbarch, read_result->end);
data = xmalloc ((read_result->end - read_result->begin) * 2 + 1);
for (i = 0, p = data;
i < (read_result->end - read_result->begin);
++i, p += 2)
{
sprintf (p, "%02x", read_result->data[i]);
}
ui_out_field_string (uiout, "contents", data);
xfree (data);
do_cleanups (t);
}
do_cleanups (cleanups);
}
/* DATA-MEMORY-WRITE:
COLUMN_OFFSET: optional argument. Must be preceeded by '-o'. The
offset from the beginning of the memory grid row where the cell to
be written is.
ADDR: start address of the row in the memory grid where the memory
cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
the location to write to.
FORMAT: a char indicating format for the ``word''. See
the ``x'' command.
WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
VALUE: value to be written into the memory address.
Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
Prints nothing. */
void
mi_cmd_data_write_memory (char *command, char **argv, int argc)
{
struct gdbarch *gdbarch = get_current_arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR addr;
char word_format;
long word_size;
/* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
enough when using a compiler other than GCC. */
LONGEST value;
void *buffer;
struct cleanup *old_chain;
long offset = 0;
int optind = 0;
char *optarg;
enum opt
{
OFFSET_OPT
};
static struct mi_opt opts[] =
{
{"o", OFFSET_OPT, 1},
{ 0, 0, 0 }
};
while (1)
{
int opt = mi_getopt ("mi_cmd_data_write_memory", argc, argv, opts,
&optind, &optarg);
if (opt < 0)
break;
switch ((enum opt) opt)
{
case OFFSET_OPT:
offset = atol (optarg);
break;
}
}
argv += optind;
argc -= optind;
if (argc != 4)
error ("mi_cmd_data_write_memory: Usage: [-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE.");
/* Extract all the arguments. */
/* Start address of the memory dump. */
addr = parse_and_eval_address (argv[0]);
/* The format character to use when displaying a memory word. See
the ``x'' command. */
word_format = argv[1][0];
/* The size of the memory word. */
word_size = atol (argv[2]);
/* Calculate the real address of the write destination. */
addr += (offset * word_size);
/* Get the value as a number. */
value = parse_and_eval_address (argv[3]);
/* Get the value into an array. */
buffer = xmalloc (word_size);
old_chain = make_cleanup (xfree, buffer);
store_signed_integer (buffer, word_size, byte_order, value);
/* Write it down to memory. */
write_memory (addr, buffer, word_size);
/* Free the buffer. */
do_cleanups (old_chain);
}
/* DATA-MEMORY-WRITE-RAW:
ADDR: start address
DATA: string of bytes to write at that address. */
void
mi_cmd_data_write_memory_bytes (char *command, char **argv, int argc)
{
CORE_ADDR addr;
char *cdata;
gdb_byte *data;
int len, r, i;
struct cleanup *back_to;
if (argc != 2)
error ("Usage: ADDR DATA.");
addr = parse_and_eval_address (argv[0]);
cdata = argv[1];
len = strlen (cdata)/2;
data = xmalloc (len);
back_to = make_cleanup (xfree, data);
for (i = 0; i < len; ++i)
{
int x;
sscanf (cdata + i * 2, "%02x", &x);
data[i] = (gdb_byte)x;
}
r = target_write_memory (addr, data, len);
if (r != 0)
error (_("Could not write memory"));
do_cleanups (back_to);
}
void
mi_cmd_enable_timings (char *command, char **argv, int argc)
{
if (argc == 0)
do_timings = 1;
else if (argc == 1)
{
if (strcmp (argv[0], "yes") == 0)
do_timings = 1;
