// OBSOLETE /* Target-machine dependent code for Motorola 88000 series, for GDB. // OBSOLETE // OBSOLETE Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, // OBSOLETE 2000, 2001, 2002 Free Software Foundation, Inc. // OBSOLETE // OBSOLETE This file is part of GDB. // OBSOLETE // OBSOLETE This program is free software; you can redistribute it and/or modify // OBSOLETE it under the terms of the GNU General Public License as published by // OBSOLETE the Free Software Foundation; either version 2 of the License, or // OBSOLETE (at your option) any later version. // OBSOLETE // OBSOLETE This program is distributed in the hope that it will be useful, // OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of // OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // OBSOLETE GNU General Public License for more details. // OBSOLETE // OBSOLETE You should have received a copy of the GNU General Public License // OBSOLETE along with this program; if not, write to the Free Software // OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330, // OBSOLETE Boston, MA 02111-1307, USA. */ // OBSOLETE // OBSOLETE #include "defs.h" // OBSOLETE #include "frame.h" // OBSOLETE #include "inferior.h" // OBSOLETE #include "value.h" // OBSOLETE #include "gdbcore.h" // OBSOLETE #include "symtab.h" // OBSOLETE #include "setjmp.h" // OBSOLETE #include "value.h" // OBSOLETE #include "regcache.h" // OBSOLETE // OBSOLETE /* Size of an instruction */ // OBSOLETE #define BYTES_PER_88K_INSN 4 // OBSOLETE // OBSOLETE void frame_find_saved_regs (); // OBSOLETE // OBSOLETE /* Is this target an m88110? Otherwise assume m88100. This has // OBSOLETE relevance for the ways in which we screw with instruction pointers. */ // OBSOLETE // OBSOLETE int target_is_m88110 = 0; // OBSOLETE // OBSOLETE void // OBSOLETE m88k_target_write_pc (CORE_ADDR pc, ptid_t ptid) // OBSOLETE { // OBSOLETE /* According to the MC88100 RISC Microprocessor User's Manual, // OBSOLETE section 6.4.3.1.2: // OBSOLETE // OBSOLETE ... can be made to return to a particular instruction by placing // OBSOLETE a valid instruction address in the SNIP and the next sequential // OBSOLETE instruction address in the SFIP (with V bits set and E bits // OBSOLETE clear). The rte resumes execution at the instruction pointed to // OBSOLETE by the SNIP, then the SFIP. // OBSOLETE // OBSOLETE The E bit is the least significant bit (bit 0). The V (valid) // OBSOLETE bit is bit 1. This is why we logical or 2 into the values we are // OBSOLETE writing below. It turns out that SXIP plays no role when // OBSOLETE returning from an exception so nothing special has to be done // OBSOLETE with it. We could even (presumably) give it a totally bogus // OBSOLETE value. // OBSOLETE // OBSOLETE -- Kevin Buettner */ // OBSOLETE // OBSOLETE write_register_pid (SXIP_REGNUM, pc, ptid); // OBSOLETE write_register_pid (SNIP_REGNUM, (pc | 2), ptid); // OBSOLETE write_register_pid (SFIP_REGNUM, (pc | 2) + 4, ptid); // OBSOLETE } // OBSOLETE // OBSOLETE /* The type of a register. */ // OBSOLETE struct type * // OBSOLETE m88k_register_type (int regnum) // OBSOLETE { // OBSOLETE if (regnum >= XFP_REGNUM) // OBSOLETE return builtin_type_m88110_ext; // OBSOLETE else if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM) // OBSOLETE return builtin_type_void_func_ptr; // OBSOLETE else // OBSOLETE return builtin_type_int32; // OBSOLETE } // OBSOLETE // OBSOLETE // OBSOLETE /* The m88k kernel aligns all instructions on 4-byte boundaries. The // OBSOLETE kernel also uses the least significant two bits for its own hocus // OBSOLETE pocus. When gdb receives an address from the kernel, it needs to // OBSOLETE preserve those right-most two bits, but gdb also needs to be careful // OBSOLETE to realize that those two bits are not really a part of the address // OBSOLETE of an instruction. Shrug. */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE m88k_addr_bits_remove (CORE_ADDR addr) // OBSOLETE { // OBSOLETE return ((addr) & ~3); // OBSOLETE } // OBSOLETE // OBSOLETE // OBSOLETE /* Given a GDB frame, determine the address of the calling function's frame. // OBSOLETE This will be used to create a new GDB frame struct, and then // OBSOLETE INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. // OBSOLETE // OBSOLETE For us, the frame address is its stack pointer value, so we look up // OBSOLETE the function prologue to determine the caller's sp value, and return it. */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE frame_chain (struct frame_info *thisframe) // OBSOLETE { // OBSOLETE // OBSOLETE frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0); // OBSOLETE /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not // OBSOLETE the ADDRESS, of SP_REGNUM. It also depends on the cache of // OBSOLETE frame_find_saved_regs results. */ // OBSOLETE if (thisframe->fsr->regs[SP_REGNUM]) // OBSOLETE return thisframe->fsr->regs[SP_REGNUM]; // OBSOLETE else // OBSOLETE return thisframe->frame; /* Leaf fn -- next frame up has same SP. */ // OBSOLETE } // OBSOLETE // OBSOLETE int // OBSOLETE frameless_function_invocation (struct frame_info *frame) // OBSOLETE { // OBSOLETE // OBSOLETE frame_find_saved_regs (frame, (struct frame_saved_regs *) 0); // OBSOLETE /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not // OBSOLETE the ADDRESS, of SP_REGNUM. It also depends on the cache of // OBSOLETE frame_find_saved_regs results. */ // OBSOLETE if (frame->fsr->regs[SP_REGNUM]) // OBSOLETE return 0; /* Frameful -- return addr saved somewhere */ // OBSOLETE else // OBSOLETE return 1; /* Frameless -- no saved return address */ // OBSOLETE } // OBSOLETE // OBSOLETE void // OBSOLETE init_extra_frame_info (int fromleaf, struct frame_info *frame) // OBSOLETE { // OBSOLETE frame->fsr = 0; /* Not yet allocated */ // OBSOLETE frame->args_pointer = 0; /* Unknown */ // OBSOLETE frame->locals_pointer = 0; /* Unknown */ // OBSOLETE } // OBSOLETE // OBSOLETE /* Examine an m88k function prologue, recording the addresses at which // OBSOLETE registers are saved explicitly by the prologue code, and returning // OBSOLETE the address of the first instruction after the prologue (but not // OBSOLETE after the instruction at address LIMIT, as explained below). // OBSOLETE // OBSOLETE LIMIT places an upper bound on addresses of the instructions to be // OBSOLETE examined. If the prologue code scan reaches LIMIT, the scan is // OBSOLETE aborted and LIMIT is returned. This is used, when examining the // OBSOLETE prologue for the current frame, to keep examine_prologue () from // OBSOLETE claiming that a given register has been saved when in fact the // OBSOLETE instruction that saves it has not yet been executed. LIMIT is used // OBSOLETE at other times to stop the scan when we hit code after the true // OBSOLETE function prologue (e.g. for the first source