/* YACC grammar for Modula-2 expressions, for GDB. Copyright (C) 1986, 1989, 1990, 1991, 1993, 1994 Free Software Foundation, Inc. Generated from expread.y (now c-exp.y) and contributed by the Department of Computer Science at the State University of New York at Buffalo, 1991. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Parse a Modula-2 expression from text in a string, and return the result as a struct expression pointer. That structure contains arithmetic operations in reverse polish, with constants represented by operations that are followed by special data. See expression.h for the details of the format. What is important here is that it can be built up sequentially during the process of parsing; the lower levels of the tree always come first in the result. Note that malloc's and realloc's in this file are transformed to xmalloc and xrealloc respectively by the same sed command in the makefile that remaps any other malloc/realloc inserted by the parser generator. Doing this with #defines and trying to control the interaction with include files (<malloc.h> and <stdlib.h> for example) just became too messy, particularly when such includes can be inserted at random times by the parser generator. */ %{ #include "defs.h" #include <string.h> #include "expression.h" #include "language.h" #include "value.h" #include "parser-defs.h" #include "m2-lang.h" #include "bfd.h" /* Required by objfiles.h. */ #include "symfile.h" /* Required by objfiles.h. */ #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */ /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc), as well as gratuitiously global symbol names, so we can have multiple yacc generated parsers in gdb. Note that these are only the variables produced by yacc. If other parser generators (bison, byacc, etc) produce additional global names that conflict at link time, then those parser generators need to be fixed instead of adding those names to this list. */ #define yymaxdepth m2_maxdepth #define yyparse m2_parse #define yylex m2_lex #define yyerror m2_error #define yylval m2_lval #define yychar m2_char #define yydebug m2_debug #define yypact m2_pact #define yyr1 m2_r1 #define yyr2 m2_r2 #define yydef m2_def #define yychk m2_chk #define yypgo m2_pgo #define yyact m2_act #define yyexca m2_exca #define yyerrflag m2_errflag #define yynerrs m2_nerrs #define yyps m2_ps #define yypv m2_pv #define yys m2_s #define yy_yys m2_yys #define yystate m2_state #define yytmp m2_tmp #define yyv m2_v #define yy_yyv m2_yyv #define yyval m2_val #define yylloc m2_lloc #define yyreds m2_reds /* With YYDEBUG defined */ #define yytoks m2_toks /* With YYDEBUG defined */ #ifndef YYDEBUG #define YYDEBUG 0 /* Default to no yydebug support */ #endif int yyparse PARAMS ((void)); static int yylex PARAMS ((void)); void yyerror PARAMS ((char *)); #if 0 static char * make_qualname PARAMS ((char *, char *)); #endif static int parse_number PARAMS ((int)); /* The sign of the number being parsed. */ static int number_sign = 1; /* The block that the module specified by the qualifer on an identifer is contained in, */ #if 0 static struct block *modblock=0; #endif %} /* Although the yacc "value" of an expression is not used, since the result is stored in the structure being created, other node types