else if (strcmp (argv[0], "no") == 0)
do_timings = 0;
else
goto usage_error;
}
else
goto usage_error;
return;
usage_error:
error ("mi_cmd_enable_timings: Usage: %s {yes|no}", command);
}
void
mi_cmd_list_features (char *command, char **argv, int argc)
{
if (argc == 0)
{
struct cleanup *cleanup = NULL;
cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
ui_out_field_string (uiout, NULL, "frozen-varobjs");
ui_out_field_string (uiout, NULL, "pending-breakpoints");
ui_out_field_string (uiout, NULL, "thread-info");
ui_out_field_string (uiout, NULL, "data-read-memory-bytes");
#if HAVE_PYTHON
ui_out_field_string (uiout, NULL, "python");
#endif
do_cleanups (cleanup);
return;
}
error ("-list-features should be passed no arguments");
}
void
mi_cmd_list_target_features (char *command, char **argv, int argc)
{
if (argc == 0)
{
struct cleanup *cleanup = NULL;
cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
if (target_can_async_p ())
ui_out_field_string (uiout, NULL, "async");
if (target_can_execute_reverse)
ui_out_field_string (uiout, NULL, "reverse");
do_cleanups (cleanup);
return;
}
error ("-list-target-features should be passed no arguments");
}
void
mi_cmd_add_inferior (char *command, char **argv, int argc)
{
struct inferior *inf;
if (argc != 0)
error (_("-add-inferior should be passed no arguments"));
inf = add_inferior_with_spaces ();
ui_out_field_fmt (uiout, "inferior", "i%d", inf->num);
}
/* Callback used to find the first inferior other than the
current one. */
static int
get_other_inferior (struct inferior *inf, void *arg)
{
if (inf == current_inferior ())
return 0;
return 1;
}
void
mi_cmd_remove_inferior (char *command, char **argv, int argc)
{
int id;
struct inferior *inf;
if (argc != 1)
error ("-remove-inferior should be passed a single argument");
if (sscanf (argv[0], "i%d", &id) != 1)
error ("the thread group id is syntactically invalid");
inf = find_inferior_id (id);
if (!inf)
error ("the specified thread group does not exist");
if (inf == current_inferior ())
{
struct thread_info *tp = 0;
struct inferior *new_inferior
= iterate_over_inferiors (get_other_inferior, NULL);
if (new_inferior == NULL)
error (_("Cannot remove last inferior"));
set_current_inferior (new_inferior);
if (new_inferior->pid != 0)
tp = any_thread_of_process (new_inferior->pid);
switch_to_thread (tp ? tp->ptid : null_ptid);
set_current_program_space (new_inferior->pspace);
}
delete_inferior_1 (inf, 1 /* silent */);
}
/* Execute a command within a safe environment.
Return <0 for error; >=0 for ok.
args->action will tell mi_execute_command what action
to perfrom after the given command has executed (display/suppress
prompt, display error). */
static void
captured_mi_execute_command (struct ui_out *uiout, void *data)
{
struct cleanup *cleanup;
struct mi_parse *context = (struct mi_parse *) data;
if (do_timings)
current_command_ts = context->cmd_start;
current_token = xstrdup (context->token);
cleanup = make_cleanup (free_current_contents, ¤t_token);
running_result_record_printed = 0;
mi_proceeded = 0;
switch (context->op)
{
case MI_COMMAND:
/* A MI command was read from the input stream. */
if (mi_debug_p)
/* FIXME: gdb_???? */
fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n",
context->token, context->command, context->args);
mi_cmd_execute (context);
/* Print the result if there were no errors.