line) which might // OBSOLETE otherwise be mistaken for function prologue. // OBSOLETE // OBSOLETE The format of the function prologue matched by this routine is // OBSOLETE derived from examination of the source to gcc 1.95, particularly // OBSOLETE the routine output_prologue () in config/out-m88k.c. // OBSOLETE // OBSOLETE subu r31,r31,n # stack pointer update // OBSOLETE // OBSOLETE (st rn,r31,offset)? # save incoming regs // OBSOLETE (st.d rn,r31,offset)? // OBSOLETE // OBSOLETE (addu r30,r31,n)? # frame pointer update // OBSOLETE // OBSOLETE (pic sequence)? # PIC code prologue // OBSOLETE // OBSOLETE (or rn,rm,0)? # Move parameters to other regs // OBSOLETE */ // OBSOLETE // OBSOLETE /* Macros for extracting fields from instructions. */ // OBSOLETE // OBSOLETE #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos)) // OBSOLETE #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width)) // OBSOLETE #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF)) // OBSOLETE #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF)) // OBSOLETE #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5) // OBSOLETE #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF)) // OBSOLETE // OBSOLETE /* // OBSOLETE * prologue_insn_tbl is a table of instructions which may comprise a // OBSOLETE * function prologue. Associated with each table entry (corresponding // OBSOLETE * to a single instruction or group of instructions), is an action. // OBSOLETE * This action is used by examine_prologue (below) to determine // OBSOLETE * the state of certain machine registers and where the stack frame lives. // OBSOLETE */ // OBSOLETE // OBSOLETE enum prologue_insn_action // OBSOLETE { // OBSOLETE PIA_SKIP, /* don't care what the instruction does */ // OBSOLETE PIA_NOTE_ST, /* note register stored and where */ // OBSOLETE PIA_NOTE_STD, /* note pair of registers stored and where */ // OBSOLETE PIA_NOTE_SP_ADJUSTMENT, /* note stack pointer adjustment */ // OBSOLETE PIA_NOTE_FP_ASSIGNMENT, /* note frame pointer assignment */ // OBSOLETE PIA_NOTE_PROLOGUE_END, /* no more prologue */ // OBSOLETE }; // OBSOLETE // OBSOLETE struct prologue_insns // OBSOLETE { // OBSOLETE unsigned long insn; // OBSOLETE unsigned long mask; // OBSOLETE enum prologue_insn_action action; // OBSOLETE }; // OBSOLETE // OBSOLETE struct prologue_insns prologue_insn_tbl[] = // OBSOLETE { // OBSOLETE /* Various register move instructions */ // OBSOLETE {0x58000000, 0xf800ffff, PIA_SKIP}, /* or/or.u with immed of 0 */ // OBSOLETE {0xf4005800, 0xfc1fffe0, PIA_SKIP}, /* or rd, r0, rs */ // OBSOLETE {0xf4005800, 0xfc00ffff, PIA_SKIP}, /* or rd, rs, r0 */ // OBSOLETE // OBSOLETE /* Stack pointer setup: "subu sp, sp, n" where n is a multiple of 8 */ // OBSOLETE {0x67ff0000, 0xffff0007, PIA_NOTE_SP_ADJUSTMENT}, // OBSOLETE // OBSOLETE /* Frame pointer assignment: "addu r30, r31, n" */ // OBSOLETE {0x63df0000, 0xffff0000, PIA_NOTE_FP_ASSIGNMENT}, // OBSOLETE // OBSOLETE /* Store to stack instructions; either "st rx, sp, n" or "st.d rx, sp, n" */ // OBSOLETE {0x241f0000, 0xfc1f0000, PIA_NOTE_ST}, /* st rx, sp, n */ // OBSOLETE {0x201f0000, 0xfc1f0000, PIA_NOTE_STD}, /* st.d rs, sp, n */ // OBSOLETE // OBSOLETE /* Instructions needed for setting up r25 for pic code. */ // OBSOLETE {0x5f200000, 0xffff0000, PIA_SKIP}, /* or.u r25, r0, offset_high */ // OBSOLETE {0xcc000002, 0xffffffff, PIA_SKIP}, /* bsr.n Lab */ // OBSOLETE {0x5b390000, 