do have values. */ %union { LONGEST lval; unsigned LONGEST ulval; double dval; struct symbol *sym; struct type *tval; struct stoken sval; int voidval; struct block *bval; enum exp_opcode opcode; struct internalvar *ivar; struct type **tvec; int *ivec; } %type <voidval> exp type_exp start set %type <voidval> variable %type <tval> type %type <bval> block %type <sym> fblock %token <lval> INT HEX ERROR %token <ulval> UINT M2_TRUE M2_FALSE CHAR %token <dval> FLOAT /* Both NAME and TYPENAME tokens represent symbols in the input, and both convey their data as strings. But a TYPENAME is a string that happens to be defined as a typedef or builtin type name (such as int or char) and a NAME is any other symbol. Contexts where this distinction is not important can use the nonterminal "name", which matches either NAME or TYPENAME. */ %token <sval> STRING %token <sval> NAME BLOCKNAME IDENT VARNAME %token <sval> TYPENAME %token SIZE CAP ORD HIGH ABS MIN_FUNC MAX_FUNC FLOAT_FUNC VAL CHR ODD TRUNC %token INC DEC INCL EXCL /* The GDB scope operator */ %token COLONCOLON %token <lval> LAST REGNAME %token <ivar> INTERNAL_VAR /* M2 tokens */ %left ',' %left ABOVE_COMMA %nonassoc ASSIGN %left '<' '>' LEQ GEQ '=' NOTEQUAL '#' IN %left OROR %left LOGICAL_AND '&' %left '@' %left '+' '-' %left '*' '/' DIV MOD %right UNARY %right '^' DOT '[' '(' %right NOT '~' %left COLONCOLON QID /* This is not an actual token ; it is used for precedence. %right QID */ %% start : exp | type_exp ; type_exp: type { write_exp_elt_opcode(OP_TYPE); write_exp_elt_type($1); write_exp_elt_opcode(OP_TYPE); } ; /* Expressions */ exp : exp '^' %prec UNARY { write_exp_elt_opcode (UNOP_IND); } exp : '-' { number_sign = -1; } exp %prec UNARY { number_sign = 1; write_exp_elt_opcode (UNOP_NEG); } ; exp : '+' exp %prec UNARY { write_exp_elt_opcode(UNOP_PLUS); } ; exp : not_exp exp %prec UNARY { write_exp_elt_opcode (UNOP_LOGICAL_NOT); } ; not_exp : NOT | '~' ; exp : CAP '(' exp ')' { write_exp_elt_opcode (UNOP_CAP); } ; exp : ORD '(' exp ')' { write_exp_elt_opcode (UNOP_ORD); } ; exp : ABS '(' exp ')' { write_exp_elt_opcode (UNOP_ABS); } ; exp : HIGH '(' exp ')' { write_exp_elt_opcode (UNOP_HIGH); } ; exp : MIN_FUNC '(' type ')' { write_exp_elt_opcode (UNOP_MIN); write_exp_elt_type ($3); write_exp_elt_opcode (UNOP_MIN); } ; exp : MAX_FUNC '(' type ')' { write_exp_elt_opcode (UNOP_MAX); write_exp_elt_type ($3); write_exp_elt_opcode (UNOP_MIN); } ; exp : FLOAT_FUNC '(' exp ')' { write_exp_elt_opcode (UNOP_FLOAT); } ; exp : VAL '(' type ',' exp ')' { write_exp_elt_opcode (BINOP_VAL); write_exp_elt_type ($3); write_exp_elt_opcode (BINOP_VAL); } ; exp : CHR '(' exp ')' { write_exp_elt_opcode (UNOP_CHR); } ; exp : ODD '(' exp ')' { write_exp_elt_opcode (UNOP_ODD); } ; exp : TRUNC '(' exp ')' { write_exp_elt_opcode (UNOP_TRUNC); } ; exp : SIZE exp %prec UNARY { write_exp_elt_opcode (UNOP_SIZEOF); } ; exp : INC '(' exp ')' { write_exp_elt_opcode(UNOP_PREINCREMENT); } ; exp : INC '(' exp ',' exp ')' { write_exp_elt_opcode(BINOP_ASSIGN_MODIFY); write_exp_elt_opcode(BINOP_ADD); write_exp_elt_opcode(BINOP_ASSIGN_MODIFY); } ; exp : DEC '(' exp ')' { write_exp_elt_opcode(UNOP_PREDECREMENT);} ; exp : DEC '(' exp ',' exp ')' { write_exp_elt_opcode(BINOP_ASSIGN_MODIFY); write_exp_elt_opcode(BINOP_SUB); write_exp_elt_opcode(BINOP_ASSIGN_MODIFY); } ; exp : exp DOT NAME { write_exp_elt_opcode (STRUCTOP_STRUCT); write_exp_string ($3); write_exp_elt_opcode (STRUCTOP_STRUCT); } ; exp : set ; exp : exp IN set { error("Sets are not implemented.");} ; exp : INCL '(' exp ',' exp ')' { error("Sets are not implemented.");} ; exp : EXCL '(' exp ',' exp ')' { error("Sets are not implemented.");} set : '{' arglist '}' { error("Sets are not implemented.");} | type '{' arglist '}' { error("Sets are not implemented.");} ; /* Modula-2 array subscript notation [a,b,c...] */ exp : exp '[' /* This function just saves the number of arguments that follow in the list. It is *not* specific to function types */ { start_arglist(); } non_empty_arglist ']' %prec DOT { write_exp_elt_opcode (MULTI_SUBSCRIPT); write_exp_elt_longcst ((LONGEST) end_arglist()); write_exp_elt_opcode (MULTI_SUBSCRIPT); } ; exp : exp '(' /* This is to save the value of arglist_len being accumulated by an outer function call. */ { start_arglist (); } arglist ')' %prec DOT { write_exp_elt_opcode (OP_FUNCALL); write_exp_elt_longcst ((LONGEST) end_arglist ()); write_exp_elt_opcode (OP_FUNCALL); } ; arglist : ; arglist : exp { arglist_len = 1; } ; arglist : arglist ',' exp %prec ABOVE_COMMA { arglist_len++; } ; non_empty_arglist : exp { arglist_len = 1; } ; non_empty_arglist : non_empty_arglist ',' exp %prec ABOVE_COMMA { arglist_len++; } ; /* GDB construct */ exp : '{' type '}' exp %prec UNARY { write_exp_elt_opcode (UNOP_MEMVAL); write_exp_elt_type ($2); write_exp_elt_opcode (UNOP_MEMVAL); } ; exp : type '(' exp ')' %prec UNARY { write_exp_elt_opcode (UNOP_CAST); write_exp_elt_type ($1); write_exp_elt_opcode (UNOP_CAST); } ; exp : '(' exp ')' { } ; /* Binary operators in order of decreasing precedence. Note that some of these operators are overloaded! (ie. sets) */ /* GDB construct */ exp : exp '@' exp { write_exp_elt_opcode (BINOP_REPEAT); } ; exp : exp '*' exp { write_exp_elt_opcode (BINOP_MUL); } ; exp : exp '/' exp { write_exp_elt_opcode (BINOP_DIV); } ; exp : exp DIV exp { write_exp_elt_opcode (BINOP_INTDIV); } ; exp : exp MOD exp { write_exp_elt_opcode (BINOP_REM); } ; exp : exp '+' exp { write_exp_elt_opcode (BINOP_ADD); } ; exp : exp '-' exp { write_exp_elt_opcode (BINOP_SUB); } ; exp : exp '=' exp { write_exp_elt_opcode (BINOP_EQUAL); } ; exp : exp NOTEQUAL exp { write_exp_elt_opcode (BINOP_NOTEQUAL); } | exp '#' exp { write_exp_elt_opcode (BINOP_NOTEQUAL); } ; exp : exp LEQ exp { write_exp_elt_opcode (BINOP_LEQ); } ; exp : exp GEQ exp { write_exp_elt_opcode (BINOP_GEQ); } ; exp : exp '<' exp { write_exp_elt_opcode (BINOP_LESS); } ; exp : exp '>' exp { write_exp_elt_opcode (BINOP_GTR); } ; exp : exp LOGICAL_AND exp { write_exp_elt_opcode (BINOP_LOGICAL_AND); } ; exp : exp OROR exp { write_exp_elt_opcode (BINOP_LOGICAL_OR); } ; exp : exp ASSIGN exp { write_exp_elt_opcode (BINOP_ASSIGN); } ; /* Constants */ exp : M2_TRUE { write_exp_elt_opcode (OP_BOOL); write_exp_elt_longcst ((LONGEST) $1); write_exp_elt_opcode (OP_BOOL); } ; exp : M2_FALSE { write_exp_elt_opcode (OP_BOOL); write_exp_elt_longcst ((LONGEST) $1); write_exp_elt_opcode (OP_BOOL); } ; exp : INT { write_exp_elt_opcode (OP_LONG); write_exp_elt_type (builtin_type_m2_int); write_exp_elt_longcst ((LONGEST) $1); write_exp_elt_opcode (OP_LONG); } ; exp : UINT { write_exp_elt_opcode (OP_LONG); write_exp_elt_type (builtin_type_m2_card); write_exp_elt_longcst ((LONGEST) $1); write_exp_elt_opcode (OP_LONG); } ; exp : CHAR { write_exp_elt_opcode (OP_LONG); write_exp_elt_type (builtin_type_m2_char); write_exp_elt_longcst ((LONGEST) $1); write_exp_elt_opcode (OP_LONG); } ; exp : FLOAT { write_exp_elt_opcode (OP_DOUBLE); write_exp_elt_type (builtin_type_m2_real); write_exp_elt_dblcst ($1); write_exp_elt_opcode (OP_DOUBLE); } ; exp : variable ; /* The GDB internal variable $$, et al. */ exp : LAST { write_exp_elt_opcode (OP_LAST); write_exp_elt_longcst ((LONGEST) $1); write_exp_elt_opcode (OP_LAST); } ; exp : REGNAME { write_exp_elt_opcode (OP_REGISTER); write_exp_elt_longcst ((LONGEST) $1); write_exp_elt_opcode (OP_REGISTER); } ; exp : SIZE '(' type ')' %prec UNARY { write_exp_elt_opcode (OP_LONG); write_exp_elt_type (builtin_type_int); write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3)); write_exp_elt_opcode (OP_LONG); } ; exp : STRING { write_exp_elt_opcode (OP_M2_STRING); write_exp_string ($1); write_exp_elt_opcode (OP_M2_STRING); } ; /* This will be used for extensions later. Like adding modules. */ block : fblock { $$ = SYMBOL_BLOCK_VALUE($1); } ; fblock : BLOCKNAME { struct symbol *sym = lookup_symbol (copy_name ($1), expression_context_block, VAR_NAMESPACE, 0, NULL); $$ = sym;} ; /* GDB scope operator */ fblock : block COLONCOLON BLOCKNAME { struct symbol *tem = lookup_symbol (copy_name ($3), $1, VAR_NAMESPACE, 0, NULL); if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK) error ("No function \"%s\" in specified context.", copy_name ($3)); $$ = tem; } ; /* Useful for assigning to PROCEDURE variables */ variable: fblock { write_exp_elt_opcode(OP_VAR_VALUE); write_exp_elt_block (NULL); write_exp_elt_sym ($1); write_exp_elt_opcode (OP_VAR_VALUE); } ; /* GDB internal ($foo) variable */ variable: INTERNAL_VAR { write_exp_elt_opcode (OP_INTERNALVAR); write_exp_elt_intern ($1); write_exp_elt_opcode (OP_INTERNALVAR); } ; /* GDB scope operator */ variable: block COLONCOLON NAME { struct symbol *sym; sym = lookup_symbol (copy_name ($3), $1, VAR_NAMESPACE, 0, NULL); if (sym == 0) error ("No symbol \"%s\" in specified context.", copy_name ($3)); write_exp_elt_opcode (OP_VAR_VALUE); /* block_found is set by lookup_symbol. */ write_exp_elt_block (block_found); write_exp_elt_sym (sym); write_exp_elt_opcode (OP_VAR_VALUE); } ; /* Base case for variables. */ variable: NAME { struct symbol *sym; int is_a_field_of_this; sym = lookup_symbol (copy_name ($1), expression_context_block, VAR_NAMESPACE, &is_a_field_of_this, NULL); if (sym) { if (symbol_read_needs_frame (sym)) { if (innermost_block == 0 || contained_in (block_found, innermost_block)) innermost_block = block_found; } write_exp_elt_opcode (OP_VAR_VALUE); /* We want to use the selected frame, not another more inner frame which happens to be in the same block. */ write_exp_elt_block (NULL); write_exp_elt_sym (sym); write_exp_elt_opcode (OP_VAR_VALUE); } else { struct minimal_symbol *msymbol; register char *arg = copy_name ($1); msymbol = lookup_minimal_symbol (arg, NULL); if (msymbol != NULL) { write_exp_msymbol (msymbol, lookup_function_type (builtin_type_int), builtin_type_int); } else if (!have_full_symbols () && !have_partial_symbols ()) error ("No symbol table is loaded. Use the \"symbol-file\" command."); else error ("No symbol \"%s\" in current context.", copy_name ($1)); } } ; type : TYPENAME { $$ = lookup_typename (copy_name ($1), expression_context_block, 0); } ; %% #if 0 /* FIXME! */ int overflow(a,b) long a,b; { return (MAX_OF_TYPE(builtin_type_m2_int) - b) < a; } int uoverflow(a,b) unsigned long a,b; { return (MAX_OF_TYPE(builtin_type_m2_card) - b) < a; } #endif /* FIXME */ /* Take care of parsing a number (anything that starts with a digit). Set yylval and return the token type; update lexptr. LEN is the number of characters in it. */ /*** Needs some error checking for the float case ***/ static int parse_number (olen) int olen; { register char *p = lexptr; register LONGEST n = 0; register LONGEST prevn = 0; register int c,i,ischar=0; register int base = input_radix; register int len = olen; int unsigned_p = number_sign == 1 ? 1 : 0; if(p[len-1] == 'H') { base = 16; len--; } else if(p[len-1] == 'C' || p[len-1] == 'B') { base = 8; ischar = p[len-1] == 'C'; len--; } /* Scan the number */ for (c = 0; c < len; c++) { if (p[c] == '.' && base == 10) { /* It's a float since it contains a point. */ yylval.dval = atof (p); lexptr += len; return FLOAT; } if (p[c] == '.' && base != 10) error("Floating point numbers must be base 10."); if (base == 10 && (p[c] < '0' || p[c] > '9')) error("Invalid digit \'%c\' in number.",p[c]); } while (len-- > 0) { c = *p++; n *= base; if( base == 8 && (c == '8' || c == '9')) error("Invalid digit \'%c\' in octal number.",c); if (c >= '0' && c <= '9') i = c - '0'; else { if (base == 16 && c >= 'A' && c <= 'F') i = c - 'A' + 10; else return ERROR; } n+=i; if(i >= base) return ERROR; if(!unsigned_p && number_sign == 1 && (prevn >= n)) unsigned_p=1; /* Try something unsigned */ /* Don't do the range check if n==i and i==0, since that special case will give an overflow error. */ if(RANGE_CHECK && n!=i && i) { if((unsigned_p && (unsigned)prevn >= (unsigned)n) || ((!unsigned_p && number_sign==-1) && -prevn <= -n)) range_error("Overflow on numeric constant."); } prevn=n; } lexptr = p; if(*p == 'B' || *p == 'C' || *p == 'H') lexptr++; /* Advance past B,C or H */ if (ischar) { yylval.ulval = n; return CHAR; } else if ( unsigned_p && number_sign == 1) { yylval.ulval = n; return UINT; } else if((unsigned_p && (n<0))) { range_error("Overflow on numeric constant -- number too large."); /* But, this can return if range_check == range_warn. */ } yylval.lval = n; return INT; } /* Some tokens */ static struct { char name[2]; int token; } tokentab2[] = { { {'<', '>'}, NOTEQUAL }, { {':', '='}, ASSIGN }, { {'<', '='}, LEQ }, { {'>', '='}, GEQ }, { {':', ':'}, COLONCOLON }, }; /* Some specific keywords */ struct keyword { char keyw[10]; int token; }; static struct keyword keytab[] = { {"OR" , OROR }, {"IN", IN },/* Note space after IN */ {"AND", LOGICAL_AND}, {"ABS", ABS }, {"CHR", CHR }, {"DEC", DEC }, {"NOT", NOT }, {"DIV", DIV }, {"INC", INC }, {"MAX", MAX_FUNC }, {"MIN", MIN_FUNC }, {"MOD", MOD }, {"ODD", ODD }, {"CAP", CAP }, {"ORD", ORD }, {"VAL", VAL }, {"EXCL", EXCL }, {"HIGH", HIGH }, {"INCL", INCL }, {"SIZE", SIZE }, {"FLOAT", FLOAT_FUNC }, {"TRUNC", TRUNC }, }; /* Read one token, getting characters through lexptr. */ /* This is where we will check to make sure that the language and the operators used are compatible */ static int yylex () { register int c; register int namelen; register int i; register char *tokstart; register char quote; retry: tokstart = lexptr; /* See if it is a special token of length 2 */ for( i = 0 ; i < sizeof tokentab2 / sizeof tokentab2[0] ; i++) if(STREQN(tokentab2[i].name, tokstart, 2)) { lexptr += 2; return tokentab2[i].token; } switch (c = *tokstart) { case 0: return 0; case ' ': case '\t': case '\n': lexptr++; goto retry; case '(': paren_depth++; lexptr++; return c; case ')': if (paren_depth == 0) return 0; paren_depth--; lexptr++; return c; case ',': if (comma_terminates && paren_depth == 0) return 0; lexptr++; return c; case '.': /* Might be a floating point number. */ if (lexptr[1] >= '0' && lexptr[1] <= '9') break; /* Falls into number code. */ else { lexptr++; return DOT; } /* These are character tokens that appear as-is in the YACC grammar */ case '+': case '-': case '*': case '/': case '^': case '<': case '>': case '[': case ']': case '=': case '{': case '}': case '#': case '@': case '~': case '&': lexptr++; return c; case '\'' : case '"': quote = c; for (namelen = 1; (c = tokstart[namelen]) != quote && c != '\0'; namelen++) if (c == '\\') { c = tokstart[++namelen]; if (c >= '0' && c <= '9') { c = tokstart[++namelen]; if (c >= '0' && c <= '9') c = tokstart[++namelen]; } } if(c != quote) error("Unterminated string or character constant."); yylval.sval.ptr = tokstart + 1; yylval.sval.length = namelen - 1; lexptr += namelen + 1; if(namelen == 2) /* Single character */ { yylval.ulval = tokstart[1]; return CHAR; } else return STRING; } /* Is it a number? */ /* Note: We have already dealt with the case of the token '.'. See case '.' above. */ if ((c >= '0' && c <= '9')) { /* It's a number. */ int got_dot = 0, got_e = 0; register char *p = tokstart; int toktype; for (++p ;; ++p) { if (!got_e && (*p == 'e' || *p == 'E')) got_dot = got_e = 1; else if (!got_dot && *p == '.') got_dot = 1; else if (got_e && (p[-1] == 'e' || p[-1] == 'E') && (*p == '-' || *p == '+')) /* This is the sign of the exponent, not the end of the number. */ continue; else if ((*p < '0' || *p > '9') && (*p < 'A' || *p > 'F') && (*p != 'H')) /* Modula-2 hexadecimal number */ break; } toktype = parse_number (p - tokstart); if (toktype == ERROR) { char *err_copy = (char *) alloca (p - tokstart + 1); memcpy (err_copy, tokstart, p - tokstart); err_copy[p - tokstart] = 0; error ("Invalid number \"%s\".", err_copy); } lexptr = p; return toktype; } if (!(c == '_' || c == '$' || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'))) /* We must have come across a bad character (e.g. ';'). */ error ("Invalid character '%c' in expression.", c); /* It's a name. See how long it is. */ namelen = 0; for (c = tokstart[namelen]; (c == '_' || c == '$' || (c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')); c = tokstart[++namelen]) ; /* The token "if" terminates the expression and is NOT removed from the input stream. */ if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f') { return 0; } lexptr += namelen; /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1) and $$digits (equivalent to $<-digits> if you could type that). Make token type LAST, and put the number (the digits) in yylval. */ if (*tokstart == '$') { register int negate = 0; c = 1; /* Double dollar means negate the number and add -1 as well. Thus $$ alone means -1. */ if (namelen >= 2 && tokstart[1] == '$') { negate = 1; c = 2; } if (c == namelen) { /* Just dollars (one or two) */ yylval.lval = - negate; return LAST; } /* Is the rest of the token digits? */ for (; c < namelen; c++) if (!