Remember that on the way out of executing a command, you have
to directly use the mi_interp's uiout, since the command could
have reset the interpreter, in which case the current uiout
will most likely crash in the mi_out_* routines. */
if (!running_result_record_printed)
{
fputs_unfiltered (context->token, raw_stdout);
/* There's no particularly good reason why target-connect results
in not ^done. Should kill ^connected for MI3. */
fputs_unfiltered (strcmp (context->command, "target-select") == 0
? "^connected" : "^done", raw_stdout);
mi_out_put (uiout, raw_stdout);
mi_out_rewind (uiout);
mi_print_timing_maybe ();
fputs_unfiltered ("\n", raw_stdout);
}
else
/* The command does not want anything to be printed. In that
case, the command probably should not have written anything
to uiout, but in case it has written something, discard it. */
mi_out_rewind (uiout);
break;
case CLI_COMMAND:
{
char *argv[2];
/* A CLI command was read from the input stream. */
/* This "feature" will be removed as soon as we have a
complete set of mi commands. */
/* Echo the command on the console. */
fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
/* Call the "console" interpreter. */
argv[0] = "console";
argv[1] = context->command;
mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
/* If we changed interpreters, DON'T print out anything. */
if (current_interp_named_p (INTERP_MI)
|| current_interp_named_p (INTERP_MI1)
|| current_interp_named_p (INTERP_MI2)
|| current_interp_named_p (INTERP_MI3))
{
if (!running_result_record_printed)
{
fputs_unfiltered (context->token, raw_stdout);
fputs_unfiltered ("^done", raw_stdout);
mi_out_put (uiout, raw_stdout);
mi_out_rewind (uiout);
mi_print_timing_maybe ();
fputs_unfiltered ("\n", raw_stdout);
}
else
mi_out_rewind (uiout);
}
break;
}
}
do_cleanups (cleanup);
return;
}
/* Print a gdb exception to the MI output stream. */
static void
mi_print_exception (const char *token, struct gdb_exception exception)
{
fputs_unfiltered (token, raw_stdout);
fputs_unfiltered ("^error,msg=\"", raw_stdout);
if (exception.message == NULL)
fputs_unfiltered ("unknown error", raw_stdout);
else
fputstr_unfiltered (exception.message, '"', raw_stdout);
fputs_unfiltered ("\"\n", raw_stdout);
}
void
mi_execute_command (char *cmd, int from_tty)
{
char *token;
struct mi_parse *command = NULL;
volatile struct gdb_exception exception;
/* This is to handle EOF (^D). We just quit gdb. */
/* FIXME: we should call some API function here. */
if (cmd == 0)
quit_force (NULL, from_tty);
target_log_command (cmd);
TRY_CATCH (exception, RETURN_MASK_ALL)
{
command = mi_parse (cmd, &token);
}
if (exception.reason < 0)
{
mi_print_exception (token, exception);
xfree (token);
}
else
{
struct gdb_exception result;
ptid_t previous_ptid = inferior_ptid;
command->token = token;
if (do_timings)
{
command->cmd_start = (struct mi_timestamp *)
xmalloc (sizeof (struct mi_timestamp));
timestamp (command->cmd_start);
}
result = catch_exception (uiout, captured_mi_execute_command, command,
RETURN_MASK_ALL);
if (result.reason < 0)
{
/* The command execution failed and error() was called
somewhere. */
mi_print_exception (command->token, result);
mi_out_rewind (uiout);
}
bpstat_do_actions ();
if (/* The notifications are only output when the top-level
interpreter (specified on the command line) is MI. */
ui_out_is_mi_like_p (interp_ui_out (top_level_interpreter ()))
/* Don't try report anything if there are no threads --
the program is dead. */
&& thread_count () != 0
/* -thread-select explicitly changes thread. If frontend uses that
internally, we don't want to emit =thread-selected, since
=thread-selected is supposed to indicate user's intentions. */
&& strcmp (command->command, "thread-select") != 0)
{
struct mi_interp *mi = top_level_interpreter_data ();
int report_change = 0;
if (command->thread == -1)
{
report_change = (!ptid_equal (previous_ptid, null_ptid)
&& !ptid_equal (inferior_ptid, previous_ptid)
&& !ptid_equal (inferior_ptid, null_ptid));
}
else if (!ptid_equal (inferior_ptid, null_ptid))
{
struct thread_info *ti = inferior_thread ();
report_change = (ti->num != command->thread);
}
if (report_change)
{
struct thread_info *ti = inferior_thread ();
target_terminal_ours ();
fprintf_unfiltered (mi->event_channel,
"thread-selected,id=\"%d\"",
ti->num);
gdb_flush (mi->event_channel);
}
}
mi_parse_free (command);
}
fputs_unfiltered ("(gdb) \n", raw_stdout);
gdb_flush (raw_stdout);
/* Print any buffered hook code. */
/* ..... */
}
static void
mi_cmd_execute (struct mi_parse *parse)
{
struct cleanup *cleanup;
prepare_execute_command ();
cleanup = make_cleanup (null_cleanup, NULL);
if (parse->all && parse->thread_group != -1)
error (_("Cannot specify --thread-group together with --all"));
if (parse->all && parse->thread != -1)
error (_("Cannot specify --thread together with --all"));
if (parse->thread_group != -1 && parse->thread != -1)
error (_("Cannot specify --thread together with --thread-group"));
if (parse->frame != -1 && parse->thread == -1)
error (_("Cannot specify --frame without --thread"));
if (parse->thread_group != -1)
{
struct inferior *inf = find_inferior_id (parse->thread_group);
struct thread_info *tp = 0;
if (!inf)
error (_("Invalid thread group for the --thread-group option"));
set_current_inferior (inf);
/* This behaviour means that if --thread-group option identifies
an inferior with multiple threads, then a random one will be picked.