0xffff0000, PIA_SKIP}, /* or r25, r25, offset_low */ // OBSOLETE {0xf7396001, 0xffffffff, PIA_SKIP}, /* Lab: addu r25, r25, r1 */ // OBSOLETE // OBSOLETE /* Various branch or jump instructions which have a delay slot -- these // OBSOLETE do not form part of the prologue, but the instruction in the delay // OBSOLETE slot might be a store instruction which should be noted. */ // OBSOLETE {0xc4000000, 0xe4000000, PIA_NOTE_PROLOGUE_END}, // OBSOLETE /* br.n, bsr.n, bb0.n, or bb1.n */ // OBSOLETE {0xec000000, 0xfc000000, PIA_NOTE_PROLOGUE_END}, /* bcnd.n */ // OBSOLETE {0xf400c400, 0xfffff7e0, PIA_NOTE_PROLOGUE_END} /* jmp.n or jsr.n */ // OBSOLETE // OBSOLETE }; // OBSOLETE // OBSOLETE // OBSOLETE /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or // OBSOLETE is not the address of a valid instruction, the address of the next // OBSOLETE instruction beyond ADDR otherwise. *PWORD1 receives the first word // OBSOLETE of the instruction. */ // OBSOLETE // OBSOLETE #define NEXT_PROLOGUE_INSN(addr, lim, pword1) \ // OBSOLETE (((addr) < (lim)) ? next_insn (addr, pword1) : 0) // OBSOLETE // OBSOLETE /* Read the m88k instruction at 'memaddr' and return the address of // OBSOLETE the next instruction after that, or 0 if 'memaddr' is not the // OBSOLETE address of a valid instruction. The instruction // OBSOLETE is stored at 'pword1'. */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE next_insn (CORE_ADDR memaddr, unsigned long *pword1) // OBSOLETE { // OBSOLETE *pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN); // OBSOLETE return memaddr + BYTES_PER_88K_INSN; // OBSOLETE } // OBSOLETE // OBSOLETE /* Read a register from frames called by us (or from the hardware regs). */ // OBSOLETE // OBSOLETE static int // OBSOLETE read_next_frame_reg (struct frame_info *frame, int regno) // OBSOLETE { // OBSOLETE for (; frame; frame = frame->next) // OBSOLETE { // OBSOLETE if (regno == SP_REGNUM) // OBSOLETE return FRAME_FP (frame); // OBSOLETE else if (frame->fsr->regs[regno]) // OBSOLETE return read_memory_integer (frame->fsr->regs[regno], 4); // OBSOLETE } // OBSOLETE return read_register (regno); // OBSOLETE } // OBSOLETE // OBSOLETE /* Examine the prologue of a function. `ip' points to the first instruction. // OBSOLETE `limit' is the limit of the prologue (e.g. the addr of the first // OBSOLETE linenumber, or perhaps the program counter if we're stepping through). // OBSOLETE `frame_sp' is the stack pointer value in use in this frame. // OBSOLETE `fsr' is a pointer to a frame_saved_regs structure into which we put // OBSOLETE info about the registers saved by this frame. // OBSOLETE `fi' is a struct frame_info pointer; we fill in various fields in it // OBSOLETE to reflect the offsets of the arg pointer and the locals pointer. */ // OBSOLETE // OBSOLETE static CORE_ADDR // OBSOLETE examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit, // OBSOLETE CORE_ADDR frame_sp, struct frame_saved_regs *fsr, // OBSOLETE struct frame_info *fi) // OBSOLETE { // OBSOLETE register CORE_ADDR next_ip; // OBSOLETE register int src; // OBSOLETE unsigned long insn; // OBSOLETE int size, offset; // OBSOLETE char must_adjust[32]; /* If set, must adjust offsets in fsr */ // OBSOLETE int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */ // OBSOLETE int fp_offset = -1; /* -1 means not set */ // OBSOLETE CORE_ADDR frame_fp; // OBSOLETE CORE_ADDR prologue_end = 0; // OBSOLETE // OBSOLETE memset (must_adjust, '\0', sizeof (must_adjust)); // OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn); // OBSOLETE // OBSOLETE while (next_ip) // OBSOLETE { // OBSOLETE struct prologue_insns *pip; // OBSOLETE // OBSOLETE for (pip = prologue_insn_tbl; (insn & pip->mask) != pip->insn;) // OBSOLETE if (++pip >= prologue_insn_tbl + sizeof prologue_insn_tbl) // OBSOLETE goto end_of_prologue_found; /* not a prologue insn */ // OBSOLETE // OBSOLETE switch (pip->action) // OBSOLETE { // OBSOLETE case PIA_NOTE_ST: // OBSOLETE case PIA_NOTE_STD: // OBSOLETE if (sp_offset != -1) // OBSOLETE { // OBSOLETE src = ST_SRC (insn); // OBSOLETE offset = ST_OFFSET (insn); // OBSOLETE must_adjust[src] = 1; // OBSOLETE fsr->regs[src++] = offset; /* Will be adjusted later */ // OBSOLETE if (pip->action == PIA_NOTE_STD && src < 32) // OBSOLETE { // OBSOLETE offset += 4; // OBSOLETE must_adjust[src] = 1; // OBSOLETE fsr->regs[src++] = offset; // OBSOLETE } // OBSOLETE } // OBSOLETE else // OBSOLETE goto end_of_prologue_found; // OBSOLETE break; // OBSOLETE case PIA_NOTE_SP_ADJUSTMENT: // OBSOLETE if (sp_offset == -1) // OBSOLETE sp_offset = -SUBU_OFFSET (insn); // OBSOLETE else // OBSOLETE goto end_of_prologue_found; // OBSOLETE break; // OBSOLETE case PIA_NOTE_FP_ASSIGNMENT: // OBSOLETE if (fp_offset == -1) // OBSOLETE fp_offset = ADDU_OFFSET (insn); // OBSOLETE else // OBSOLETE goto end_of_prologue_found; // OBSOLETE break; // OBSOLETE case PIA_NOTE_PROLOGUE_END: // OBSOLETE if (!prologue_end) // OBSOLETE prologue_end = ip; // OBSOLETE break; // OBSOLETE case PIA_SKIP: // OBSOLETE default: // OBSOLETE /* Do nothing */ // OBSOLETE break; // OBSOLETE } // OBSOLETE // OBSOLETE ip = next_ip; // OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn); // OBSOLETE } // OBSOLETE // OBSOLETE end_of_prologue_found: // OBSOLETE // OBSOLETE if (prologue_end) // OBSOLETE ip = prologue_end; // OBSOLETE // OBSOLETE /* We're done with the prologue. If we don't care about the stack // OBSOLETE frame itself, just return. (Note that fsr->regs has been trashed, // OBSOLETE but the one caller who calls with fi==0 passes a dummy there.) */ // OBSOLETE // OBSOLETE if (fi == 0) // OBSOLETE return ip; // OBSOLETE // OBSOLETE /* // OBSOLETE OK, now we have: // OBSOLETE // OBSOLETE sp_offset original (before any alloca calls) displacement of SP // OBSOLETE (will be negative). // OBSOLETE // OBSOLETE fp_offset displacement from original SP to the FP for this frame // OBSOLETE or -1. // OBSOLETE // OBSOLETE fsr->regs[0..31] displacement from original SP to the stack // OBSOLETE location where reg[0..31] is stored. // OBSOLETE // OBSOLETE must_adjust[0..31] set if corresponding offset was set. // OBSOLETE // OBSOLETE If alloca has been called between the function prologue and the current // OBSOLETE IP, then the current SP (frame_sp) will not be the original SP as set by // OBSOLETE the function prologue. If the current SP is not the original SP, then the // OBSOLETE compiler will have allocated an FP for this frame, fp_offset will be set, // OBSOLETE and we can use it to calculate the original SP. // OBSOLETE // OBSOLETE Then, we figure out where the arguments and locals are, and relocate the // OBSOLETE offsets in fsr->regs to absolute addresses. */ // OBSOLETE // OBSOLETE if (fp_offset != -1) // OBSOLETE { // OBSOLETE /* We have a frame pointer, so get it, and base our calc's on it. */ // OBSOLETE frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM); // OBSOLETE frame_sp = frame_fp - fp_offset; // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE /* We have no frame pointer, therefore frame_sp is still the same value // OBSOLETE as set by prologue. But where is the frame itself? */ // OBSOLETE if (must_adjust[SRP_REGNUM]) // OBSOLETE { // OBSOLETE /* Function header saved SRP (r1), the return address. Frame starts // OBSOLETE 4 bytes down from where it was saved. */ // OBSOLETE frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4; // OBSOLETE fi->locals_pointer = frame_fp; // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE /* Function header didn't save SRP (r1), so we are in a leaf fn or // OBSOLETE are otherwise confused. */ // OBSOLETE frame_fp = -1; // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE /* The locals are relative to the FP (whether it exists as an allocated // OBSOLETE register, or just as an assumed offset from the SP) */ // OBSOLETE fi->locals_pointer = frame_fp; // OBSOLETE // OBSOLETE /* The arguments are just above the SP as it was before we adjusted it // OBSOLETE on entry. */ // OBSOLETE fi->args_pointer = frame_sp - sp_offset; // OBSOLETE // OBSOLETE /* Now that we know the SP value used by the prologue, we know where // OBSOLETE it saved all the registers. */ // OBSOLETE for (src = 0; src < 32; src++) // OBSOLETE if (must_adjust[src]) // OBSOLETE fsr->regs[src] += frame_sp; // OBSOLETE // OBSOLETE /* The saved value of the SP is always known. */ // OBSOLETE /* (we hope...) */ // OBSOLETE if (fsr->regs[SP_REGNUM] != 0 // OBSOLETE && fsr->regs[SP_REGNUM] != frame_sp - sp_offset) // OBSOLETE fprintf_unfiltered (gdb_stderr, "Bad saved SP value %lx != %lx, offset %x!\n", // OBSOLETE fsr->regs[SP_REGNUM], // OBSOLETE frame_sp - sp_offset, sp_offset); // OBSOLETE // OBSOLETE fsr->regs[SP_REGNUM] = frame_sp - sp_offset; // OBSOLETE // OBSOLETE return (ip); // OBSOLETE } // OBSOLETE // OBSOLETE /* Given an ip value corresponding to the start of a function, // OBSOLETE return the ip of the first instruction after the function // OBSOLETE prologue. */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE m88k_skip_prologue (CORE_ADDR ip) // OBSOLETE { // OBSOLETE struct frame_saved_regs saved_regs_dummy; // OBSOLETE struct symtab_and_line sal; // OBSOLETE CORE_ADDR limit; // OBSOLETE // OBSOLETE sal = find_pc_line (ip, 0); // OBSOLETE limit = (sal.end) ? sal.end : 0xffffffff; // OBSOLETE // OBSOLETE return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy, // OBSOLETE (struct frame_info *) 0)); // OBSOLETE } // OBSOLETE // OBSOLETE /* Put here the code to store, into a struct frame_saved_regs, // OBSOLETE the addresses of the saved registers of frame described by FRAME_INFO. // OBSOLETE This includes special registers such as pc and fp saved in special // OBSOLETE ways in the stack frame. sp is even more special: // OBSOLETE the address we return for it IS the sp for the next frame. // OBSOLETE // OBSOLETE We cache the result of doing this in the frame_obstack, since it is // OBSOLETE fairly expensive. */ // OBSOLETE // OBSOLETE void // OBSOLETE frame_find_saved_regs (struct frame_info *fi, struct frame_saved_regs *fsr) // OBSOLETE { // OBSOLETE register struct frame_saved_regs *cache_fsr; // OBSOLETE CORE_ADDR ip; // OBSOLETE struct symtab_and_line sal; // OBSOLETE CORE_ADDR limit; // OBSOLETE // OBSOLETE if (!fi->fsr) // OBSOLETE { // OBSOLETE cache_fsr = (struct frame_saved_regs *) // OBSOLETE frame_obstack_alloc (sizeof (struct frame_saved_regs)); // OBSOLETE memset (cache_fsr, '\0', sizeof (struct frame_saved_regs)); // OBSOLETE fi->fsr = cache_fsr; // OBSOLETE // OBSOLETE /* Find the start and end of the function prologue. If the PC // OBSOLETE is in the function prologue, we only consider the part that // OBSOLETE has executed already. In the case where the PC is not in // OBSOLETE the function prologue, we set limit to two instructions beyond // OBSOLETE where the prologue ends in case if any of the prologue instructions // OBSOLETE were moved into a delay slot of a branch instruction. */ // OBSOLETE // OBSOLETE ip = get_pc_function_start (fi->pc); // OBSOLETE sal = find_pc_line (ip, 0); // OBSOLETE limit = (sal.end && sal.end < fi->pc) ? sal.end + 2 * BYTES_PER_88K_INSN // OBSOLETE : fi->pc; // OBSOLETE // OBSOLETE /* This will fill in fields in *fi as well as in cache_fsr. */ // OBSOLETE #ifdef SIGTRAMP_FRAME_FIXUP // OBSOLETE if (fi->signal_handler_caller) // OBSOLETE SIGTRAMP_FRAME_FIXUP (fi->frame); // OBSOLETE #endif // OBSOLETE examine_prologue (ip, limit, fi->frame, cache_fsr, fi); // OBSOLETE #ifdef SIGTRAMP_SP_FIXUP // OBSOLETE if (fi->signal_handler_caller && fi->fsr->regs[SP_REGNUM]) // OBSOLETE SIGTRAMP_SP_FIXUP (fi->fsr->regs[SP_REGNUM]); // OBSOLETE #endif // OBSOLETE } // OBSOLETE // OBSOLETE if (fsr) // OBSOLETE *fsr = *fi->fsr; // OBSOLETE } // OBSOLETE // OBSOLETE /* Return the address of the locals block for the frame // OBSOLETE described by FI. Returns 0 if the address is unknown. // OBSOLETE NOTE! Frame locals are referred to by negative offsets from the // OBSOLETE argument pointer, so this is the same as frame_args_address(). */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE frame_locals_address (struct frame_info *fi) // OBSOLETE { // OBSOLETE struct frame_saved_regs fsr; // OBSOLETE // OBSOLETE if (fi->args_pointer) /* Cached value is likely there. */ // OBSOLETE return fi->args_pointer; // OBSOLETE // OBSOLETE /* Nope, generate it. */ // OBSOLETE // OBSOLETE get_frame_saved_regs (fi, &fsr); // OBSOLETE // OBSOLETE return fi->args_pointer; // OBSOLETE } // OBSOLETE // OBSOLETE /* Return the address of the argument block for the frame // OBSOLETE described by FI. Returns 0 if the address is unknown. */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE frame_args_address (struct frame_info *fi) // OBSOLETE { // OBSOLETE struct frame_saved_regs fsr; // OBSOLETE // OBSOLETE if (fi->args_pointer) /* Cached value is likely there. */ // OBSOLETE return fi->args_pointer; // OBSOLETE // OBSOLETE /* Nope, generate it. */ // OBSOLETE // OBSOLETE get_frame_saved_regs (fi, &fsr); // OBSOLETE // OBSOLETE return fi->args_pointer; // OBSOLETE } // OBSOLETE // OBSOLETE /* Return the saved PC from this frame. // OBSOLETE // OBSOLETE If the frame has a memory copy of SRP_REGNUM, use that. If not, // OBSOLETE just use the register SRP_REGNUM itself. */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE frame_saved_pc (struct frame_info *frame) // OBSOLETE { // OBSOLETE return read_next_frame_reg (frame, SRP_REGNUM); // OBSOLETE } // OBSOLETE // OBSOLETE // OBSOLETE #define DUMMY_FRAME_SIZE 192 // OBSOLETE // OBSOLETE static void // OBSOLETE write_word (CORE_ADDR sp, ULONGEST word) // OBSOLETE { // OBSOLETE register int len = REGISTER_SIZE; // OBSOLETE