(tokstart[c] >= '0' && tokstart[c] <= '9')) break; if (c == namelen) { yylval.lval = atoi (tokstart + 1 + negate); if (negate) yylval.lval = - yylval.lval; return LAST; } } /* Handle tokens that refer to machine registers: $ followed by a register name. */ if (*tokstart == '$') { for (c = 0; c < NUM_REGS; c++) if (namelen - 1 == strlen (reg_names[c]) && STREQN (tokstart + 1, reg_names[c], namelen - 1)) { yylval.lval = c; return REGNAME; } for (c = 0; c < num_std_regs; c++) if (namelen - 1 == strlen (std_regs[c].name) && STREQN (tokstart + 1, std_regs[c].name, namelen - 1)) { yylval.lval = std_regs[c].regnum; return REGNAME; } } /* Lookup special keywords */ for(i = 0 ; i < sizeof(keytab) / sizeof(keytab[0]) ; i++) if(namelen == strlen(keytab[i].keyw) && STREQN(tokstart,keytab[i].keyw,namelen)) return keytab[i].token; yylval.sval.ptr = tokstart; yylval.sval.length = namelen; /* Any other names starting in $ are debugger internal variables. */ if (*tokstart == '$') { yylval.ivar = (struct internalvar *) lookup_internalvar (copy_name (yylval.sval) + 1); return INTERNAL_VAR; } /* Use token-type BLOCKNAME for symbols that happen to be defined as functions. If this is not so, then ... Use token-type TYPENAME for symbols that happen to be defined currently as names of types; NAME for other symbols. The caller is not constrained to care about the distinction. */ { char *tmp = copy_name (yylval.sval); struct symbol *sym; if (lookup_partial_symtab (tmp)) return BLOCKNAME; sym = lookup_symbol (tmp, expression_context_block, VAR_NAMESPACE, 0, NULL); if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK) return BLOCKNAME; if (lookup_typename (copy_name (yylval.sval), expression_context_block, 1)) return TYPENAME; if(sym) { switch(sym->class) { case LOC_STATIC: case LOC_REGISTER: case LOC_ARG: case LOC_REF_ARG: case LOC_REGPARM: case LOC_REGPARM_ADDR: case LOC_LOCAL: case LOC_LOCAL_ARG: case LOC_BASEREG: case LOC_BASEREG_ARG: case LOC_CONST: case LOC_CONST_BYTES: case LOC_OPTIMIZED_OUT: return NAME; case LOC_TYPEDEF: return TYPENAME; case LOC_BLOCK: return BLOCKNAME; case LOC_UNDEF: error("internal: Undefined class in m2lex()"); case LOC_LABEL: error("internal: Unforseen case in m2lex()"); } } else { /* Built-in BOOLEAN type. This is sort of a hack. */ if(STREQN(tokstart,"TRUE",4)) { yylval.ulval = 1; return M2_TRUE; } else if(STREQN(tokstart,"FALSE",5)) { yylval.ulval = 0; return M2_FALSE; } } /* Must be another type of name... */ return NAME; } } #if 0 /* Unused */ static char * make_qualname(mod,ident) char *mod, *ident; { char *new = malloc(strlen(mod)+strlen(ident)+2); strcpy(new,mod); strcat(new,"."); strcat(new,ident); return new; } #endif /* 0 */ void yyerror (msg) char *msg; { error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr); }