This is not a problem -- frontend should always provide --thread if
it wishes to operate on a specific thread. */
if (inf->pid != 0)
tp = any_thread_of_process (inf->pid);
switch_to_thread (tp ? tp->ptid : null_ptid);
set_current_program_space (inf->pspace);
}
if (parse->thread != -1)
{
struct thread_info *tp = find_thread_id (parse->thread);
if (!tp)
error (_("Invalid thread id: %d"), parse->thread);
if (is_exited (tp->ptid))
error (_("Thread id: %d has terminated"), parse->thread);
switch_to_thread (tp->ptid);
}
if (parse->frame != -1)
{
struct frame_info *fid;
int frame = parse->frame;
fid = find_relative_frame (get_current_frame (), &frame);
if (frame == 0)
/* find_relative_frame was successful */
select_frame (fid);
else
error (_("Invalid frame id: %d"), frame);
}
current_context = parse;
if (parse->cmd->argv_func != NULL)
parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
else if (parse->cmd->cli.cmd != 0)
{
/* FIXME: DELETE THIS. */
/* The operation is still implemented by a cli command. */
/* Must be a synchronous one. */
mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
parse->args);
}
else
{
/* FIXME: DELETE THIS. */
struct ui_file *stb;
stb = mem_fileopen ();
fputs_unfiltered ("Undefined mi command: ", stb);
fputstr_unfiltered (parse->command, '"', stb);
fputs_unfiltered (" (missing implementation)", stb);
make_cleanup_ui_file_delete (stb);
error_stream (stb);
}
do_cleanups (cleanup);
}
/* FIXME: This is just a hack so we can get some extra commands going.
We don't want to channel things through the CLI, but call libgdb directly.
Use only for synchronous commands. */
void
mi_execute_cli_command (const char *cmd, int args_p, const char *args)
{
if (cmd != 0)
{
struct cleanup *old_cleanups;
char *run;
if (args_p)
run = xstrprintf ("%s %s", cmd, args);
else
run = xstrdup (cmd);
if (mi_debug_p)
/* FIXME: gdb_???? */
fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
cmd, run);
old_cleanups = make_cleanup (xfree, run);
execute_command ( /*ui */ run, 0 /*from_tty */ );
do_cleanups (old_cleanups);
return;
}
}
void
mi_execute_async_cli_command (char *cli_command, char **argv, int argc)
{
struct cleanup *old_cleanups;
char *run;
if (target_can_async_p ())
run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
else
run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
old_cleanups = make_cleanup (xfree, run);
execute_command ( /*ui */ run, 0 /*from_tty */ );
if (target_can_async_p ())
{
/* If we're not executing, an exception should have been throw. */
gdb_assert (is_running (inferior_ptid));
do_cleanups (old_cleanups);
}
else
{
/* Do this before doing any printing. It would appear that some
print code leaves garbage around in the buffer. */
do_cleanups (old_cleanups);
}
}
void
mi_load_progress (const char *section_name,
unsigned long sent_so_far,
unsigned long total_section,
unsigned long total_sent,
unsigned long grand_total)
{
struct timeval time_now, delta, update_threshold;
static struct timeval last_update;
static char *previous_sect_name = NULL;
int new_section;
struct ui_out *saved_uiout;
/* This function is called through deprecated_show_load_progress
which means uiout may not be correct. Fix it for the duration
of this function. */
saved_uiout = uiout;
if (current_interp_named_p (INTERP_MI)
|| current_interp_named_p (INTERP_MI2))
uiout = mi_out_new (2);
else if (current_interp_named_p (INTERP_MI1))
uiout = mi_out_new (1);
else if (current_interp_named_p (INTERP_MI3))
uiout = mi_out_new (3);
else
return;
update_threshold.tv_sec = 0;
update_threshold.tv_usec = 500000;
gettimeofday (&time_now, NULL);
delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
if (delta.tv_usec < 0)
{
delta.tv_sec -= 1;
delta.tv_usec += 1000000L;
}
new_section = (previous_sect_name ?