char buffer[MAX_REGISTER_RAW_SIZE]; // OBSOLETE // OBSOLETE store_unsigned_integer (buffer, len, word); // OBSOLETE write_memory (sp, buffer, len); // OBSOLETE } // OBSOLETE // OBSOLETE void // OBSOLETE m88k_push_dummy_frame (void) // OBSOLETE { // OBSOLETE register CORE_ADDR sp = read_register (SP_REGNUM); // OBSOLETE register int rn; // OBSOLETE int offset; // OBSOLETE // OBSOLETE sp -= DUMMY_FRAME_SIZE; /* allocate a bunch of space */ // OBSOLETE // OBSOLETE for (rn = 0, offset = 0; rn <= SP_REGNUM; rn++, offset += 4) // OBSOLETE write_word (sp + offset, read_register (rn)); // OBSOLETE // OBSOLETE write_word (sp + offset, read_register (SXIP_REGNUM)); // OBSOLETE offset += 4; // OBSOLETE // OBSOLETE write_word (sp + offset, read_register (SNIP_REGNUM)); // OBSOLETE offset += 4; // OBSOLETE // OBSOLETE write_word (sp + offset, read_register (SFIP_REGNUM)); // OBSOLETE offset += 4; // OBSOLETE // OBSOLETE write_word (sp + offset, read_register (PSR_REGNUM)); // OBSOLETE offset += 4; // OBSOLETE // OBSOLETE write_word (sp + offset, read_register (FPSR_REGNUM)); // OBSOLETE offset += 4; // OBSOLETE // OBSOLETE write_word (sp + offset, read_register (FPCR_REGNUM)); // OBSOLETE offset += 4; // OBSOLETE // OBSOLETE write_register (SP_REGNUM, sp); // OBSOLETE write_register (ACTUAL_FP_REGNUM, sp); // OBSOLETE } // OBSOLETE // OBSOLETE void // OBSOLETE pop_frame (void) // OBSOLETE { // OBSOLETE register struct frame_info *frame = get_current_frame (); // OBSOLETE register int regnum; // OBSOLETE struct frame_saved_regs fsr; // OBSOLETE // OBSOLETE get_frame_saved_regs (frame, &fsr); // OBSOLETE // OBSOLETE if (PC_IN_CALL_DUMMY (read_pc (), read_register (SP_REGNUM), frame->frame)) // OBSOLETE { // OBSOLETE /* FIXME: I think get_frame_saved_regs should be handling this so // OBSOLETE that we can deal with the saved registers properly (e.g. frame // OBSOLETE 1 is a call dummy, the user types "frame 2" and then "print $ps"). */ // OBSOLETE register CORE_ADDR sp = read_register (ACTUAL_FP_REGNUM); // OBSOLETE int offset; // OBSOLETE // OBSOLETE for (regnum = 0, offset = 0; regnum <= SP_REGNUM; regnum++, offset += 4) // OBSOLETE (void) write_register (regnum, read_memory_integer (sp + offset, 4)); // OBSOLETE // OBSOLETE write_register (SXIP_REGNUM, read_memory_integer (sp + offset, 4)); // OBSOLETE offset += 4; // OBSOLETE // OBSOLETE write_register (SNIP_REGNUM, read_memory_integer (sp + offset, 4)); // OBSOLETE offset += 4; // OBSOLETE // OBSOLETE write_register (SFIP_REGNUM, read_memory_integer (sp + offset, 4)); // OBSOLETE offset += 4; // OBSOLETE // OBSOLETE write_register (PSR_REGNUM, read_memory_integer (sp + offset, 4)); // OBSOLETE offset += 4; // OBSOLETE // OBSOLETE write_register (FPSR_REGNUM, read_memory_integer (sp + offset, 4)); // OBSOLETE offset += 4; // OBSOLETE // OBSOLETE write_register (FPCR_REGNUM, read_memory_integer (sp + offset, 4)); // OBSOLETE offset += 4; // OBSOLETE // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE for (regnum = FP_REGNUM; regnum > 0; regnum--) // OBSOLETE if (fsr.regs[regnum]) // OBSOLETE write_register (regnum, // OBSOLETE read_memory_integer (fsr.regs[regnum], 4)); // OBSOLETE write_pc (frame_saved_pc (frame)); // OBSOLETE } // OBSOLETE reinit_frame_cache (); // OBSOLETE } // OBSOLETE // OBSOLETE void // OBSOLETE _initialize_m88k_tdep (void) // OBSOLETE { // OBSOLETE tm_print_insn = print_insn_m88k; // OBSOLETE }