strcmp (previous_sect_name, section_name) : 1);
if (new_section)
{
struct cleanup *cleanup_tuple;
xfree (previous_sect_name);
previous_sect_name = xstrdup (section_name);
if (current_token)
fputs_unfiltered (current_token, raw_stdout);
fputs_unfiltered ("+download", raw_stdout);
cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
ui_out_field_string (uiout, "section", section_name);
ui_out_field_int (uiout, "section-size", total_section);
ui_out_field_int (uiout, "total-size", grand_total);
do_cleanups (cleanup_tuple);
mi_out_put (uiout, raw_stdout);
fputs_unfiltered ("\n", raw_stdout);
gdb_flush (raw_stdout);
}
if (delta.tv_sec >= update_threshold.tv_sec &&
delta.tv_usec >= update_threshold.tv_usec)
{
struct cleanup *cleanup_tuple;
last_update.tv_sec = time_now.tv_sec;
last_update.tv_usec = time_now.tv_usec;
if (current_token)
fputs_unfiltered (current_token, raw_stdout);
fputs_unfiltered ("+download", raw_stdout);
cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
ui_out_field_string (uiout, "section", section_name);
ui_out_field_int (uiout, "section-sent", sent_so_far);
ui_out_field_int (uiout, "section-size", total_section);
ui_out_field_int (uiout, "total-sent", total_sent);
ui_out_field_int (uiout, "total-size", grand_total);
do_cleanups (cleanup_tuple);
mi_out_put (uiout, raw_stdout);
fputs_unfiltered ("\n", raw_stdout);
gdb_flush (raw_stdout);
}
xfree (uiout);
uiout = saved_uiout;
}
static void
timestamp (struct mi_timestamp *tv)
{
gettimeofday (&tv->wallclock, NULL);
#ifdef HAVE_GETRUSAGE
getrusage (RUSAGE_SELF, &rusage);
tv->utime.tv_sec = rusage.ru_utime.tv_sec;
tv->utime.tv_usec = rusage.ru_utime.tv_usec;
tv->stime.tv_sec = rusage.ru_stime.tv_sec;
tv->stime.tv_usec = rusage.ru_stime.tv_usec;
#else
{
long usec = get_run_time ();
tv->utime.tv_sec = usec/1000000L;
tv->utime.tv_usec = usec - 1000000L*tv->utime.tv_sec;
tv->stime.tv_sec = 0;
tv->stime.tv_usec = 0;
}
#endif
}
static void
print_diff_now (struct mi_timestamp *start)
{
struct mi_timestamp now;
timestamp (&now);
print_diff (start, &now);
}
void
mi_print_timing_maybe (void)
{
/* If the command is -enable-timing then do_timings may be
true whilst current_command_ts is not initialized. */
if (do_timings && current_command_ts)
print_diff_now (current_command_ts);
}
static long
timeval_diff (struct timeval start, struct timeval end)
{
return ((end.tv_sec - start.tv_sec) * 1000000L)
+ (end.tv_usec - start.tv_usec);
}
static void
print_diff (struct mi_timestamp *start, struct mi_timestamp *end)
{
fprintf_unfiltered
(raw_stdout,
",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
timeval_diff (start->wallclock, end->wallclock) / 1000000.0,
timeval_diff (start->utime, end->utime) / 1000000.0,
timeval_diff (start->stime, end->stime) / 1000000.0);
}
void
mi_cmd_trace_define_variable (char *command, char **argv, int argc)
{
struct expression *expr;
struct cleanup *back_to;
LONGEST initval = 0;
struct trace_state_variable *tsv;
char *name = 0;
if (argc != 1 && argc != 2)
error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
expr = parse_expression (argv[0]);
back_to = make_cleanup (xfree, expr);
if (expr->nelts == 3 && expr->elts[0].opcode == OP_INTERNALVAR)
{
struct internalvar *intvar = expr->elts[1].internalvar;
if (intvar)
name = internalvar_name (intvar);
}
if (!name || *name == '\0')
error (_("Invalid name of trace variable"));
tsv = find_trace_state_variable (name);
if (!tsv)
tsv = create_trace_state_variable (name);
if (argc == 2)
initval = value_as_long (parse_and_eval (argv[1]));
tsv->initial_value = initval;
do_cleanups (back_to);
}
void
mi_cmd_trace_list_variables (char *command, char **argv, int argc)
{
if (argc != 0)
error (_("-trace-list-variables: no arguments are allowed"));
tvariables_info_1 ();
}
void
mi_cmd_trace_find (char *command, char **argv, int argc)
{
char *mode;
if (argc == 0)
error (_("trace selection mode is required"));
mode = argv[0];
if (strcmp (mode, "none") == 0)
{
tfind_1 (tfind_number, -1, 0, 0, 0);
return;
}
if (current_trace_status ()->running)
error (_("May not look at trace frames while trace is running."));
if (strcmp (mode, "frame-number") == 0)
{
if (argc != 2)
error (_("frame number is required"));
tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
}
else if (strcmp (mode, "tracepoint-number") == 0)
{
if (argc != 2)
error (_("tracepoint number is required"));
tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
}
else if (strcmp (mode, "pc") == 0)
{
if (argc != 2)
error (_("PC is required"));
tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
}
else if (strcmp (mode, "pc-inside-range") == 0)
{
if (argc != 3)
error (_("Start and end PC are required"));
tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
parse_and_eval_address (argv[2]), 0);
}
else if (strcmp (mode, "pc-outside-range") == 0)
{
if (argc != 3)
error (_("Start and end PC are required"));
tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
parse_and_eval_address (argv[2]), 0);
}
else if (strcmp (mode, "line") == 0)
{
struct symtabs_and_lines sals;
struct symtab_and_line sal;
static CORE_ADDR start_pc, end_pc;
struct cleanup *back_to;
if (argc != 2)
error (_("Line is required"));
sals = decode_line_spec (argv[1], 1);
back_to = make_cleanup (xfree, sals.sals);
sal = sals.sals[0];
if (sal.symtab == 0)
error (_("Could not find the specified line"));
if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
else
error (_("Could not find the specified line"));
do_cleanups (back_to);
}
else
error (_("Invalid mode '%s'"), mode);
if (has_stack_frames () || get_traceframe_number () >= 0)
{
print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC);
}
}
void
mi_cmd_trace_save (char *command, char **argv, int argc)
{
int target_saves = 0;
char *filename;
if (argc != 1 && argc != 2)
error (_("Usage: -trace-save [-r] filename"));
if (argc == 2)
{
filename = argv[1];
if (strcmp (argv[0], "-r") == 0)
target_saves = 1;
else
error (_("Invalid option: %s"), argv[0]);
}
else
{
filename = argv[0];
}
trace_save (filename, target_saves);
}
void
mi_cmd_trace_start (char *command, char **argv, int argc)
{
start_tracing ();
}
void
mi_cmd_trace_status (char *command, char **argv, int argc)
{
trace_status_mi (0);
}
void
mi_cmd_trace_stop (char *command, char **argv, int argc)
{
stop_tracing ();
trace_status_mi (1);
}